• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 152
  • 84
  • 8
  • 1
  • Tagged with
  • 234
  • 131
  • 65
  • 44
  • 39
  • 36
  • 35
  • 34
  • 33
  • 29
  • 29
  • 28
  • 26
  • 23
  • 21
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
91

La dissémination des séquences REP dans les génomes bactériens : caractérisation des activités des protéines TnpAREP / Characterization of TnpArep protein in REP sequence dissemination

Corneloup, Alix 18 October 2016 (has links)
Les génomes bactériens contiennent de nombreuses séquences répétées qui ont un rôle majeur dans la plasticité et l'évolution des génomes. Parmi elles, les séquences REP sont de courtes séquences d'ADN, trouvées en grand nombre dans des régions intergéniques de plusieurs espèces bactériennes. Ces séquences ont la particularité de présenter des structures en tige boucle précédées par un tétranucléotide conservé. Elles peuvent exister seules mais sont majoritairement groupées dans des clusters consécutifs appelés BIME. De nombreux rôles ont été attribués aux REP/BIME dans la physiologie de la cellule : elles sont notamment impliquées dans la régulation de l'expression des gènes et elles constituent des sites de fixation pour plusieurs protéines de l'hôte. Toutefois, leur origine et le mécanisme de leur dissémination dans les génomes ne sont pas connus. Récemment, un gène codant une protéine (TnpAREP) apparentée aux transposases de la famille des séquences d'insertions IS200/IS605 a été identifiée en association avec des REP/BIME au sein de structures appelées REPtron. Il a été alors proposé que les REP/BIME pourraient être des éléments transposables non-autonomes mobilisables par la protéine TnpAREP. Cette protéine fait partie de la superfamille des enzymes HuH comprenant des Relaxases, des protéines Rep des phages/plasmides à réplication en cercle roulant et certaines transposases. Elles utilisent le motif HuH (Histidine - résidu hydrophobe - Histidine) pour coordonner des cofacteurs métalliques ainsi que des résidus tyrosines pour leur activité catalytique. Comme pour les transposases HuH de la famille IS200/IS605, TnpAREP reconnait spécifiquement des substrats ADN simple brin. Elle est active in vitro sur des séquences structurées contenant des REP/BIME sous forme simple brin et celle-ci clive au niveau d'un dinucléotide spécifique. Des données cristallographiques suggèrent que TnpAREP serait monomérique, contrairement aux transposases d'IS200/IS605 qui sont des dimères obligatoires. Cela pose de nombreuses questions sur le site catalytique de l'enzyme ainsi que sur le mécanisme de prolifération des REP/BIME dans les génomes bactériens, d'autant plus qu'aucune activité de TnpAREP n'a été décrite in vivo. Mes premiers résultats portent sur la caractérisation du site catalytique de TnpAREP d'E. coli et ont permis d'exclure la possibilité d'un site catalytique hybride comme dans le cas des protéines Rep de certains plasmides. J'ai pu mettre en évidence une activité in vivo de TnpAREP : son expression sous contrôle d'un promoteur inductible à un effet toxique et induit la réponse SOS chez E. coli. J'ai également développé un test pour cartographier des sites de clivage de TnpAREP in vivo et montré que l'enzyme est capable de cliver les deux brins des plasmides et de l'ADN chromosomique. De plus, une excision d'un BIME a pu être observée dans ces conditions. J'ai aussi construit des souches bactériennes permettant d'étudier l'évolution expérimentale des REP/BIME in vivo dont les résultats sont en cours d'analyse. Enfin, nous avons élargi notre étude à un sous-groupe de TnpAREP associées à un autre type de REP/BIME. Cette analyse comparative nous a permis non seulement de généraliser des propriétés observées avec TnpAREP d'E. coli, mais aussi de révéler des caractéristiques spécifiques de ce sous-groupe. / In spite of their compact size, bacterial genomes carry many repetitive sequences, often important for genome function and evolution. Among them, REPs are short DNA found at high copy number in intergenic regions in many bacterial species. These sequences can form stem-loop structures preceded by a conserved tetranucleotide. They can exist as individual units but also as complex consecutive clusters called BIMEs. REP/BIMEs are known to interact with different proteins and several important roles have been attributed to these sequences in cell physiology. However, their origin and dissemination mechanisms are poorly understood. Recently, a first example of prokaryotic domesticated transposases (TnpAREP) was found associated with REP/BIME sequences in structure called REPtron. REP/BIMEs might represent a special type of non-autonomous transposable element mobilizable by TnpAREP. TnpAREP is member of the HuH enzymes superfamily including Relaxases, Rep proteins of RCR plasmids/ss phages and some transposases. These transposases are fundamentally different from classical transposases. They use HuH motif (Histidine-hydrophobe-Histidine) to coordinate metal cofactor and tyrosine residues (Y) as nucleophile for catalysis. TnpAREP shares certain similarities to Y1 HuH transposases encoded by the IS200/IS605 family which processes only ssDNA substrates. Analysis of E. coli TnpAREP activity in vitro also shown the strict requirement of structured single stranded REP/BIME DNA substrates. Cleavage in vitro occurs at a specific dinucleotide. In contrast to Y1 HuH transposases which are obligatory dimers, E. coli TnpAREP is a monomer as shown by structural studies. Furthermore, TnpAREP activities have never been described in vivo. This raises questions about its catalytic sites and also the way by which it promotes REP/BIME proliferation within their host genomes. The first objective of my PhD was to characterize the TnpAREP catalytic site. My results exclude the possibility of a second catalytic site as observed for REP protein of some plasmid families. Here I show that in vivo, expression of TnpAREP under control of an inducible external promoter is toxic to E. coli cells and induces SOS response, the effect depending on catalytic activity of the protein. I have developed an assay to map TnpAREP cleavage sites in vivo and show that it can cleave both DNA strands on plasmid and bacterial chromosome. In these conditions, an excision of BIME could be observed. I also constructed bacterial strains to perform REP/BIME experimental evolution, results are under analysis. Finally, we are extending our analysis to a subgroup of TnpAREP that are associated with another type of REP/BIME. This comparative analysis not only permitted to generalize some properties observed with E. coli TnpAREP but also revealed some interesting distinct characteristics of this subgroup.
92

Homologous recombination in Bacteriophages, less fidelity for more exchanges / Recombinaison homologue chez les Bactériophages, moins de fidélité pour plus d’échanges

Hutinet, Geoffrey 31 October 2014 (has links)
La diversité des génomes de virus infectant les bactéries, les bactériophages (ou phage en abrégé), est telle qu’il est difficile de les classer de manière satisfaisante, la notion d’espèce elle-même ne faisant pas accord dans la communauté scientifique. A la racine de cette diversité, un des facteurs clé est la recombinaison de l’ADN, qui est élevée chez les bactériophages, et permet des échanges de gènes entre entités parfois fort différentes. Mes travaux se sont centrés sur la recombinaison homologue chez les bactériophages, et en particulier sur la protéine centrale de ce processus, la recombinase. J’ai montré pour deux grands types de recombinases phagiques, de type Rad52 et Sak4, que celles-ci étaient beaucoup moins fidèles dans le processus de recombinaison, comparées à la recombinase bactérienne RecA. De plus, pour Sak4, j’ai observé que cette recombinaison se produisait par appariement simple brin, et qu’elle dépendait entièrement in vivo d’une SSB phagique, dont le gène est situé à proximité du gène sak4 sur le chromosome du phage. Les échanges génétiques sont donc grandement facilités pour les phages contenant ce type de recombinases, mais ils ne sont pas non plus anarchiques : la recombinaison s’observe jusque 22% de divergence, mais deux séquences à 50% de divergence ne peuvent recombiner. Tout se passe donc comme si la notion d’espèce devait être élargie chez les phages par rapport aux bactéries, pour inclure dans un même groupe des génomes portant des traces d’échanges récents de matériel génétique par recombinaison homologue (ce que l’on appelle le mosaïcisme). / The diversity of the viruses infecting bacteria (bacteriophages, or phages for short) is so important that it is difficult to classify them in a pertinent way, and the species notion itself is a matter of debate among specialists. At the root of this diversity, one of the key factors is DNA recombination, which occurs at high levels among phages, and permits gene exchanges among entities that are sometimes very distant. My research has focused on homologous recombination in phages, and in particular on the protein that is key to the process, the recombinase. I have shown, for two different types of recombinases, Rad52-like and Sak4-like, that their fidelity was relaxed, compared to the bacterial recombinase, RecA. Moreover, for Sak4, a protein that had not been studied before, I showed that recombination occurs by single strand annealing, and that it is strictly dependent in vivo on the co-expression of its cognate SSB protein, whose gene is often encoded nearby in phage genomes encoding sak4. Genetic exchanges are therefore greatly facilitated for phages encoding these types of recombinases. Nevertheless, exchanges are not anarchical: recombination is seen up to 22% diverged substrates, but 50% diverged DNA sequences will not recombine. It may be that the species notion should be enlarged for phages, so as to include into a same group all phages exhibiting traces of recent exchanges of genetic material (the so-called mosaicism).
93

Vers la compréhension des mécanismes de réparation de l'ADN chez Streptomyces : identification d'acteurs de la recombinaison / Towards the understanding of DNA repair in streptomyces : identification of DNA recombination players

Zhang, Lingli 23 September 2014 (has links)
Les cassures double brin de l’ADN sont des dommages pouvant engendrer la mort cellulaire. Deux mécanismes majeurs sont impliqués dans leur réparation chez les bactéries : la recombinaison homologue et le Non-Homologous End Joining (NHEJ). Streptomyces est une bactérie modèle pour étudier l'impact relatif des mécanismes de recombinaison sur la structure du génome et son évolution ; le chromosome est en effet caractérisé par sa linéarité, son organisation génétique compartimentée et sa plasticité génomique remarquable. L'objectif de cette recherche est d'identifier les acteurs impliqués dans les mécanismes de réparation des cassures double brin qui restent inconnus chez Streptomyces à ce jour. Concernant la recombinaison homologue, la première étape consiste en une maturation des extrémités d’ADN générées par la cassure. Cette première étape est assurée par un complexe à activité hélicase-nuclease : RecBCD (chez Escherichia coli), AddAB (chez Bacillus subtilis) ou AdnAB (chez les mycobactéries). Une analyse in silico des génomes disponibles de Streptomyces a permis d’identifier chez ces organismes, deux gènes conservés et adjacents, nommés adnA et adnB en raison de leur homologie avec les gènes adnAB récemment identifiés chez les mycobactéries. Les tentatives visant à déléter ces gènes chez Streptomyces ambofaciens et Streptomyces coelicolor ont été infructueuses. Cependant, le fait que leur délétion soit rendue possible par l’ajout d’une copie ectopique du locus sauvage nous a amené à conclure au caractère essentiel d’adnA et adnB chez Streptomyces. La trans-complémentation d’un mutant [delta]recB d’E. coli par le locus adnAB de S. ambofaciens restaure l’activité nucléase cellulaire et la survie en présence ou non d’agent génotoxique, suggérant qu’adnAB code l’homologue fonctionnel de RecBCD d’E. coli. Le rôle central d’adnAB dans la recombinaison homologue et la réplication est discuté. Le mécanisme NHEJ montre une distribution sporadique chez les bactéries et implique les deux protéines Ku et LigD. La protéine Ku se fixe sur les extrémités de l’ADN et recrute la ligase LigD. Cette dernière est une protéine multifonctionnelle présentant, outre une activité ligase, une activité polymérase et parfois une activité nucléase. L’analyse des génomes de Streptomyces a révélé un nombre variable d’homologues de ku (1-3) et d’homologues codant pour l’une ou l’autre des trois activités de LigD. Ces différents gènes définissent deux loci conservés entre espèces de Streptomyces. Chez S. ambofaciens, trois homologues de ku (nommés kuA, kuB et kuC) et deux ligases ATP-dépendantes (nommés ligC et ligD) ont été identifiés. L’exposition de souches déficientes pour ces différents gènes aux agents endommageant l’ADN (la mitomycine C, l’irradiation par faisceau d’électrons) a démontré l’implication de kuA et ligC, deux acteurs conservés, mais aussi des gènes variables kuC et ligD, dans la réparation de l’ADN. Ces résultats ouvrent de nouvelles perspectives pour comprendre le rôle du NHEJ dans l'évolution du génome et la biologie Streptomyces. / Double strand breaks (DSB) constitute the most deleterious form of DNA damage that a bacterial cell can encounter. Two major pathways can carry out DSB repair in bacteria: homologous recombination and Non-Homologous End Joining (NHEJ). Streptomyces is a model bacterium to explore the relative impact of these recombination mechanisms on genome structure and evolution; the chromosome is indeed typified by its linearity, its compartmentalized genetic organization and its remarkable genomic plasticity. The objective of this research is to identify actors involved in DSB repair mechanisms which remain mostly elusive in Streptomyces up to now. The first step of DSB repair by homologous recombination is the resection of broken DNA ends by a multisubunit helicase-nuclease complex exemplified by Escherichia coli RecBCD, Bacillus subtilis AddAB and Mycobacterium tuberculosis AdnAB. In silico analysis of Streptomyces genomes allowed to identify homologues for adnA and adnB which constitute a highly conserved locus within the genus. Attempts to disrupt these two genes were unsuccessful in Streptomyces ambofaciens as well as in Streptomyces coelicolor, unless an extra copy of adnAB was inserted in the chromosome. This indicates that AdnA and AdnB are both essential for Streptomyces growth. Complementation of an E. coli [delta]recB mutant by S. ambofaciens adnAB locus restored nuclease activity and cell survival in the presence or absence of DNA damaging agent, strongly suggesting that Streptomyces adnAB encodes a functional homologue of E. coli RecBCD. The key role of adnAB in homologous recombination and DNA replication is discussed. The NHEJ mechanism shows a sporadic distribution in bacteria and is known to involve the two proteins Ku and LigD. The Ku protein binds to the ends of the broken DNA and recruits the ATP-dependent ligase LigD which is a multifunctional protein carrying ligase, polymerase and sometimes nuclease activity. In silico analysis of Streptomyces genomes revealed a complex organization with a variable number of ku homologues (1 to 3) and of homologues encoding one of the three distinct LigD activities. These homologues define two conserved loci. S. ambofaciens possesses 3 ku (named kuA, kuB and kuC) and 2 ATP-dependent ligases (named ligC and ligD). Exposure to DNA damaging agents (mitomycin C, electron beam irradiation) of mutant strains got involved kuA and ligC, two conserved actors, but also variable genes such as kuC and ligD in DNA repair. These results open up new prospects to understand the role of NHEJ in the biology and genome evolution of Streptomyces.
94

Force et couple dans les pinces magnétiques : paysage énergétique de la protéine hRad51 sur ADN double-brin / Force and torque in magnetic tweezers : energy landscape of the protein hRad51 on double-stranded DNA

Atwell, Scott 26 September 2014 (has links)
Hautement conservé, de la bactérie jusqu'à l’Homme, la recombinaison homologue est indispensable à la survie de tout organisme vivant. Chez l’humain, la protéine hRad51 (human Rad51) y joue un rôle clé en s’autoassemblant au site de cassure sur les extrémités simple-brin d’une molécule d’ADN endommagée pour former le filament nucléoprotéique. Ce filament est capable à lui seul d’effectuer la plupart des opérations nécessaires au bon déroulement de la recombinaison homologue; il va permettre la reconnaissance d’homologie, l’appariement des séquences homologues et l’invasion de brins requise pour la synthèse de l’ADN manquant.La recombinaison homologue est un processus complexe impliquant de multiples partenaires. Pour mieux comprendre le rôle du filament nucléoprotéique au sein de la réaction, on se propose d’étudier ce dernier en l’absence de tout partenaire. Plus précisément, on observe le comportement mécanique de filaments hRad51-ADNdb en fonction des conditions chimiques. La formation du filament nucléoprotéique modifie la conformation de l’ADN sur lequel il s’assemble, l’allongeant de 50% et le déroulant de 43% dans le cas d’une molécule double-brin. Les pinces magnétiques sont un outil permettant de contrôler la force et la torsion appliquées à une unique molécule d’ADN double-brin (ADNdb), elles sont donc l’outil idéal pour sonder les propriétés mécaniques de filaments nucléoprotéiques. Le système des pinces magnétiques a été modifié afin de mesurer des paramètres mécaniques précédemment inaccessibles tel que le couple ressenti ou exercé par le filament. Le but de cette thèse a été d’étudier les propriétés mécano-chimiques des filaments nucléoprotéiques tout en essayant de tracer le paysage énergétique qui régit les transitions de ces systèmes. / Highly conserved throughout the species, homologous recombination is crucial to the survival of any living organism. In humans, the hRad51 protein (human Rad51) plays a key role by self-assembling at the break site on the single stranded extremities of damaged DNA molecules thus forming the nucleoprotein filament. This filament is able by itself to accomplish most of the necessary operations of homologous recombination; it allows the homology search, the pairing of the homologous sequences and the strand exchange.Homologous recombination is a complex process involving many partners. In order to better understand the role of the nucleoprotein filament in this process, we propose to study it in the absence of any partners. We will focus on the study of the mechanical properties of hRad51-dsDNA filaments as a function of chemical conditions. The formation of the nucleoprotein filament modifies the conformation of the DNA molecule on which it assembles, stretching it by 50% and unwinding it by 43% in the case of a double stranded DNA. The magnetic tweezers are a tool allowing the control of the force and torsion applied to a single dsDNA molecule; they are therefore the ideal tool to probe the mechanical properties of nucleoprotein filaments. We modified the magnetic tweezers as to allow the measurement of previously inaccessible mechanical parameters such as the torque applied or felt by the filament. The goal of this thesis has been to study the mechano-chemical properties of nucleoprotein filaments while drawing the energy landscape that governs the various transitions of these systems.
95

Rôle de la protéine TRF2 et de ses partenaires dans la recombinaison des télomères humains / Role of TRF2 and its partners in the homologous recombination of human telomeres

Saint-Léger, Adélaïde 02 December 2011 (has links)
La protéine télomérique TRF2 permet de protéger les télomères notamment en régulant leur taille. Dans des cellules humaines, la surexpression de la protéine mutante TRF2ΔB, dont le domaine basique est absent, induit un raccourcissement soudain des télomères. In vitro, ce domaine basique protège des structures d’ADN particulières, appelées Jonctions de Holliday (JH), de la résolution par des endonucléases. Ces JH peuvent être présentes aux télomères d’une part au niveau de la boucle télomérique, une conformation de l’ADN qui ressemble à une structure intermédiaire de la recombinaison homologue (RH), et d’autre part au niveau des fourches de réplication bloquées, fréquentes aux télomères. Nous pensons que le raccourcissement soudain des télomères implique la résolution de JH au cours d’un événement de recombinaison homologue qui doit être étroitement régulé afin d’éviter qu’il ne se réalise de façon inappropriée. Dans le but de mieux caractériser cet événement, j’ai montré que différentes endonucléases capables de résoudre des JH (GEN1, MUS81, SLX1-SLX4) sont impliquées dans le raccourcissement des télomères induit par la surexpression de la protéine TRF2ΔB. Puis j’ai étudié le rôle de la protéine hRAP1 dans la régulation de ce mécanisme et l’implication des protéines de la RH. L’ensemble des résultats obtenus nous ont permis de proposer un nouveau rôle de la protéine TRF2 dans la régulation des événements de recombinaison homologue au cours de la réplication des télomères. / The stability of mammalian telomeres depends upon TRF2 which prevents inappropriate repair and checkpoint activation. In human cells, overexpressing a TRF2 mutant lacking the N-terminal basic domain, TRF2ΔB, induces sudden telomere shortening. In vitro, the basic domain protects particular DNA structures, called Holliday junctions (HJ), of the resolution by endonucleases. These HJ may be present at telomeres in one hand at the t-loop, a DNA conformation looking like a structural intermediate of homologous recombination (HR), and also at the level of stalled replication forks, frequent at telomeres. We believe that the sudden shortening of telomeres involves the resolution of HJ during a HR event that would be tightly regulated to prevent it occurs inappropriately. In order to better characterize this event, I have shown that different proteins harbouring resolving activities (GEN1, MUS81, SLX1-SLX4) are involved in telomere shortening induced by overexpression of TRF2ΔB. Then, I studied the role of hRAP1 in the regulation of this mechanism and involvement of HR proteins. The overall results allowed us to propose a new role of TRF2 in the regulation of HR events during the replication of telomeres.
96

Flowing afterglow studies of recombination of electrons with heavy Ions using FALP-MS / Etude post-décharge en écoulement de la recombinaison d'électrons avec des ions lourds utilisant FALP-MS

Alshammari, Suliman 06 February 2018 (has links)
La recombinaison dissociative (RD) est le processus dans lequel un ion moléculaire positif se recombine avec un électron et se dissocie après en fragments neutres. Parmi les différents types de réactions entre ions moléculaires et électrons, la RD mérite une attention particulière à cause du rôle important qu'elle joue dans les plasmas à basse température et de faible densité, telles que celles rencontrées dans les ionosphères planétaires et les nuages interstellaires. En dépit de l'apparente simplicité de la RD, son étude s'est avéré difficile aussi bien du point de vue expérimental que théorique. Afin d'apporter plus de lumière sur ce processus, la technique de la post-décharge en écoulement a été introduite et a été largement utilisée ces dernières décennies. La présente thèse est dédiée aux études expérimentales de la réaction RD, à l'aide du spectromètre de masse à sonde Langmuir (FALP-MS) en post-décharge en écoulement, à l'Université de Rennes 1, à Rennes, en France. Nous avons étudié la réaction RD à température ambiante a été étudiée pour les ions moléculaires d'acétone ( ) et les cations de diméthylamine cations ( ainsi que les vitesses de réaction des cations de triméthylamine ( cations, et nous avons obtenu des valeurs avec des incertitudes de of ± 30 %. De plus, nous avons étudié l'attachement électronique à la diméthylamine neutre et nous avons trouvé une constante de vitesse de = 4.81 x 10-10 cm3 s-1. Un nouveau système d'injection pour l'anneau de stockage électrostatique de KACST a été conçu et construit dans le laboratoire de l'IPR à Rennes. Le couplage de la source d'ions avec un analyseur de masse quadripolaire et l'utilisation d'un système de vannes pulsées assurant un pompage différentiel entre différentes régions de la ligne d'injection constitue une méthode nouvelle dans le contexte d'un anneau de stockage. Le but final de ce projet est l'étude des réactions à ions lourds tels que les ions moléculaires biologiques. / Dissociative recombination (DR) is a process in which a positive molecular ion recombines with an electron and subsequently dissociates into neutral fragments. Among the different types of molecular ion-electron reactions DR deserves particular attention due to the important role it plays in low-temperature and low-density plasmas such as those encountered in planetary ionospheres and interstellar clouds. Despite the apparent simplicity of the DR reaction, its investigation has proven to be a difficult task from both experimental and theoretical perspectives. In order to shed more light upon this process the flowing afterglow technique has been introduced and utilised extensively for the last few decades. This thesis is devoted to experimental studies into the DR reaction using the flowing afterglow Langmuir probe mass spectrometer FALP-MS at the University of Rennes 1, in Rennes, France. The DR reaction at room temperature has been investigated for the acetone molecular ions ( ) and dimethylamine cations ( as well as the reaction rates of trimethylamine ( cations, and the obtained values were with uncertainties of ± 30 %. In addition, the electronic attachment to neutral dimethylamine was also studied and the rate constant was determined to be = 4.81 x 10-10 cm3 s-1. A new ion injection system system for the KACST electrostatic storage ring has been designed and built in the IPR laboratory in Rennes. The coupling of an ion source with a quadrupole mass analyzer and the use of a gas pulsing system to maintain the differential pumping between different regions of the injection line, is a novel technique for use with a storage ring. The final goal of this system is to study the reactivity of heavy ions such as biological molecular ions.
97

Towards a functional characterization of meiotic recombination in rapeseed : analysis of the meiotic transcriptome and hyper-recombinant mutants / Vers une caractérisation fonctionnelle de la recombinaison méiotique chez le colza : analyse du transcriptome méiotique et de mutants hyper-recombinants

Blary, Aurélien 20 December 2016 (has links)
La recombinaison méiotique produite par les Crossing Overs (COs) est un facteur limitant pour l’efficacité de la sélection variétale. Une possibilité pour produire des plantes hyper-recombinantes serait d’exploiter la variabilité intraspécifique pour les fréquences de recombinaison. L’identification des polymorphismes causaux, liés à la séquence ou l’expression, représente un travail de longue haleine. Une approche alternative serait de produire des mutants pour des régulateurs négatifs des fréquences de recombinaison. Chez le colza, jeune allotétraploïde (AACC, 2n=38), il est possible de jouer sur ces 2 approches. Dans un premier temps j’ai cherché à vérifier dans quelle mesure pouvait varier le transcriptome méiotique entre 2 variétés ayant servi à cartographier un QTL pour le contrôle de la recombinaison entre chromosome homoéologues (hérités des génomes parentaux). Ce transcriptome méiotique s’est révélé de façon inattendue très variable ; les principales sources de cette variation étant notamment la nature du génome (A ou C) ainsi que l’effet variété. J’ai montré que les HEs (le remplacement d’une région chromosomique par la duplication de la région homoéologue) contribuent de façon importante aux différences d’expression observées à la fois entre variétés ou au sein d’un même génotype. Dans un second temps, j’ai vérifié que FANCM décrit chez Arabidopis thaliana comme un régulateur négatif pour les fréquences de recombinaison avait bien la même fonction chez les Brassica. Chez Brassica rapa j’ai vérifié qu’un mutant fancm complémente comme attendu un mutant déficient pour la voie majoritaire de formation des COs. Chez Brassica napus j’ai observé une faible augmentation à la fois des fréquences de recombinaison entre chromosomes homologues et homoéologues. Ce travail souligne l’importance de la caractérisation des HEs chez les allopolyploïdes. Au-delà de leurs impacts sur le contenu et l’expression génique, les HEs ont très certainement des conséquences phénotypiques. Cette étude présente aussi un exemple de biologie translationnelle pour un trait important en amélioration des plantes. / Meiotic recombination driven by Crossing-Over (CO) is a limiting factor for the efficiency of plant breeding. One way to produce hyper-recombinant plants is to use the existing interspecific variability for recombination frequencies. Identification of the causal polymorphisms, either link to gene sequence or expression, represents a long-term endeavour. Another possibility is to mutate anti-meiotic CO genes. In rapeseed, a young allotetraploid species (AACC, 2n=38), both of these approaches are possible. First I wanted to check how much varies the meiotic transcriptome between 2 varieties that differ in term of recombination between homoeologous chromosomes (inherited from parental genomes). Unexpectedly, the meiotic transcriptome turned out to be very variable, the main source of this variation being notably the origin of the genome (A or C) and the variety. I also showed that homoeologous exchanges (HEs; the replacement of one chromosomal region with a duplicate of the homeologous region) contributed to this variation and led to large changes in expression both between and within varieties. Then I assessed whether FANCM, an anti-CO protein identified in Arabidopis thaliana had the same function in the Brassica genus. In Brassica rapa, a fancm mutant complements as expected a meiosis mutant defective in the main formation pathway for the formation of meiotic COs. In Brassica napus, I observed a slight increase in both homologous and homoeologous recombination frequencies. This work emphasizes the importance of characterizing HEs in allopolyploids species. Beyond their impact on gene content and expression, HEs most have likely phenotypic consequences. This study also presents an example of translational biology for an important trait in crop breeding.
98

Impact of nuclear organization and chromatin structure on DNA repair and genome stability / Impact de l'organisation du noyau et de la structure de la chromatine sur la réparation de l'ADN et la stabilité du génome

Batté, Amandine 29 June 2016 (has links)
L’organisation non-aléatoire du noyau des cellules eucaryotes et la compaction de l’ADN en chromatine plus ou dense peuvent influencer de nombreuses fonctions liées au métabolisme de l’ADN, y compris la stabilité du génome. Les cassures double-brin sont les dommages à l’ADN les plus néfastes pour la cellule. Pour préserver l’intégrité de leur génome, les cellules eucaryotes ont développé des mécanismes de réparation des cassures double-brin qui sont conservés de la levure à l’homme. Parmi ceux-ci, la recombinaison homologue utilise une séquence homologue intacte présente ailleurs dans le génome et peut se diviser en deux sous voies de réparation. La conversion génique transfère l’information génétique d’une molécule à son homologue, tandis que le Break Induced Replication (BIR) établit une fourche de réplication qui peut procéder jusqu’à la fin du chromosome.Mon travail de thèse s’est attaché à caractériser la contribution du statut chromatinien et de l’organisation tridimensionnelle du génome à la réparation des cassures double-brin. L’organisation du noyau de la levure S. cerevisiae ainsi que la propagation de l’hétérochromatine au niveau des régions subtélomériques peuvent être modifiées via la surexpression des protéines Sir3 et sir3A2Q. Nous avons montré que le groupement des télomères accroit la conversion génique entre deux séquences subtélomériques, soulignant le rôle clé de la proximité spatiale et de la recherche d’homologie. Nous avons également constaté que la présence d’hétérochromatine au niveau du site de cassure limite la résection, ce qui permet une disparition plus lente des extrémités, qui resteraient disponibles plus longtemps pour réaliser la recherche d’homologie et achever la réparation. Enfin, nous avons observé que la présence d’hétérochromatine au site donneur diminue l’efficacité de recombinaison et qu’elle doit moduler une étape commune aux deux voies de réparation, à savoir l’invasion de brin. Ces travaux nous ont permis de décrire de nouvelles voies de régulation de la réparation de l’ADN. / The non-random organization of the eukaryotic cell nucleus and the folding of genome in chromatin more or less condensed can influence many functions related to DNA metabolism, including genome stability. Double-strand breaks (DSBs) are the most deleterious DNA damages for the cells. To preserve genome integrity, eukaryotic cells thus developed DSB repair mechanisms conserved from yeast to human, among which homologous recombination (HR) that uses an intact homologous sequence to repair a broken chromosome. HR can be separated in two sub-pathways: Gene Conversion (GC) transfers genetic information from one molecule to its homologous and Break Induced Replication (BIR) establishes a replication fork than can proceed until the chromosome end.My doctorate work was focused on the contribution of the chromatin context and 3D genome organization on DSB repair. In S. cerevisiae, nuclear organization and heterochromatin spreading at subtelomeres can be modified through the overexpression of the Sir3 or sir3A2Q mutant proteins. We demonstrated that reducing the physical distance between homologous sequences increased GC rates, reinforcing the notion that homology search is a limiting step for recombination. We also showed that heterochromatinization of DSB site fine-tunes DSB resection, limiting the loss of the DSB ends required to perform homology search and complete HR. Finally, we noticed that the presence of heterochromatin at the donor locus decreased both GC and BIR efficiencies, probably by affecting strand invasion. This work highlights new regulatory pathways of DNA repair.
99

Ku coordonne la résection des fourches de réplication bloquées, et stimule le redémarrage des fourches par la recombinaison homologue / Ku orchestrates resection at terminally-arrested replication forks, and stimulates fork restart by homologous recombination

Silva, Ana Carolina 20 June 2017 (has links)
Au cours de la réplication de l’ADN, les cellules rencontrent régulièrement des obstacles d’origine endogène et exogène qui peuvent mettre en péril la réplication des génomes et menacer la duplication et ségrégation des chromosomes en mitose. La Recombinaison Homologue (RH) a un rôle bien caractérisé dans la réparation des cassures double-brin. Par contre, son rôle dans la protection et le redémarrage des fourches de réplication est moins bien caractérisé. Il a été montré par l’équipe que le redémarrage des fourches bloquées par la RH dépend de la formation d’ADN simple-brin et pas d’une cassure double-brin.Afin d’étudier les mécanismes par lesquels la RH contribue au sauvetage des fourches de réplication bloquées, un système permettant de bloquer localement la progression d’une seule fourche de réplication a été utilisé. Cet essai génétique a permis de montrer que le redémarrage de fourches bloquées par la RH est associé à une synthèse d’ADN fautive suite à des événements de glissement de la polymérase au niveau de micro-homologies. Un marqueur génétique a été associé à la barrière de réplication afin de mesurer l’efficacité de redémarrage des fourches bloquées et d’étudier l’étape de résection (i.e formation de l’ADN simple brin) dans différents fonds génétiques.Dans ce travail, le rôle de facteurs impliqués dans la résection a été étudié dans le contexte d’un blocage de fourche de réplication. Comme pour la réparation de cassures double-brin, la résection des fourches bloquées se fait en deux étapes : résection initiale et extensive. La résection initiale, de faible portée, dépend du complexe MRN (Mre11/Rad50/Nbs1) et Ctp1. A cette étape, la dégradation de l’ADN néosynthétisé se fait sur une distance de 110 bp. Cette résection est suffisante pour permettre de recruter les facteurs de la RH, mais est aussi nécessaire pour que les fourches continuent à être résectées. L’absence de MRN et/ou Ctp1 conduit à un défaut de redémarrage. La résection extensive, qui expose de l’ADN simple brin sur une distance de 0,8 à 1Kb, est largement dépendante de la nucléase Exo1. Contrairement à la résection initiale, la résection extensive n’est pas critique pour le redémarrage des fourches par la RH.De façon intéressante, le facteur Ku, connu pour être impliqué dans la jonction d’extrémités non-homologue, a un rôle dans le contrôle de la résection initiale et extensive et dans l’optimisation du redémarrage des fourches bloquées. Plus précisément, en absence de Ku, de l’ADN simple-brin s’accumule en amont des fourches bloquées, et la dynamique de redémarrage est affaiblie, mais pas abolie. Globalement, ces résultats clarifient une étape cruciale dans le redémarrage des fourches par la RH : la résection. / On a regular basis, cells encounter endogenous and exogenous replication stresses that jeopardize the progression of replication forks, thus threatening both the accuracy of chromosome duplication and their segregation during mitosis. Homologous recombination (HR) has a well-known role in repairing DNA double strand breaks (DSB). Other less acknowledged functions of HR are to protect and restart impeded forks. As it was previously reported by the team, restarting replication forks by HR requires the exposure of a single-stranded gap through fork resection, and not a DSB, to allow the recruitment of recombination factors.To study the effects of HR in blocked replication forks, a conditional fork barrier (RFB) was used to terminally-arrest replication at a specific locus. This construct allowed to determine that replication restart by HR is error-prone, leading to replication forks liable to slippage at micro-homology. A genetic reporter assay was placed in the vicinity of the RFB to allow the efficiency of replication restart and the step of resection to be quantified.In here, we explored factors involved in the formation of ssDNA gaps at halted replication forks. Similarly to DSB repair, resection in fork restart occurs in two steps. The initial resection is performed by MRN (Mre11/Rad50/NBS1) and Ctp1. This small degradation of approximately 110 bp of newly synthetized strands is sufficient to recruit HR factors and is required to promote the subsequent resection. The absence of either MRN or Ctp1 leads to defective replication restart by HR. The extensive resection (about 0.8-1Kb in size) is largely dependent on the nuclease Exo1, and it is not required for efficient fork restart.Interestingly, the non-homologous end-joining factor Ku was found to have a role in orchestrating initial and extensive resection and fine-tuning fork restart. Specifically, in the absence of Ku, ssDNA accumulates at the terminally-arrested replication forks, and fork restart dynamics is decreased, but not abolished. Overall, these results shed light on a delicate step of replication fork recovery by homologous recombination: resection.
100

Mécanisme d'intégration du phage TLC dans le génome de Vibrio cholerae / Mechanism of TLC phage integration into the genome of Vibrio cholerae

Midonet, Caroline 11 October 2016 (has links)
La plupart des bactéries ont un unique chromosome circulaire. Lors de la réplication de l’ADN, la circularité lie topologiquement les deux chromatides sœurs résultant de la réplication (caténanes et dimères). Ces liens topologiques doivent être résolus afin de permettre une bonne ségrégation de l’information génétique entre les deux cellules filles au cours de la division cellulaire. Les bactéries possèdent une machinerie très conservée: les recombinases à tyrosines XerC et XerD, capables de résoudre les dimères et une partie des caténanes, en catalysant un crossover au site spécifique dif situé dans la région Ter du chromosome. Lors de ce processus elles réalisent successivement deux échanges de brins. La réaction Xer est spatio-temporellement contrôlée par une protéine du divisome: FtsK. FtsK est une translocase qui pompe l’ADN à travers le septum de division. Lorsqu’elle rencontre une synapse constituée de deux sites dif chargés de XerC et XerD, elle active la catalyse de XerD pour initier le premier échange de brins. Dans un second temps XerC catalyse un second échange de brins indépendamment de FtsK. A ce jour le mécanisme d’activation de XerD n’est pas bien compris. Certains éléments mobiles résolvent leur états multimériques (tels que les plasmides) ou intègrent leur génome dans celui de leur hôte en détournant les recombinases XerCD. On parle d’IMEXs (integrative Mobile Element using Xer). Les éléments mobiles étudiés avant ma thèse utilisaient tous des voies de recombinaison initiées par la catalyse de XerC et ne nécessitant pas l’activation de XerD. Au cours de ma thèse j’ai étudié dans un premier temps le mécanisme d’intégration / excision d’une nouvelle classe d’IMEXs en utilisant comme modèle le phage TLCphi de Vibrio cholerae, la bactérie responsable du choléra. Par des approches de génétique j’ai démontré que TLCphi utilise une voie de recombinaison initiée par la catalyse de XerD et indépendante de FtsK. Mes travaux ont également montré que l’excision du phage participe à l’évolution des souches pandémiques de V.cholerae. Dans une seconde partie, j’ai identifié un facteur phagique qui permet à TLCphi de contourner le contrôle de FtsK sur l’activation de XerD. Ce facteur était une protéine de fonction inconnue présentant un domaine HTH et un domaine DUF3653. Ce dernier est retrouvé dans de nombreux IMEXs. Par des approches de biologie moléculaire j’ai étudié le mécanisme d’action de cette protéine. J’ai reproduit la réaction de recombinaison in vitro et démontré qu’elle active XerD en interagissant directement avec elle. Enfin dans un troisième temps, nous nous sommes intéressés aux disparités observées entre la recombinaison Xer chez E.coli et V.cholerae. En particulier, la recombinaison Xer semble agir seulement sur les dimères chez E.coli alors qu’elle est active également sur les monomères chez V.cholerae. Nous avons démontré que ces divergences de comportement ne viennent pas des Xer elles-mêmes, ni de leurs propriétés d'activations par FtsK. Elles résultent des différentes chorégraphies de ségrégation des chromosomes entre ces deux bactéries et dépendent également des vitesses de croissance. / Most of bacteria have a single circular chromosome. During replication of DNA, this circularity can lead to two sister chromatids topologically linked (catenanes and dimers). These topological links have to be solved in order to allow good segregation of genetic information between the two daughter cells during cell division. Bacteria possess a highly conserved machinery: the tyrosine recombinases XerC XerD that are capable to resolve dimers and some catenanes, by catalyzing a crossover at the specific site dif located in the Ter region of the chromosome. During this process they realize two sequentialstrand exchanges.The Xer reaction is spatiotemporally controlled by a protein of the divisome: FtsK. FtsK is a pump that translocates DNA through the septum of division. When FtsK meets a synapse that consists of two dif loaded by XerC and XerD, it activates XerD catalysis that initiates first strand exchange. Secondly XerC catalyzes a second strand exchange independently of FtsK. To date the activation mechanism of XerD is not well understood. Some mobile elements solve their multimeric states (like plasmids) or integrate their genome into the chromosome of their host by using XerCD recombinases. Such integrative elements are named IMEXs (Integrative Mobile Element using Xer). The mobile elements studied before my thesis all used recombination pathways initiated by catalysis of XerC and not requiring activation of XerD .During my PhD I studied at first the integration mechanism / excision of a new class IMEXs using as a model the TLC phage Vibrio cholerae, the bacterium responsible for cholera. By genetic approaches I demonstrated that TLCphi uses a recombination pathway initiated by XerD catalysis and independently of FtsK. My work has also shown that the phage excision participates in the evolution of pandemic strains of V. cholerae. In the second part, I identified a phage factor that allows TLC to bypass the activation of XerD by FtsK. This factor was a protein of unknown function with a HTH domain and a DUF3653 domain. DUF3653 are found in many IMEXs. Using molecular biology approaches, I studied the mechanism of action of this protein. I reproduced the recombination reaction in vitro and demonstrated that this factor activates XerD by directly interacting with it. Finally, we were interested to study disparities between Xer recombination in E.coli and V.cholerae. In particular, the Xer recombination seems to act only on dimers in E.coli while it is also active on monomers in V.cholerae. We have demonstrated that these differences in behaviors do not come from Xer themselves or their activation by FtsK. They result from different choreographies of chromosome segregation between these two bacteria and are also dependent on growth rates.

Page generated in 0.0464 seconds