• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 772
  • 11
  • 8
  • 4
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 795
  • 795
  • 795
  • 551
  • 527
  • 460
  • 132
  • 121
  • 117
  • 107
  • 93
  • 69
  • 59
  • 57
  • 56
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
751

Estimativa da retenção de água no solo a partir do uso de equipamentos não convencionais, redes neurais artificiais e funções de pedotransferência / Water retention soil estimate using nonconventional equipment, artificial neural networks and pedotransfer functions

Antonio Angelotti Netto 06 September 2007 (has links)
O desenvolvimento econômico e o aumento da produtividade agrícola intensificaram o uso de produtos químicos nas lavouras. Quando se pretende quantificar o impacto ambiental de tal uso é necessário empregar modelos que descrevam o fluxo de água e solutos na região não saturada do solo. Para esse fim, um dos parâmetros mais eficazes é conhecer a retenção de água no solo. O objetivo deste trabalho foi desenvolver funções de pedotransferência (FPTs) que estimassem a partir de análise em redes neurais artificiais (RNAs) a retenção de água nos solos da microbacia hidrográfica do ribeirão Canchim, município de São Carlos, SP. Os atributos físicos, textura (argila, silte e areia), densidade e resistência à penetração dos solos: LVAd, LVe, LVdf e NVef, manejados com e sem cobertura vegetal e sob mata foram determinados com equipamentos não convencionais na Embrapa Instrumentação Agropecuária em São Carlos, SP. Esses parâmetros foram utilizados como variáveis de entrada nas duas redes neurais artificiais. Foram obtidas, ainda, as curvas de retenção de água no solo por meio da câmara de pressão de Richards e da tomografia computadorizada, além da porosidade total e da condutividade hidráulica não saturada. O analisador granulométrico de solos e o penetrômetro associado a TDR possibilitaram a obtenção de um grande número de dados. Os atributos físicos dos solos apresentaram grande variabilidade em função da constituição granulométrica e manejos adotados. As RNAs foram eficientes no desenvolvimento de FPTs capazes de estimar a retenção de água com base em propriedades básicas de solo obtidas em grande número. / Economic development and increasing agricultural productivity have intensified the use of chemical products in farming. The quantification environmental impact of these products requires the use of models that describe the flow of water and solutes in the unsaturated region of the soil. For this purpose, one of the most effective parameters belong to the water retention curve of the soil. The purpose of this work was to develop pedotransfer functions (PTFs) to estimate the retention of water by soils of the hydrographic microbasin of the Canchim river, in the municipality of São Carlos, state of São Paulo, Brazil, based on artificial neural networks (ANNs). The physical attributes, granulometry (clay, silt and sand), density and resistance to penetration of LVAd, LVe, LVdf and NVef soils, managed with and without vegetal cover and under forest, were determined using nonconventional equipment at Embrapa Instrumentação Agropecuária in São Carlos, SP. These parameters were used as input variables for two artificial neural networks. The soils\' water retention curves were also obtained using a Richards pressure chamber and computed tomography, as well as their total porosity and unsaturated hydraulic conductivity. A soil granulometric analyzer and a penetrometer allied to TDR provided a large number of data. The soils\' physical attributes displayed a wide variability as a function of their granulometric constitution and adopted managements. The ANNs were effective in developing PTFs able to estimate the water retention based on the large number of basic soil properties.
752

Fracionamento de carboidratos e proteínas e a predição da proteína bruta e suas frações e das fibras em detergentes neutro e ácido de Brachiaria brizantha cv. Marandu por uma rede neural artificial / Fractions of carbohydrates and proteins and the prediction of the crude protein and its fractions and of fibres in detergents neutral and acid of Brachiaria brizantha cv. marandu for artificial neural network

Käthery Brennecke 28 February 2007 (has links)
Numa área experimental de 25,2 ha formada com o capim-braquiarão (Brachiaria brizantha (Hochst) Stapf.) cv. Marandu e localizada no Campus da USP em Pirassununga/SP, durante o período de janeiro a julho de 2004, conduziu-se a presente pesquisa pela Faculdade de Zootecnia e Engenharia de Alimentos (FZEA/USP) com os seguintes objetivos: 1) Determinar as frações de carboidratos (A - açúcares solúveis com rápida degradação ruminal; B1- amido e pectina; B2 - parede celular com taxa de degradação mais lenta; C - fração não digerida) e as frações protéicas (A - NNP; B1 - peptídeos e oligopeptídeos; B2 - proteína verdadeira; B3 - NFDN; C - NIDA) na forragem da gramínea, baseados nas equações utilizadas pelo método de Cornell; 2) Relacionar outras variáveis com as medições em campo de experimentos paralelos e dados de elementos de clima com as frações protéicas e de carboidratos com o auxílio de um modelo computacional baseado em redes neurais artificiais (RNA). O delineamento foi em blocos completos e casualizados, com quatro tratamentos (ofertas de forragem de 5, 10, 15 e 20% - kg de massa seca por 100 kg de peso animal.dia) e quatro repetições. Cada bloco era dividido em quatro unidades experimentais de 1,575 ha, com cinco piquetes de 0,315 ha cada. Os animais eram manejados em cada unidade experimental em lotação rotacionada, com períodos de descanso de 28 dias no verão e 56 dias no inverno e período de ocupação de 7 dias, respectivamente. As amostras eram colhidas 2 dias antes da entrada dos animais à altura do resíduo do pastejo anterior. Foram determinados produção de massa seca (MS), alturas de pré e pós pastejo, fibras em detergente ácido (FDA) e neutro (FDN), sacarose, amido, lignina, extrato etéro (EE), carboidrato totais (CHO), carboidratos não estruturais (CNE), frações A, B1, B2 e C de carboidratos, proteína bruta (PB), frações A, B1, B2, B3 e C de proteínas e análise de uma rede neural artificial para uma predição dos teores de FDA, fibra em detergente neutro, PB e as frações protéicas. A produção de massa seca (MS) foi significativa, quando se estudou os efeitos da oferta de forragem (p<0,05), ciclo de pastejo (p<0,05) e da interação oferta de forragem x ciclo de pastejo (p<0,05). A maior produção foi no mês de março, quando se alcançou a média de 16140 kg MS/há para o oferta de 20%. Os teores de FDA foram significativos, quando se estudou a oferta de forragem (p<0,05) e seus maiores. Os teores médios da fibra em detergente neutro foram de 66,3 e 64,7% no verão e inverno respectivamente. Houve diferenças significativas para PB, quando se estudou a oferta de forragem (p<0,05), sendo seus teores médios de maior valor na OF a 5%. Observa aumento dos CNE em função de lâminas e colmos ao longo das estações do ano com interação no CP x OF (p<0,05) e seus maiores valores foram encontrados no ciclo de pastejo 3 na oferta de forragem 5%. Os teores de CHO totais apresentaram diferenças (p<0,10) em função da oferta de forragem, sendo os maiores teores médios encontrados na oferta de forragem de 20%. As frações A e B2 de CHO foram significativas em função da oferta de forragem (p<0,05), enquanto que os maiores teores médios da fração A foram encontrados nos ciclos de pastejo 3 e 4 e das frações B2 (%CHO) no ciclo de pastejo 1. As frações B2 e C de CHO apresentaram-se diferentes (p<0,05) nos ciclos de pastejo, sendo decrescentes para a fração B1 e crescentes para a fração C. As frações A (47%), B1 (11%) e B3 (10%) de proteínas foram significativas nos ciclos de pastejos. Os teores médios da fração B2 de proteínas apresentaram-se semelhantes (p>0,05) e os da fração C de proteínas foram diferentes (p<0,05) nas ofertas de forragem e ciclos de pastejo. Conclui-se que os ciclos de pastejos interferiram em todas as variáveis estudadas e que os teores das frações de proteínas e carboidratos estão dentro da variação (%) encontrada na literatura. A rede neural artificial conseguiu vincular as interações existentes de dados de campo e estimar os valores laboratoriais dentro de erros esperados, permitindo com isso desvincular análises laboratoriais, de qualidade de planta forrageira, à pesquisa agropecuária e com isso obter além de resultados mais rápidos, menor custo de pesquisa. / In a experimental área of 25.2 há formed with capim-braquiarão (Brachiaria brizantha (Hochst) Stapf ) cv. Marandu located in University of São Paulo Campus of Pirassununga/SP, during the period of january to july of 2004 was lead the present recherché for Faculdade de Zootecnia e Engenharia de Alimentos (FZEA/USP) to appetent the following objectives: 1) Determine protein fractions (the NNP; B1 - peptides and oligopepitides; B2 - true protein; B3 - NDF, C - AND) and carbohydrates fractions (soluble sugars with fast rumem degradation); B1(starch and pectin); B2 (cell wall alower degradation rate; C (indigested fraction rate) in the fodder plant of the grass, as it\'s respetive dregadability rate, based on equations using Cornell model. 2) To relate other variables measurements in field to parallel experiments and climate elements to the protein and carbohydrate fractions was used a computacional model based in nets of artificial neural. The randomized complete block design with four treatments (herbage allowance of 5, 10, 15 and 20% - kg of dry mass for 100 kg of animal.dia weight) and four repetitions. Each block was divided in four experimental units of 1,575 ha, with five 0,315 poles of ha each. The animals were management in each experimental unit in rotational grazing capacity, with periods of rest of 28 days in the summer and 56 days in the winter and period of occupation of 7 days, respectively. The samples were harvested 2 days before the entrance of the animals to the height of the residue of pasture previous. Were conducted analysis of production of dry mass (DM), heights daily pay and after grazing, staple fibers in acid detergent (ADF) and neutral (NDF), sacarose, starch, lignina, extract etereo (EE), carbohydrate (CHO), not structural carbohydrate (NSC), fractions A, B1, B2 and C of carbohydrate, crude protein (CP), fractions protein A, B1, B2, B3 and C and analysis of artificial neural network for a prediction of levels of ADF, NDF, CP and protéicas fractions. The dry matter (DM) production was significant for herbage allowance (p<0,05), grazing periods (p<0,05) and interaction between allowances x grazing periods (p<0,05). The righ production was in February 13,352 kg MS/ha. The ADF was significant for allowance and grazing periods (p<0,05), with 34.8%, on summer and 35.9% on winter. The average measured of NDF on summer and winter was 66.3 and 64.7%, respectively. It showed significant differences of PC when studied the allowance (p<0,05) and its average measured on summer and winter was 8,3 and 8,1%, respectively. It observes increase of the CNE in function of blades and stem to the long one of the stations of the year with interaction in grazing periods x herbage allowance and its bigger values had been found in the grazing periods 3 with herbage allowance 5%. The total texts of CHO had presented differences (p<0,10) in function of herbage allowance, being biggest found average texts in herbage allowance of 20%. The fractions and the B2 of CHO had been significant, when studied in function of the herbage allowance (p<0,05) for the fraction A and for fraction B2 (p<0,05); the biggest average texts in % of CHO of the fraction had been found It in the cycles of grazing 3 and 4 and the B2 fractions (%CHO) in the grazing periods 1. Fractions B2 (p<0,05) and C (p<0,05) of CHO had presented significant differences, when studied the factor grazing periods, where the B1 fraction the texts had been diminishing the measure that increased the grazing periods and fraction C the texts had increased the measure that had increased the grazing periods. The A, B1 and B3 protein fraction was significant when was studied the grazing periods and the results were 0,47; 0,11; 0,10 respectively. The B2 fraction was not significant. C fraction was significant when studied the allowance (p<0,05) and grazing periods (p<0,05). It was concluded that the grazing periods had intervened with all the studied 0 variable and that the texts of the protein fractions and carbohydrates are inside of the variation (%) found in literature. The results from lab was used to train and test neural network. With a program developed by neural network in a mult layer perceptron with capacity to predict the parameters of nutrition and nourishing value from parameters of forage plant intrinsic and extrinsic, where it was allowed to disentail lab analysis of forage plant quality on the farm research, to get beyond faster and have less research costs.
753

Novo método de mapeamento de espaços de cor através de redes neurais artificiais especializadas / New method for mapping color spaces using specialized artificial neural networks

Robson Barcellos 24 August 2011 (has links)
Este trabalho apresenta uma nova metodologia para mapeamento no espaço de cor colorimétrico CIEXYZ, dos valores de triestímulo obtidos em um espaço de cor não colorimétrico definido pelas curvas de sensibilidade de um sensor eletrônico. A inovação do método proposto é realizar o mapeamento através de três redes neurais artificiais sendo que cada uma é especializada em mapear cores com um determinado triestímulo dominante. É feita a comparação dos resultados do mapeamento com vários trabalhos publicados sobre mapeamento de um espaço de cor em outro usando diversas técnicas. Os resultados mostram a eficiência do método proposto e permitem sua utilização em equipamentos para medir cores, incrementando sua precisão. / This work presents a new method for mapping a non colorimetric color space defined by the sensitivity curves of an electronic color sensor to the colorimetric color space CIEXYZ. The novelty of the proposed method is to perform the mapping by a set of three artificial neural networks, each one specialized in mapping colors with a specific dominant tristimulus. The results are compared with the ones obtained in published works about the mapping of color spaces, using several methods. The results of the method proposed in this work show that it is efficient and it can be used in equipments for measuring colors, improving its precision.
754

Uma metodologia de binarização para áreas de imagens de cheque utilizando algoritmos de aprendizagem supervisionada

Alves, Rafael Félix 23 June 2015 (has links)
Made available in DSpace on 2016-03-15T19:38:02Z (GMT). No. of bitstreams: 1 RAFAEL FELIX ALVES.pdf: 2156088 bytes, checksum: a82e527c69001eb9cee5a989bde3b8dc (MD5) Previous issue date: 2015-06-23 / The process of image binarization consists of transforming a color image into a new one with only two colors: black and white. This process is an important step for many modern applica-tions such as Check Clearance, Optical Character Recognition and Handwriting Recognition. Improvements in the automatic process of image binarization represent impacts on applications that rely on this step. The present work proposes a methodology for automatic image binariza-tion. This methodology applies supervised learning algorithms to binarize images and consists of the following steps: images database construction; extraction of the region of interest; pat-terns matrix construction; pattern labelling; database sampling; and classifier training. Experi-mental results are presented using a database of Brazilian bank check images and the competi-tion database DIBCO 2009. In conclusion, the proposal demonstrated to be superior to some of its competitors in terms of accuracy and F-Measure. / O processo de binarização de imagens consiste na transformação de uma imagem colorida em uma nova imagem com apenas duas cores: uma que representa o fundo, outra o objeto de interesse. Este processo é uma importante etapa de diversas aplicações modernas, como a Compensação de Cheque, o Reconhecimento Ótico de Caracteres (do inglês Optical Characterer Recognition) e o Reconhecimento de Texto Manuscrito (do inglês Handwritten Recognition, HWR). Dado que melhorias no processo automático de binarização de imagens representam impactos diretos nas aplicações que dependem desta etapa o presente trabalho propõe uma metodologia para realizar a binarização automática de imagens. A proposta realiza a binarização de forma automática baseado no uso de algoritmos de aprendizagem supervisionada, tais como redes neurais artificiais e árvore de decisão. O processo como um todo consiste das seguintes etapas: construção do banco de imagens; extração da região de interesse; construção da matriz de padrões; rotulação dos padrões; amostragem da base; e treinamento do classificador. Resultados experimentais são apresentados utilizando uma base de imagens de cheques de bancos brasileiros (CMC-7 e montante de cortesia) e a base de imagens da competição DIBCO 2009. Em conclusão, a metodologia proposta apresentou-se competitiva aos métodos da literatura destacando-se em aplicações onde o processamento de imagens está restrito a uma categoria de imagens, como é o caso das imagens de cheques de bancos brasileiros. A presente metodologia apresenta resultados experimentais entre as três primeiras posições e melhores resultados em relação a medida F-Measure quando comparada com as demais.
755

Uma arquitetura para a detecção de intrusos no ambiente wireless usando redes neurais artificiais / An architecture for detecting intruders in the Wireless environment using artificial neural networks

ATAÍDE, Ricardo Luis da Rocha 27 December 2007 (has links)
Made available in DSpace on 2016-08-17T14:52:37Z (GMT). No. of bitstreams: 1 Ricardo Luis da Rocha Ataide.pdf: 1712992 bytes, checksum: 27d451c245e151370c1c17a8e89cf8bb (MD5) Previous issue date: 2007-12-27 / Most of the existing software of wireless intrusion detection identify behaviors obtrusive only taking as a basis the exploitation of known vulnerabilities commonly called of attack signatures. They analyze the activity of the system, watching sets of events that are similar to a pre-determined pattern that describes an intrusion known. Thus, only known vulnerabilities are detected, leading to the need for new techniques for detecting intrusions be constantly added to the system. It is necessary to implement a wireless IDS that can identify intrusive behaviors also based on the observation of the deflection normal behaviour of the users, hosts or network connections. This normal behaviour should be based on historical data, collected over a long period of normal operation. This present work proposes an architecture for a system to intrusion detection in wireless networks by anomalies, which is based on the application of technology to artificial neural networks, both in the processes of intrusion detection, as making countermeasures. The system can be adapted to the profile of a new community of users, and can recognize attacks with characteristics somewhat different from the already known by the system, relying only on deviations in behaviour of this new community. A prototype has been implemented and various simulations and tests were performed on it, with three denial of service attacks. The tests were to verify the effectiveness of the application of neural networks in the solution of the problem of wireless network intrusion detection, and concentrated its focus on the power of generalization of neural networks. This ensures the system detects attacks though these features slightly different from those already known. / A maioria dos sistemas de detecção de intrusos para redes wireless existentes identificam comportamentos intrusivos apenas tomando como base a exploração de vulnerabilidades conhecidas, comumente chamadas de assinaturas de ataques. Eles analisam a atividade do sistema, observando conjuntos de eventos que sejam semelhantes a um padrão pré-determinado que descreva uma intrusão conhecida. Com isso, apenas vulnerabilidades conhecidas são detectadas, trazendo a necessidade de que novas técnicas de intrusão sejam constantemente adicionadas ao sistema. Torna-se necessária a implementação de um WIDS (Wireless Intrusion Detection System) que possa identificar comportamentos intrusivos baseandose também na observação de desvios do comportamento normal dos usuários, computadores pessoais ou conexões da rede. Esse comportamento normal deve se basear em dados históricos, coletados durante um longo período normal de operação. Este trabalho propõe uma arquitetura para um sistema de detecção de intrusos em redes wireless por anomalias, que tem como base a aplicação da tecnologia de redes neurais artificiais, tanto nos processos de detecção de intrusões quanto de tomada de contramedidas. O sistema pode se adaptar ao perfil de uma nova comunidade de usuários, bem como pode reconhecer ataques com características um pouco diferentes das já conhecidas pelo sistema, baseando-se apenas nos desvios de comportamento dessa nova comunidade. Um protótipo foi implementado e várias simulações e testes desse protótipo foram realizadas, para três ataques de negação de serviço. Os testes tiveram o objetivo de verificar a eficácia da aplicacação de redes neurais na solução do problema da detecção de intrusos em redes wireless, concentrando seu foco no poder de generalização das redes neurais. Isto garante que o sistema detecte ataques ainda que estes apresentem características ligeiramente diferentes das já conhecidas. Redes Neurais Artificiais.
756

METODOLOGIA PARA REDUÇÃO DE CUSTOS NA MANUTENÇÃO DOS COMUTADORES DE TAP SOB CARGA DOS TRANSFORMADORES DE POTÊNCIA DE EXTRA ALTA TENSÃO DA ELETRONORTE / THE COST OF MAINTENANCE TRANSFER UNDER LOAD TAP OF THE TRANSFORMERS POWER OF EXTRA HIGH VOLTAGE THE ELETRONORTE

Rosa Filho, Raimundo Nonato 31 March 2005 (has links)
Made available in DSpace on 2016-08-17T14:52:58Z (GMT). No. of bitstreams: 1 Raimundo Nonato Rosa Filho.pdf: 1125835 bytes, checksum: 91689e7b58443f6d0eb73d752860ce37 (MD5) Previous issue date: 2005-03-31 / In this work a methodology for reduction of maintenance cost in the on-load tap changers (OLTC) of extra high voltage is proposed. The methodology is based on the use of Artificial Neural Networks (ANN) for the intelligent processing of input signals of the commutator. The neural nets adequately trained allow to create an information system and dedicated diagnosis of the OLTC. This system can interpret and diagnosis the components through the real time input signals in order to delay the power transformer maintenance intervals, foreseeing when the OLTC is going to maintenance have intervention based on its condition. It has been adopted a multiperceptron ANN architecture in which the input vector has 22 components and the output considers only one component with the status of the OLTC condition in function of its operation time. This output information is used to determine the periods of maintenance of the commutators. It is reported an application of the proposed system considering the on load tap changer of an autotransformer bank of 500/230/13.8 kV, 600MVA of Centrais Elétricas do Norte do Brasil S/A (ELETRONORTE). The results indicate the advantages of the maintenance based on the condition using ANN. / Neste trabalho é proposta uma metodologia para redução de custo de manutenção nos comutadores de tap sob carga (OLTC) dos transformadores de potência de extra alta tensão. A metodologia está baseada na utilização de redes neurais artificiais (RNA) para o processamento inteligente dos sinais de entrada dos comutadores. As redes neurais adequadamente treinadas permitem criar um sistema de informação e diagnóstico dedicado a OLTC que podem interpretar e diagnosticar os componentes através das entradas em tempo real de forma a, postergar os intervalos de manutenção, prevendo quando o OLTC deverá sofrer intervenção de manutenção baseada na condição do OLTC. Foi adotada uma arquitetura de RNA de multiperceptron na qual a entrada considera um vetor com 22 entrada e apenas uma saída com o status da condição do OLTC em função do tempo de operação. Essa informação de saída é utilizada para determinar os períodos de manutenção dos comutadores de tap. É realizada uma aplicação do sistema proposto considerando o comutador de tap sob carga de um banco de autotransformador de 500/230/13.8kV, 600MVA da Centrais Elétricas do Norte do Brasil S/A( ELETRONORTE) e os resultados indicam as vantagens da manutenção baseada na condição usando RNA.
757

SISTEMA DE DETECÇÃO DE INTRUSOS EM ATAQUES ORIUNDOS DE BOTNETS UTILIZANDO MÉTODO DE DETECÇÃO HÍBRIDO / Intrusion Detection System in Attacks Coming from Botnets Using Method Hybrid Detection

CUNHA NETO, Raimundo Pereira da 28 July 2011 (has links)
Made available in DSpace on 2016-08-17T14:53:19Z (GMT). No. of bitstreams: 1 dissertacao Raimundo.pdf: 3146531 bytes, checksum: 40d7a999c6dda565c6701f7cc4a171aa (MD5) Previous issue date: 2011-07-28 / The defense mechanisms expansion for cyber-attacks combat led to the malware evolution, which have become more structured to break these new safety barriers. Among the numerous malware, Botnet has become the biggest cyber threat due to its ability of controlling, the potentiality of making distributed attacks and because of the existing structure of control. The intrusion detection and prevention has had an increasingly important role in network computer security. In an intrusion detection system, information about the current situation and knowledge about the attacks contribute to the effectiveness of security process against this new cyber threat. The proposed solution presents an Intrusion Detection System (IDS) model which aims to expand Botnet detectors through active objects system by proposing a technology with collect by sensors, preprocessing filter and detection based on signature and anomaly, supported by the artificial intelligence method Particle Swarm Optimization (PSO) and Artificial Neural Networks. / A ampliação dos mecanismos de defesas no uso do combate de ataques ocasionou a evolução dos malwares, que se tornaram cada vez mais estruturados para o rompimento destas novas barreiras de segurança. Dentre os inúmeros malwares, a Botnet tornou-se uma grande ameaça cibernética, pela capacidade de controle e da potencialidade de ataques distribuídos e da estrutura de controle existente. A detecção e a prevenção de intrusão desempenham um papel cada vez mais importante na segurança de redes de computadores. Em um sistema de detecção de intrusão, as informações sobre a situação atual e os conhecimentos sobre os ataques tornam mais eficazes o processo de segurança diante desta nova ameaça cibernética. A solução proposta apresenta um modelo de Sistema de Detecção de Intrusos (IDS) que visa na ampliação de detectores de Botnet através da utilização de sistemas objetos ativos, propondo uma tecnologia de coleta por sensores, filtro de pré-processamento e detecção baseada em assinatura e anomalia, auxiliado pelo método de inteligência artificial Otimização de Enxame da Partícula (PSO) e Redes Neurais Artificiais.
758

Classificação de câncer de ovário através de padrão proteômico e análise de componentes independentes / Classification of ovarian cancer through standard proteomic and analysis of independents components

Neves, Simone Cristina Ferreira 24 July 2012 (has links)
Made available in DSpace on 2016-08-17T14:53:21Z (GMT). No. of bitstreams: 1 dissertacao Simone Cristina.pdf: 915238 bytes, checksum: 6eb097a7ebfb66da176cd431d9883ba3 (MD5) Previous issue date: 2012-07-24 / The ovarian cancer is difficult to diagnose in the early stages of development. In this work we bring a study of a new method that gave us great accuracy rates based on a bioinformatics tool called surface enhanced for laser desorption and ionization (SELDI-TOF) used to generate proteomic patterns which is one of the technologies advanced in the diagnosis. Our goal is to contribute to effectiveness of this tool, which already helps diagnosis earlier, our methodology uses independent component analysis (ICA) for feature extraction and neural networks to classify between malignancy and no malignancy in a database of the research center cancer in the U.S.A. Our work rates obtained acurracy 97%, 98% specificity and 96% sensitivity. / O câncer de ovário possui difícil diagnóstico nas primeiras fases de desenvolvimento. Neste trabalho trazemos um estudo de um novo método que nos deu ótimas taxas de precisão baseado em uma ferramenta da bio-informática chamada superfície mehorada a laser para ionização e dessorção (SELDI-TOF) usada para geração de padrões proteômicos que é uma das tecnologias mais avançada no auxílio ao diagnóstico. Nosso objetivo é contribuir para eficácia desta esta ferramenta, que já auxilia o dignóstico precoce, nossa metodologia usa análise de componentes independentes (ICA) para extração de caractéristicas e redes neurais para classificar entre malignidade e não malignidade em uma base de dados do centro de pesquisa do câncer nos EUA. Nosso trabalho obteve taxas de 97% de acurária, 98% de especifidade e 96 % de sensibilidade.
759

[en] A STUDY OF THE EFFECTS OF FORECASTING LINEAR TIME SERIES WITH NEURAL NETWORKS / [pt] UM ESTUDO DOS EFEITOS DA PREVISÃO DE SÉRIES TEMPORAIS LINEARES COM REDES NEURAIS

FRANCISCO CARLOS SANTANA DE AZEREDO PINTO 27 November 2002 (has links)
[pt] Esta dissertação de mestrado analisa os efeitos de previsão de séries temporais com redes neurais em conjunto com a técnica de poda, denominada de Regularização Bayesiana. Utilizam-se diversas séries simuladas cujo processo gerador é de fato linear para comparar as previsões feitas por meio de modelos auto-regressivos lineares e redes neurais. Apresenta-se,ao final, uma comparação entre os modelos citados acima, segundo à eficiência preditiva de cada um. / [en] This paper studies the performance of neural networks estimated with Bayesian regularization to model and forecast time series where the data generations process is in fact linear. A simulation experiment is carried out to compare the forecast made by linear autoregressive models and neural networks.
760

Análise computadorizada dos discos intervertebrais lombares em imagens de ressonância magnética / Computer analysis of lumbar intervertebral disks in magnetic resonance imaging

Marcelo da Silva Barreiro 16 November 2016 (has links)
O disco intervertebral é uma estrutura cuja função é receber, amortecer e distribuir o impacto das cargas impostas sobre a coluna vertebral. O aumento da idade e a postura adotada pelo indivíduo podem levar à degeneração do disco intervertebral. Atualmente, a Ressonância Magnética (RM) é considerada o melhor e mais sensível método não invasivo de avaliação por imagem do disco intervertebral. Neste trabalho foram desenvolvidos métodos quantitativos computadorizados para auxílio ao diagnóstico da degeneração do disco intervertebral em imagens de ressonância magnética ponderadas em T2 da coluna lombar, de acordo com a escala de Pfirrmann, uma escala semi-quantitativa, com cinco graus de degeneração. Os algoritmos computacionais foram testados em um conjunto de dados que consiste de imagens de 300 discos, obtidos de 102 indivíduos, com diferentes graus de degeneração. Máscaras binárias de discos segmentados manualmente foram utilizadas para calcular seus centroides, visando criar um ponto de referência para possibilitar a extração de atributos. Uma análise de textura foi realizada utilizando a abordagem proposta por Haralick. Para caracterização de forma, também foram calculados os momentos invariantes definidos por Hu e os momentos centrais para cada disco. A classificação do grau de degeneração foi realizada utilizando uma rede neural artificial e o conjunto de atributos extraídos de cada disco. Uma taxa média de acerto na classificação de 87%, com erro padrão de 6,59% e uma área média sob a curva ROC (Receiver Operating Characteristic) de 0,92 indicam o potencial de aplicação dos algoritmos desenvolvidos como ferramenta de apoio ao diagnóstico da degeneração do disco intervertebral. / The intervertebral disc is a structure whose function is to receive, absorb and transmit the impact loads imposed on the spine. Increasing age and the posture adopted by the individual can lead to degeneration of the intervertebral disc. Currently, Magnetic Resonance Imaging (MRI) is considered the best and most sensitive noninvasive method to imaging evaluation of the intervertebral disc. In this work were developed methods for quantitative computer-aided diagnosis of the intervertebral disc degeneration in MRI T2 weighted images of the lumbar column according to Pfirrmann scale, a semi-quantitative scale with five degrees of degeneration. The algorithms were tested on a dataset of 300 images obtained from 102 subjects with varying degrees of degeneration. Binary masks manually segmented of the discs were used to calculate their centroids, to create a reference point to enable extraction of attributes. A texture analysis was performed using the approach proposed by Haralick. For the shape characterization, invariant moments defined by Hu and central moments were also calculated for each disc. The rating of the degree of degeneration was performed using an artificial neural network and the set of extracted attributes of each disk. An average rate of correct classification of 87%, with standard error 6.59% and an average area under the ROC curve (Receiver Operating Characteristic) of 0.92 indicates the potential application of the algorithms developed as a diagnostic support tool to the degeneration of the intervertebral disc.

Page generated in 0.0722 seconds