Spelling suggestions: "subject:"reconnection"" "subject:"deconnection""
61 |
Étude de la reconnexion magnétique dans les plasmas turbulents à partir des données satellites / Study of Magnetic Reconnection in Turbulent Plasma Using Satellite DataChasapis, Alexandros 28 September 2015 (has links)
La reconnexion magnétique est un mécanisme fondamental de conversion d'énergie dans le plasma. Il se déroule dans les régions minces de fort courant appelées couches de courants, et produit le chauffage et l accélération des particules. Dans un milieu turbulent, la reconnexion magnétique a été observée dans de petites structures qui se forment dans celui-ci, et on a postulé que cela contribue de façon importante la dissipation de l'énergie turbulente l'échelle cinétique. Pour ce travail, nous examinons les données des satellites Custer dans la magnétogaine de la Terre, en aval du choc quasi-parallèle. La détection des couches de courant d'échelle ionique a été réalisé par l'application de la méthode de la variance partielle des incréments (PVI) pour des satellites multiples. Les proprietées des couches de courant observées étaient différentes pour des valeurs de l'indice PVI élevées(PV I > 3) et bas (PV I < 3). Nous avons observé une population distincte de haut indice PVI (> 3) structures qui représentaient ~ 20% du total. Ces couches de courant ont une rotation du champ magnétique élevée (> 90o). Afin d'estimer le chauffage local survenant dans ces couches de courant, une estimation de la température des électrons a été obtenue à haute résolution temporelle (125ms) parles distributions d'électrons partielles mesurées par Cluster. Cela a permis pour la première fois d'étudier le chauffage d'électrons localisés dans les couches de courant d'échelle ionique. L'augmentation observée de la température des électrons estimée dans les couches de courant aux PVI élevées suggèrent qu'ils sont importants pour le chauffage local d'électrons et de dissipation d'énergie. Nous avons également examiné les mesures l'intérieur de la région de diffusion d'une couche de courant o la reconnexion magnétique est en cours. Les observations simultanées par des satellites multiples permettent aussi d'étudier les distributions d'électrons et l'activité des ondes à des distances différentes de la ligne x. Des différences significatives ont été observées dans les populations d'électrons comme ils ont été chauffés en passant par la couche de courant. En particulier, les électrons sont chauffés dans la direction parallèle au champ magnétique proximité de la ligne x, alors qu'aucune variation significative n'a été observée dans la direction perpendiculaire. Cependant,la distribution est plus isotrope en aval de la ligne x, chauffées par des électrons dans la direction perpendiculaire. / Magnetic reconnection is a fundamental energy conversion process in plasma. It occurs in thin regions of strong current known as current sheets and results in particle heating and acceleration. In turbulence, which is ubiquitous in space plasma, magnetic reconnection has been observed to occur in small scale structures that form therein, and is thought to contribute to dissipation of turbulent energy at kinetic scales. For this work we examine data from the Cluster spacecraft in the Earth's magnetosheath, downstream of the quasi-parallel shock. The detection of ion-scale current sheets was performed by implementing the PartialVariance of Increments (PVI) method for multiple spacecraft. The properties of the observed current sheets were different for high (> 3) and low (< 3) values of the PVI index. We observed a distinct population of high PVI (> 3) structures that accounted for ~ 20% of the total. Those current sheets have high magneticshear (> 90degrees). In order to estimate the local heating occurring within those current sheets, a proxy of the electron temperature was obtained at high time resolution(125ms) from the partial distributions measured by Cluster. This allowed for the first time to study the localized electron heating within ion-scale currentsheets. The observed enhancement of the estimated electron temperature withinthe high PVI current sheets suggest that they are important for local electron heating and energy dissipation. We also examined measurements inside the diffusion region of a thin reconnecting current sheet. Multi-spacecraft observationsallow as to study electron distributions and wave activity at different distances from the x-line. Significant differences were observed in the electron populations as they were heated going through the current sheet. In particular electrons were heated in the direction parallel to the magnetic field in close proximity to thex-line, whereas no significant variation was observed in the perpendicular direction. However, the distribution was more isotropic downstream of the x-line with electrons heated in the perpendicular direction.
|
62 |
Analyzing Floodplain Reconnection as a Restoration Method: Water Storage, SedimentDynamics, and Nutrient Cycling in Restored and Unrestored StreamsGurrola, Annika J. 10 September 2021 (has links)
No description available.
|
63 |
A Scaling Relationship for Non-thermal Radio Emission From Ordered Magnetospheres: From the Top of the Main Sequence to PlanetsLeto, P., Trigilio, C., Krtička, J., Fossati, L., Ignace, R., Shultz, M. E., Buemi, C. S., Cerrigone, L., Umana, G., Ingallinera, A., Bordiu, C., Pillitteri, I., Bufano, F., Oskinova, L. M., Agliozzo, C., C., F., Riggi, S., Loru, S. 01 October 2021 (has links)
In this paper, we present the analysis of incoherent non-thermal radio emission from a sample of hot magnetic stars, ranging from early-B to early-A spectral type. Spanning a wide range of stellar parameters and wind properties, these stars display a commonality in their radio emission which presents new challenges to the wind scenario as originally conceived. It was thought that relativistic electrons, responsible for the radio emission, originate in current sheets formed, where the wind opens the magnetic field lines. However, the true mass-loss rates from the cooler stars are too small to explain the observed non-thermal broad-band radio spectra. Instead, we suggest the existence of a radiation belt located inside the inner magnetosphere, similar to that of Jupiter. Such a structure explains the overall indifference of the broad-band radio emissions on wind mass-loss rates. Further, correlating the radio luminosities from a larger sample of magnetic stars with their stellar parameters, the combined roles of rotation and magnetic properties have been empirically determined. Finally, our sample of early-type magnetic stars suggests a scaling relationship between the non-thermal radio luminosity and the electric voltage induced by the magnetosphere's co-rotation, which appears to hold for a broader range of stellar types with dipole-dominated magnetospheres (like the cases of the planet Jupiter and the ultracool dwarf stars and brown dwarfs). We conclude that well-ordered and stable rotating magnetospheres share a common physical mechanism for supporting the generation of non-thermal electrons.
|
64 |
Studium projevů magnetické rekonexe ve slunečních erupcích / Magnetic reconnection and its manifestations in solar flares and eruptionsLörinčík, Juraj January 2021 (has links)
Solar flares and eruptions are manifestations of violent releases of magnetic energy from the solar atmosphere. They are powered by magnetic reconnection, a mechanism in which magnetic field lines change their connectivities to reach a lower-energetic state. Theoretical predictions regarding the generalised three-dimensional magnetic reconnection are imposed by the standard flare model in 3D. In this work we present the results of five peer-reviewed publications in which we focused on different predicted aspects of magnetic reconnection in 3D. We analyse evolution and morphology of seven eruptive flares, primarily using observations of the Atmospheric Imaging Assembly onboard the Solar Dynamics Observatory. In the first publication, (Lörinčík et al., 2019a), we interpreted variations of velocities of slipping flare kernels using the mapping norm of field line connectivity simulated via the model. In Lörinčík et al. (2019b) we showed that the observed conversion of filament strands to flare loops is a signature of the 'ar-rf' reconnection geometry between erupting flux rope and overlying coronal arcades. In another observation (Dudík, Lörinčík et al. (2019)), all constituents of this geometry were successfully identified together with the constituents of the 'rr-rf' geometry between two...
|
65 |
Orientation of plasma jet fronts in the Earth's magnetotailSilverhult, Atlas January 2023 (has links)
This project aims to investigate the orientation of plasma jet fronts in Earth's magnetotail using multi-spacecraft measurement data. The orientations are estimated by applying minimum variance analysis (MVA) and multi-spacecraft timing analysis for finding normal vectors to the jet fronts as they pass over the spacecraft. An agreement between the two analysis methods is found when applied to a data set of fronts. The obtained results are compared to measurements of the ion bulk velocities of the fronts, where a discrepancy is found. Limitations of the analysis are addressed and alternative approaches are presented. / I detta projekt undersöks riktningen hos fronter till plasma-jetstrålar i jordens magnetsvans genom analysering av mätdata från en samling rymdfarkoster. Riktningarna uppskattas genom att applicera minimum variance analysis (MVA) samt multi-spacecraft timing för att hitta normalvektorer till fronterna som passerar rymdfarkosterna. De två metoderna uppnår liknande resultat när de tillämpas på en uppsättning fronter. De erhållna normalvektorerna jämförs även med riktningen av uppmätta jonhastigheter från rymdfarkosterna där en tydlig skillnad förekommer. Begränsningar av analysmetoden påpekas och förslag på alternativa tillvägagångssätt läggs fram.
|
66 |
A Study on Active Galactic Nucleus VariabilityLingyi Dong (13157091) 26 July 2022 (has links)
<p>Active Galactic Nuclei (AGNs) are accreting supermassive black holes at the center of galaxies, known for rich spectral features and multi-time scale variability in their electromagnetic emission. The origin of the variability in AGN light curves can be either intrinsic, meaning related processes that take place inside the AGN system, or extrinsic, i.e., from the propagation of light towards Earth. In this dissertation, I present my work focusing on AGN variability. The first two works focus on the variability of blazars, a subclass of AGN with their relativistic jets beaming towards the observer. The first work combines 3D relativistic magnetohydrodynamics (RMHD) simulations with radiation transfer and shows the kink instability within the blazar jet can cause quasi-periodic radiation signatures within a typical period of time scales from weeks to months. The second work combines 2D Particle-in-Cell (PIC) simulations with radiation transfer and shows that isolated and merging plasmoids due to magnetic reconnection in a blazar environment could produce rich radiation and polarization signatures. The last work explores an extrinsic origin for AGN variability: a scenario in which interstellar medium (ISM) within our galaxy can refract light coming from AGNs. It suggests that plasma structures in ISM with an axisymmetric geometry can account for extreme scattering events (ESEs) in AGN observations. Future research directions include studies of the kink instability in jets that propagate in different environments and simulations of magnetic reconnection in 3D which may reveal additional particle acceleration mechanisms, which may play important role in the resulting radiation and polarization signatures. </p>
|
67 |
Equilibrium and dynamics of collisionless current sheetsHarrison, Michael George January 2009 (has links)
In this thesis examples of translationally invariant one-dimensional (1D) Vlasov-Maxwell (VM) equilibria are investigated. The 1D VM equilibrium equations are equivalent to the motion of a pseudoparticle in a conservative pseudopotential, with the pseudopotential being proportional to one of the diagonal components of the plasma pressure tensor. A necessary condition on the pseudopotential (plasma pressure) to allow for force-free 1D VM equilibria is formulated. It is shown that linear force-free 1D VM solutions correspond to the case where the pseudopotential is an attractive central potential. The pseudopotential for the force-free Harris sheet is found and a Fourier transform method is used to find the corresponding distribution function. The solution is extended to include a family of equilibria that describe the transition between the Harris sheet and the force-free Harris sheet. These equilibria are used in 2.5D particle-in-cell simulations of magnetic reconnection. The structure of the diffusion region is compared for simulations starting from anti-parallel magnetic field configurations with different strengths of guide field and self-consistent linear and non-linear force-free magnetic fields. It is shown that gradients of off-diagonal components of the electron pressure tensor are the dominant terms that give rise to the reconnection electric field. The typical scale length of the electron pressure tensor components in the weak guide field case is of the order of the electron bounce widths in a field reversal. In the strong guide field case the scale length reduces to the electron Larmor radius in the guide magnetic field.
|
68 |
Energy Transfer and Conversion in the Magnetosphere-Ionosphere SystemRosenqvist, Lisa January 2008 (has links)
<p>Magnetized planets, such as Earth, are strongly influenced by the solar wind. The Sun is very dynamic, releasing varying amounts of energy, resulting in a fluctuating energy and momentum exchange between the solar wind and planetary magnetospheres. The efficiency of this coupling is thought to be controlled by magnetic reconnection occurring at the boundary between solar wind and planetary magnetic fields. One of the main tasks in space physics research is to increase the understanding of this coupling between the Sun and other solar system bodies. Perhaps the most important aspect regards the transfer of energy from the solar wind to the terrestrial magnetosphere as this is the main source for driving plasma processes in the magnetosphere-ionosphere system. This may also have a direct practical influence on our life here on Earth as it is responsible for Space Weather effects. In this thesis I investigate both the global scale of the varying solar-terrestrial coupling and local phenomena in more detail. I use mainly the European Space Agency Cluster mission which provide unprecedented three-dimensional observations via its formation of four identical spacecraft. The Cluster data are complimented with observations from a broad range of instruments both onboard spacecraft and from groundbased magnetometers and radars.</p><p>A period of very strong solar driving in late October 2003 is investigated. We show that some of the strongest substorms in the history of magnetic recordings were triggered by pressure pulses impacting a quasi-stable magnetosphere. We make for the first time direct estimates of the local energy flow into the magnetotail using Cluster measurements. Observational estimates suggest a good energy balance between the magnetosphere-ionosphere system while empirical proxies seem to suffer from over/under estimations during such extreme conditions.</p><p>Another period of extreme interplanetary conditions give rise to accelerated flows along the magnetopause which could account for an enhanced energy coupling between the solar wind and the magnetosphere. We discuss whether such conditions could explain the simultaneous observation of a large auroral spiral across the polar cap.</p><p>Contrary to extreme conditions the energy conversion across the dayside magnetopause has been estimated during an extended period of steady interplanetary conditions. A new method to determine the rate at which reconnection occurs is described that utilizes the magnitude of the local energy conversion from Cluster. The observations show a varying reconnection rate which support the previous interpretation that reconnection is continuous but its rate is modulated.</p><p>Finally, we compare local energy estimates from Cluster with a global magnetohydrodynamic simulation. The results show that the observations are reliably reproduced by the model and may be used to validate and scale global magnetohydrodynamic models.</p>
|
69 |
Simulations magnétohydrodynamiques en régime idéalCossette, Jean-François 12 1900 (has links)
Cette thèse s’intéresse à la modélisation magnétohydrodynamique des écoulements de fluides conducteurs d’électricité multi-échelles en mettant l’emphase sur deux applications particulières de la physique solaire: la modélisation des mécanismes des variations de l’irradiance via la simulation de la dynamo globale et la reconnexion magnétique. Les variations de l’irradiance sur les périodes des jours, des mois et du cycle solaire de 11 ans sont très bien expliquées par le passage des régions actives à la surface du Soleil. Cependant, l’origine ultime des variations se déroulant sur les périodes décadales et multi-décadales demeure un sujet controversé. En particulier, une certaine école de pensée affirme qu’une partie de ces variations à long-terme doit provenir d’une modulation de la structure thermodynamique globale de l’étoile, et que les seuls effets de surface sont incapables d’expliquer la totalité des fluctuations. Nous présentons une simulation globale de la convection solaire produisant un cycle magnétique similaire en plusieurs aspects à celui du Soleil, dans laquelle le flux thermique convectif varie en phase avec l’ ́energie magnétique. La corrélation positive entre le flux convectif et l’énergie magnétique supporte donc l’idée qu’une modulation de la structure thermodynamique puisse contribuer aux variations à long-terme de l’irradiance. Nous analysons cette simulation dans le but d’identifier le mécanisme physique responsable de la corrélation en question et pour prédire de potentiels effets observationnels résultant de la modulation structurelle.
La reconnexion magnétique est au coeur du mécanisme de plusieurs phénomènes de la physique solaire dont les éruptions et les éjections de masse, et pourrait expliquer les températures extrêmes caractérisant la couronne. Une correction aux trajectoires du schéma semi-Lagrangien classique est présentée, qui est basée sur la solution à une équation aux dérivées partielles nonlinéaire du second ordre: l’équation de Monge-Ampère. Celle-ci prévient l’intersection des trajectoires et assure la stabilité numérique des simulations de reconnexion magnétique pour un cas de magnéto-fluide relaxant vers un état d’équilibre. / This thesis concentrates on magnetohydrodynamical modeling of multiscale conducting fluids with emphasis on two particular applications of solar physics: the modeling of solar irradiance mechanisms via the numerical simulation of the global dynamo and of magnetic reconnection.
Irradiance variations on the time scales of days, months, and of the 11 yr solar cycle
are very well described by changes in the surface coverage by active regions. However,
the ultimate origin of the long-term decadal and multi-decadal variations is still a
matter of debate. In particular, one school of thought argues that a global modulation
of the solar thermodynamic structure by magnetic activity is required to account
for part of the long-term variations, in addition to pure surface effects. We hereby
present a global simulation of solar convection producing solar-like magnetic cycles,
in which the convective heat flux varies in phase with magnetic energy. We analyze
the simulation to uncover the physical mechanism causing the positive correlation
and to predict potential observational signatures resulting from the flux modulation.
Magnetic reconnection is central to many solar physics phenomena including flares
and coronal mass ejections, and could also provide an explanation for the extreme
temperatures (T ∼ 106K) that charaterize the coronna. A trajectory correction to
the classical semi-Lagrangian scheme is presented, which is based on the solution to
a second-order nonlinear partial differential equation: the Monge-Amp`ere equation.
Using the correction prevents the intersection of fluid trajectories and assures the
physical realizability of magnetic reconnection simulations for the case of a magneto-
fluid relaxing toward an equilibrium state.
|
70 |
Återanslutning av s.k. korvsjöar till den ursprungliga flodfåran som en restaureringsåtgärd för ökad biodiversitet : -En litteraturstudieJohansson, Andreas January 2017 (has links)
The aim with this review was to investigate whether a reconnection of an oxbow lake can contribute to higher biodiversity. However, oxbow lakes can be divided in three categories: Lentic- (connected with both ends to the river bed), semi-lentic- (connected with one end) and lotic oxbow lakes (Isolated from the riverbed). Aquatic organisms such as fish, aquatic invertebrates, amphibians and macrophytes has been studied. The result showed that hydrological connectivity determines both biodiversity and water quality in oxbow lakes. Lotic oxbow lakes consisted low biodiversity and it’s dominated by amphibians. Semi-lentic oxbow lakes contributes with highest biodiversity of macrophytes, fish and aquatic invertebrates. Lentic oxbow lakes consisted less biodiversity and was dominated by fish. In conclusion, reconnection of an oxbow lake can be used as a restoration project to improve biodiversity.
|
Page generated in 0.0624 seconds