• Refine Query
• Source
• Publication year
• to
• Language
• 5
• 3
• 1
• Tagged with
• 10
• 10
• 6
• 3
• 3
• 3
• 2
• 2
• 2
• 2
• 2
• 2
• 2
• 2
• 2
• The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

#### A summary of M396C : analysis and the real line UTeach summers master's course mathematics department at the University of Texas at Austin

Boyd, Jerry Wayne 02 February 2012 (has links)
The purpose of this paper is to review and summarize the topics involved in the study of real analysis. Real analysis is a branch of mathematics that studies the field of real numbers including the calculus of real numbers, analytical properties of real functions and sequences. This includes limits of sequences of real numbers, continuity, completeness, and related properties of real functions. While all topics in the course were important and vital to understanding analysis, the goal of this paper is to review, research, and report on a few of the more interesting topics covered in the class. / text
2

#### Functions of bounded variation

Lind, Martin January 2006 (has links)
<p>The paper begins with a short survey of monotone functions. The functions of bounded variation are introduced and some basic properties of these functions are given. Finally the jump function of a function of bounded variation is defined.</p>
3

#### Functions of bounded variation

Lind, Martin January 2006 (has links)
The paper begins with a short survey of monotone functions. The functions of bounded variation are introduced and some basic properties of these functions are given. Finally the jump function of a function of bounded variation is defined.
4

#### Probabilistic Methods

The Probabilistic Method was primarily used in Combinatorics and pioneered by Erdös Pai, better known to Westerners as Paul Erdos in the 1950s. The probabilistic method is a powerful tool for solving many problems in discrete mathematics, combinatorics and also in graph .theory. It is also very useful to solve problems in number theory, combinatorial geometry, linear algebra and real analysis. More recently, it has been applied in the development of efficient algorithms and in the study of various computational problems.Broadly, the probabilistic method is somewhat opposite of the extremal graph theory. Instead of considering how a graph can behave in the extreme, we consider how a collection of graphs behave on 'average' where by we can formulate a probability space. The method allows one to prove the existence of a structure with particular properties by defining an appropriate probability space of structures and show that the desired properties hold in the space with positive probability.(please see PDF for complete abstract)
5

#### Quotient Spaces Generated by Thomae's Function over the Real Line

Reiter, Chase Stephen 09 May 2023 (has links)
No description available.
6

#### Product Measure

Race, David M. (David Michael) 08 1900 (has links)
In this paper we will present two different approaches to the development of product measures. In the second chapter we follow the lead of H. L. Royden in his book Real Analysis and develop product measure in the context of outer measure. The approach in the third and fourth chapters will be the one taken by N. Dunford and J. Schwartz in their book Linear Operators Part I. Specifically, in the fourth chapter, product measures arise almost entirely as a consequence of integration theory. Both developments culminate with proofs of well known theorems due to Fubini and Tonelli.
7

#### Repenser la bibliothèque réelle de Coq : vers une formalisation de l'analyse classique mieux adaptée / Reinventing Coq's Reals library : toward a more suitable formalization of classical analysis

Lelay, Catherine 15 June 2015 (has links)
L'analyse réelle a de nombreuses applications car c'est un outil approprié pour modéliser de nombreux phénomènes physiques et socio-économiques. En tant que tel, sa formalisation dans des systèmes de preuve formelle est justifié pour permettre aux utilisateurs de vérifier formellement des théorèmes mathématiques et l'exactitude de systèmes critiques. La bibliothèque standard de Coq dispose d'une axiomatisation des nombres réels et d'une bibliothèque de théorèmes d'analyse réelle. Malheureusement, cette bibliothèque souffre de nombreuses lacunes. Par exemple, les définitions des intégrales et des dérivées sont basées sur les types dépendants, ce qui les rend difficiles à utiliser dans la pratique. Cette thèse décrit d'abord l'état de l'art des différentes bibliothèques d'analyse réelle disponibles dans les assistants de preuve. Pour pallier les insuffisances de la bibliothèque standard de Coq, nous avons conçu une bibliothèque facile à utiliser : Coquelicot. Une façon plus facile d'écrire les formules et les théorèmes a été mise en place en utilisant des fonctions totales à la place des types dépendants pour écrire les limites, dérivées, intégrales et séries entières. Pour faciliter l'utilisation, la bibliothèque dispose d'un ensemble complet de théorèmes couvrant ces notions, mais aussi quelques extensions comme les intégrales à paramètres et les comportements asymptotiques. En plus, une hiérarchie algébrique permet d'appliquer certains théorèmes dans un cadre plus générique comme les nombres complexes pour les matrices. Coquelicot est une extension conservative de l'analyse classique de la bibliothèque standard de Coq et nous avons démontré les théorèmes de correspondance entre les deux formalisations. Nous avons testé la bibliothèque sur plusieurs cas d'utilisation : sur une épreuve du Baccalauréat, pour les définitions et les propriétés des fonctions de Bessel ainsi que pour la solution de l'équation des ondes en dimension 1. / Real analysis is pervasive to many applications, if only because it is a suitable tool for modeling physical or socio-economical systems. As such, its support is warranted in proof assistants, so that the users have a way to formally verify mathematical theorems and correctness of critical systems. The Coq system comes with an axiomatization of standard real numbers and a library of theorems on real analysis. Unfortunately, this standard library is lacking some widely used results. For instance, the definitions of integrals and derivatives are based on dependent types, which make them cumbersome to use in practice. This thesis first describes various state-of-the-art libraries available in proof assistants. To palliate the inadequacies of the Coq standard library, we have designed a user-friendly formalization of real analysis: Coquelicot. An easier way of writing formulas and theorem statements is achieved by relying on total functions in place of dependent types for limits, derivatives, integrals, power series, and so on. To help with the proof process, the library comes with a comprehensive set of theorems that cover not only these notions, but also some extensions such as parametric integrals and asymptotic behaviors. Moreover, an algebraic hierarchy makes it possible to apply some of the theorems in a more generic setting, such as complex numbers or matrices. Coquelicot is a conservative extension of the classical analysis of Coq's standard library and we provide correspondence theorems between the two formalizations. We have exercised the library on several use cases: in an exam at university entry level, for the definitions and properties of Bessel functions, and for the solution of the one-dimensional wave equation.
8

9

#### Rigor sem órgãos : em meio a relações discursivas, (r)ex(s)istências possíveis /

Gomes, Danilo Olimpio. January 2020 (has links)