Spelling suggestions: "subject:"redes neurais artificial"" "subject:"aedes neurais artificial""
301 |
Utilização de redes neurais artificiais na previsão do VTEC visando a geração de estações de referência virtuais em tempo-real. / Use of artiificial neural networks to predict VTEC aiming to generate virtual reference stations in real-time.Machado, Wagner Carrupt 20 June 2012 (has links)
Dentre as técnicas de posicionamento utilizando os sistemas de navegação por satélite globais (GNSS - Global Navigation Satellite Systems), merece destaque a que utiliza dados de uma rede de estações GNSS para gerar estações de referência virtuais. Desde que as estações da rede não estejam separadas por mais de 100 km e o receptor do usuário esteja dentro da região interna à rede de referência, esta técnica de posicionamento pode proporcionar posicionamento com precisão melhor que 10 cm a usuários de receptores de uma frequência. No entanto, o posicionamento em tempo-real pode ser inviabilizado caso ocorra problema de comunicação com as estações da rede de referência. Tendo em vista a relação do conteúdo total de elétrons (TEC - Total Electron Content) com o atraso ionosférico de primeira ordem, esta pesquisa apresenta uma forma de se prever 72 horas do TEC na direção vertical (VTEC - Vertical Total Electron Content) regionalmente com a arquitetura de redes neurais artificiais (RNA) denominada perceptrons de múltiplas camadas (MLP MultiLayer Perceptrons). A metodologia de previsão do VTEC proposta foi empregada na geração de estações de referência virtuais, onde arquivos de previsão do atraso troposférico zenital, produzidos pelo Instituto Nacional de Pesquisas Espaciais (INPE), foram utilizados para considerar o atraso provocado pela atmosfera neutra e as efemérides preditas pelo serviço internacional do GNSS (IGS - International GNSS Service) foram empregadas para calcular a posição dos satélites. As RNA foram treinadas e avaliadas com dados de VTEC extraídos dos mapas da ionosfera globais (GIM - Global Ionospheric Map) produzidos pelo IGS e dos arquivos produzidos com o software Mod_Ion, ambos no formato IONEX (IONosphere Map EXchange), mostrando que o VTEC pode ser previsto por 72 horas com diferença média quadrática (RMS Root Mean Square) que varia de 1,2 unidades de TEC (TECU - TEC Units) a 12,5 TECU, em baixa e alta atividade solar, respectivamente. Dezoito linhas de base, localizadas no oeste do Estado de São Paulo, foram calculadas utilizando estações de referência virtuais e estações de referência reais, verificando-se que o posicionamento relativo tridimensional empregando a metodologia proposta apresentou RMS de aproximadamente 46 cm. Quando avaliada no posicionamento absoluto preciso (PPP Precise Point Positioning), o RMS relacionado com o posicionamento tridimensional foi de 26 cm. / The positioning technique that uses data from a network of GNSS reference stations to generate virtual reference stations should be detached among the Global Navigation Satellite Systems (GNSS) positioning techniques. Since the inter reference station distances are up to 100 km and the user receiver is within the internal region of the network, this technique can provide single frequency receiver users positioning with better accuracy than 10 cm. However, real-time positioning can be impracticable if communication breakdown involving such reference stations occurs. Given the relation between the Total Electron Content (TEC) and the first-order ionospheric delay, this research presents a way to predict 72 hours of vertical TEC (VTEC) regionally using the Artificial Neural Networks (ANN) architecture called MultiLayer Perceptorns (MLP). The proposed VTEC prediction methodology was employed in the generation of virtual reference stations, where files of prediction of zenithal tropospheric delay, produced by the National Institute For Space Research (INPE Instituto de Pesquisas Espaciais), were used to take the neutral atmospheric delay into account and the precise ephemeris predicted by the GNSS International Service (GNSS) were employed to compute satellites positioning. ANN were trained and assessed using VTEC data from the Global Ionospheric Maps (GIM) produced by IGS and the files produced by Mod_Ion software, both in IONEX (IONosphere Map EXchange) format, showed VTEC can be predicted for 72 hours with Root Mean Square difference (RMS) of about 1.2 TEC units (TECU) and 12.5 TECU, respectively, in low solar activity and high solar activity. Eighteen baselines, in the west region of Sao Paulo State, were computed using virtual reference stations and real reference stations, verifying that the three-dimensional relative positioning using the proposed methodology showed RMS of 46 cm. When assessed by precise point positioning (PPP), the three-dimensional RMS positioning was of 26 cm.
|
302 |
Constelação fônica e redes neurais artificiais: aplicabilidade na análise computacional da produção da fala / The phonic constellation and artificial neural network: computational analysis of speech production\'s aplicabilityPrado, João Carlos Almeida 23 May 2007 (has links)
Atualmente desenvolvem-se técnicas para a análise, identificação e o reconhecimento da fala. As mais eficientes mostram-se matematicamente complicadas, baseadas em análise estatísticas de dados, o que torna o sistema moroso, necessitando uma grande quantidade de dados para amostras. Este trabalho tem como objetivo apresentar a possibilidade do uso de Estruturas Neurais Artificiais Paraconsistentes no aprendizado e reconhecimento de sinais de fala, independentemente de análise estatística, ou número de amostras. A partir de um estudo piloto, identificou-se a necessidade de um aprofundamento no estudo dos Traços Formantes dos Fones. Com os Formantes dos Fones pode-se criar um sistema capaz de reconhecer sons produzidos em qualquer língua, pelas combinações da produção de sons através da emissão simultânea de um conjunto de Formantes. Como possível solução para a identificação dos Formantes dos Fones propõe-se neste trabalho a criação do conceito de Constelação Fônica, que consiste no reconhecimento de combinações de características matemáticas identificadas nos sinais sonoros de fala. Como uma forma de reconhecer estas Constelações, apresentam-se as Redes Neurais Artificiais Paraconsistentes, eficientes no reconhecimento de padrões por proximidade e com capacidade para tratamento de sinais contraditórios e paracompletos. Para a viabilização desta solução, criou-se um Programa de Computador (Sistema de Análise da Produção da Fala - SIAPF) capaz de promover os tratamentos necessários em um sinal falado, gerando assim a sua Constelação Fônica e sua respectiva Rede Neural Artificial Paraconsistente. A partir da Rede Neural Artificial Paraconsistente correspondente ao sinal em questão, pode-se estudá-lo de uma forma interpretativa, com menor acumulo de dados e tratamentos estatísticos do que com as ferramentas tradicionais. O SIAPF passa a ser mais uma ferramenta para análise de produção de fala, viabilizando a criação de novas formas de medidas quantitativas e normatizadas para os Formantes da Fala. / Currently, many diferent techniques are developing for the analysis identification and recognition of speech. The most efficient are shown mathematically complicated, based on analysis statistical of data, that actually makes systems very slow, creating the nessecity for a great amount of data for samples. The aim of this work is to present the possibility of the use of Paraconsistent Artificial Neural Network Structures, in the learnig and recognition of speech signals, independent of statistical analysis, or the number of samples. Starting from a pilot study, the need of a deep study of the Formants of Phones was identified. With the Formants of Phones, a system capable to recognize sounds produced in any language, through conbinations of the production of sounds and simultaneous emission of a group of Formants was created. A possible solution for the identification of Formants of Phones proposed in this work is the creation of Phonic Constellation concept, witch uses the recognition of combinations of identified mathematical characteristcs in the resoant signal of speech. As a form of recognizing these Constellation, this work present the Paraconsistent Artificial Neural Network, efficient in the recognition of patterns for proximity and with capacity to process contractory and paracomplet signals. To develop this solution a Computer Program (System of Analysis of the Production of Speech - SIAPF) capable to process the necessary calculations of a speech signal, generating its Phonic Constelattion and its respective Paraconsistent Artificial Neural Network was created. The subject signal can be studied in an interpretative way using the Paraconsistent Artificial Neural Network with a minimal accumulation of data and statistical calculations compared to traditional tools. The SIAPF is another new tool for analysis of speech production, creating new ways for quantitative and standard measures of Formants of Speech.
|
303 |
Reconhecimento de imagens interferométicas aplicado a sistemas de posicionamento de alto desempenho / Image recognition and interferometry applied to high performance positioning systemsMontanari, Luciana 29 October 2004 (has links)
De maneira geral, a necessidade de melhorar o desempenho e diminuir o tamanho de sistemas mecatrônicos tem levado a indústria moderna a desenvolver mecanismos de posicionamento com características excelentes de aceleração e precisão. O uso de posicionadores em equipamentos de precisão, em particular no posicionamento da ferramenta/peça na usinagem de ultraprecisão, deve-se à necessidade de se obter rígido controle do perfil a ser fabricado. Neste sentido, foi desenvolvido no Laboratório de Engenharia de Precisão da EESC-USP um microposicionador angular rotativo capaz de monitorar a posição da ferramenta em relação à peça durante o processo de usinagem e fazer as devidas compensações de erros, além da possibilidade de obtenção de geometrias diferenciadas. Neste trabalho encontram-se estudos referentes à aplicação do método dos elementos finitos com o intuito de verificar a funcionalidade do sistema mecânico proposto, avaliando suas características estáticas e dinâmicas. Além disso, propõe-se validar o uso de redes neurais artificiais como ferramenta capaz de auxiliar no desenvolvimento de um algoritmo de identificação de imagens, baseado no conhecimento, que emprega como elemento multi-sensor, imagens interferométricas, representando posições. Dentre as principais características a serem alcançadas pelo algoritmo idealizado está a habilidade de identificar a posição de uma superfície justaposta ao sistema microposicionador angular e, assim, permitir maior rapidez de processamento das informações, possibilitando seu emprego em sistemas de controle em tempo real. A aplicação desta técnica foi avaliada por meio de simulação e apresenta resultados significativos para incentivar pesquisas envolvendo imagens interferométricas. / In broad terms, to achieve high performance and miniturization of mechatronic systems it is necessary to develop positioning mechanisms with high response and precision. The use of positioning devices compatible with precision equipment, particularly in the positioning of a tool relative to a workpiece in ultraprecision machining, results from the need for absolute control of the dimensions of cut. A microtilt stage was developed in the Precision Engineering Laboratory of EESC-USP which is capable of monitoring the position of a diamond tool relative to a workpiece, in-process, permiting error compensation and the generation of complex forms. Finite Element Method is applied to perform a functional analysis (static and dynamic) of the mechanical parts. The use of artifitial neural networks as a tool to help the development of an algortithm for the identification of images is proposed. This algorithm is based on knowledge and employs interferograms as a multi-sensor element representing positions. One desired characteristic of the proposed algorithm is its ability to perform the identification of the position of a surface on the tilt stage and to permit fast processing of the information. This turns the device appropriate to be used in real time applications. This technique was assessed by simulation and presented significant results, encouraging further researches envolving interferometric pattern recognition.
|
304 |
Conjuntos K de redes neurais e sua aplicação na classificação de imagética motora / K-sets of neural networks and its application on motor imagery classificationPiazentin, Denis Renato de Moraes 13 October 2014 (has links)
Esta dissertação de mestrado tem por objetivo analisar os conjuntos-K, uma hierarquia de redes neurais biologicamente mais plausíveis, e aplicá-los ao problema de classificação de imagética motora através do eletroencefalograma (EEG). A imagética motora consiste no ato de processar um movimento motor da memória humana de longo tempo para a memória de curto prazo. A imagética motora deixa um rastro no sinal do EEG que torna possível a identificação e classificação dos diferentes movimentos motores. A tarefa de classificação de imagética motora através do EEG é reconhecida como complexa devido à não linearidade e quantidade de ruído da série temporal do EEG e da pequena quantidade de dados disponíveis para aprendizagem. Os conjuntos-K são um modelo conexionista que simula o comportamento dinâmico e caótico de populações de neurônios do cérebro e foram modelados com base em observações do sistema olfatório feitas por Walter Freeman. Os conjuntos-K já foram aplicados em diversos domínios de classificação diferentes, incluindo EEG, tendo demonstrado bons resultados. Devido às características da classificação de imagética motora, levantou-se a hipótese de que a aplicação dos conjuntos-K na tarefa pudesse prover bons resultados. Um simulador para os conjuntos-K foi construído para a realização dos experimentos. Não foi possível validar a hipótese levantada no trabalho, dado que os resultados dos experimentos realizados com conjuntos-K e imagética motora não apresentaram melhorias significativas para a tarefa nas comparações realizadas. / This dissertation aims to examine the K-sets, a hierarchy of biologically plausible neural networks, and apply them to the problem of motor imagery classification through electroencephalogram (EEG). Motor imagery is the act of processing a motor movement from long-term to short-term memory. Motor imagery leaves a trail in the EEG signal, which makes possible the identification and classification of different motor movements. Motor imagery classification is a complex problem due to non-linearity of the EEG time series, low signal-to-noise ratio, and the small amount of data typically available for learning. K-sets are a connectionist model that simulates the dynamic and chaotic behavior of populations of neurons in the brain, modeled based on observations of the olfactory system by Walter Freeman. K-sets have already been used in several different classification domains, including EEG, showing good results. Due to the characteristics of motor imagery classification, a hypothesis that the application of K-sets in the task could provide good results was raised. A simulator for K-sets was created for the experiments. Unfortunately, the hypothesis could not be validated, as the results of the conducted experiments with K-sets and motor imagery showed no significant improvements in comparison in the task performed.
|
305 |
Rede neural artificial para monitoramento em tempo real da concentração de potássio na vinhaça in natura / Artificial neural network for real-time monitoring of the concentration of potassium in the stillage in naturaSouza, Paulo Henrique Toledo de Oliveira e 01 June 2010 (has links)
A cultura de cana-de-açúcar (Saccharum Officinarum) tem presença marcante na história do Brasil, desde a colonização. Em seu processo industrial, são obtidos os seguintes produtos: açúcar, álcool (anidro e hidratado); e seus principais subprodutos são: bagaço - utilizado para geração de energia - e vinhaça - reaplicada na lavoura como adubo. O uso da vinhaça na lavoura recebe o nome de fertirrigação, pois este subproduto é muito rico em minerais como: potássio, sódio, cálcio e magnésio contêm grande carga biológica e possui 93% de água em sua composição. No entanto, sua aplicação indiscriminada pode causar vários danos ao meio ambiente e à lavoura. Esta pesquisa visa a contribuir tecnicamente para o monitoramento do íon de potássio controlado pela Norma Técnica da Companhia Ambiental do Estado de São Paulo (CETESB) - P4.231 (Versão Janeiro/2005). O método proposto viabiliza a avaliação da concentração de potássio na vinhaça in natura diretamente na saída da destilaria. Para isso utilizaram-se redes neurais artificiais, mais especificamente as redes perceptron multicamadas, como aproximador universal de funções. Utilizam-se, como referência, dados de análises laboratoriais de coletas realizadas durante dois meses na Usina Ipiranga de Descalvado - SP. Os resultados apresentaram margem de erro menor que os aparelhos convencionais, mostrando, assim, sua capacidade de realizar a função de analisador químico. No entanto tal margem foi calculada sobre o erro dos aparelhos, ou seja, se somados ambos os erros - do equipamento e da rede - a metodologia apresentaria um erro maior. / The cultivation of sugar cane (Saccharum officinarum) has significant presence in Brazil\'s history, from colonization. In its industrial process, are obtained the following products: sugar, ethanol (anhydrous and hydrated), and its main products are: marc - used for power generation - and stillage - re-applied as fertilizer in farming. The use of vinasse on the farm is called fertigation, because this by-product is very rich in minerals such as potassium, sodium, calcium and magnesium containing high biological load and has 93% water in its composition. However, its indiscriminate application can cause extensive damage to the environment and agriculture. This research aims to contribute technically to the monitoring of potassium ion controlled with the Standard Environmental Company of São Paulo (CETESB) - P4.231 (Version January 2005). The proposed method enables the assessment of the concentration of potassium in the stillage in natura directly in the output of the distillery. For this we used artificial neural networks, especially the multilayer perceptron networks, such as universal approximator of functions. Are used as reference data for laboratory analysis of samples collected during two months of Descalvado at Usina Ipiranga - SP. The results showed a margin of error smaller than traditional braces, thus showing its ability to perform the function of chemistry analyzer. However this was calculated on the error of the apparatus, ie, if both errors combined - the equipment and the network - the methodology would present a greater mistake.
|
306 |
Diagnóstico automático de redes Profibus / Automatic diagnosis for Profibus networksMossin, Eduardo André 19 September 2012 (has links)
Esta tese propõe a utilização de sistemas inteligentes para, automaticamente, realizar diagnósticos e localizar falhas na instalação e na operação de redes de comunicação industrial que utilizam o protocolo Profibus DP. Para tais tarefas, uma série de análises é realizada a partir dos sinais transmitidos pela camada física, de telegramas transmitidos pela camada de enlace e de funções da camada de usuário do protocolo Profibus DP. Para a análise da camada física, amostras dos sinais elétricos transmitidos são processadas e apresentadas a algumas Redes Neurais Artificiais para que sejam classificadas de acordo com a sua forma de onda. Caso estes sinais apresentem alguma deformação, o sistema indica uma provável causa para o problema, afinal, os problemas das redes Profibus originam padrões específicos e característicos impressos nas formas de onda do sinal digital. Ainda através da análise das amostras dos sinais oriundos da camada física, algumas fontes de problemas são detectadas a partir da análise do nível médio de tensão do sinal que um determinado dispositivo está transmitindo. Tal análise é realizada a partir de um Sistema Especialista. Também utilizando Sistemas Especialistas, os telegramas transmitidos pela camada de enlace deste protocolo são analisados e a partir destes, falhas de configuração são detectadas. Por fim, é proposto um sistema nebuloso responsável por indicar ao usuário um valor próximo ao ideal para a variável de tempo denominada target rotation time. A proposta foi testada e validada a partir de dados obtidos de redes Profibus estabelecidas em laboratório e de alguns dados sintéticos originados por software. Os resultados obtidos foram suficientes para a comprovação da tese de que sistemas computacionais inteligentes podem contribuir de maneira efetiva no diagnóstico de problemas em redes Profibus DP e até mesmo em outros tipos de rede. / This thesis proposes the use of intelligent systems to automatically perform diagnostics and locate faults during the installation and operation of industrial communication networks that use the Profibus DP protocol. For such tasks, some analyzes are performed from the signals transmitted by the physical layer, from telegrams transmitted by the data link layer and from some user layer functions of the Profibus DP protocol. For physical layer analysis, the transmitted electrical signals samples are processed and submitted for some artificial neural networks that classifies each signal according to its waveshape. If these signals have some deformation, the system indicates a probable cause for the problem, after all, the Profibus problems originate specific and characteristic patterns printed on the digital signal waveform. Still analyzing the physical layer signal samples, some problems sources are detected from the signal voltage analysis. Such analysis is performed from an Expert System. Also using expert systems, the data link layer telegrams are analyzed and configuration faults are detected. Finally, it is proposed a fuzzy system responsible for specify a value close to ideal for the target rotation time variable. The proposal has been tested and validated with data from Profibus networks established in laboratory. Besides, some synthetic data were generated by software. The results were sufficient to prove the thesis that intelligent computational systems can contribute effectively to diagnose problems in Profibus DP networks and even in other types of networks.
|
307 |
Algoritmo de Colônia de Formigas e Redes Neurais Artificiais aplicados na monitoração e detecção de falhas em centrais nucleares / Ant Colony Optimization and Artificial Neural Networks applied on monitoring and fault detection in nuclear power plantsSantos, Gean Ribeiro dos 03 June 2016 (has links)
Um desafio recorrente em processos produtivos é o desenvolvimento de sistemas de monitoração e diagnóstico. Esses sistemas ajudam na detecção de mudanças inesperadas e interrupções, prevenindo perdas e mitigando riscos. Redes Neurais Artificiais (RNA) têm sido largamente utilizadas na criação de sistemas de monitoração. Normalmente as RNA utilizadas para resolver este tipo de problema são criadas levando-se em conta apenas parâmetros como o número de entradas, saídas e quantidade de neurônios nas camadas escondidas. Assim, as redes resultantes geralmente possuem uma configuração onde há uma total conexão entre os neurônios de uma camada e os da camada seguinte, sem que haja melhorias em sua topologia. Este trabalho utiliza o algoritmo de Otimização por Colônia de Formigas (OCF) para criar redes neurais otimizadas. O algoritmo de busca OCF utiliza a técnica de retropropagação de erros para otimizar a topologia da rede neural sugerindo as melhores conexões entre os neurônios. A RNA resultante foi aplicada para monitorar variáveis do reator de pesquisas IEA-R1 do IPEN. Os resultados obtidos mostram que o algoritmo desenvolvido é capaz de melhorar o desempenho do modelo que estima o valor de variáveis do reator. Em testes com diferentes números de neurônios na camada escondida, utilizando como comparativos o erro quadrático médio, o erro absoluto médio e o coeficiente de correlação, o desempenho da RNA otimizada foi igual ou superior ao da tradicional. / A recurring challenge in production processes is the development of monitoring and diagnosis systems. Those systems help on detecting unexpected changes and interruptions, preventing losses and mitigating risks. Artificial Neural Networks (ANN) have been extensively used in creating monitoring systems. Usually the ANN used to solve this kind of problem are created by taking into account only parameters as the number of inputs, outputs, and number of neurons in the hidden layers. This way, the result networks are generally fully connected and have no improvements in its topology. This work uses an Ant Colony Optimization (ACO) algorithm to create a tuned neural networks. The ACO search algorithm uses Back Error Propagation (BP) to optimize the network topology by suggesting the best neuron connections. The outcome ANN was applied to monitoring the IEA-R1 research reactor at IPEN. The results show that the algorithm is able to improve the performance of the model which estimates the values of the reactor variables. In tests with different numbers of neurons in the hidden layer, using as comparison the mean squared error, the mean absolute error, and the correlation coefficient, the performance of the optimized ANN proved equal or better than the equivalent traditional neural networks.
|
308 |
Estatísticas de ordem superior e redes neurais artificiais aplicadas à proteção digital de linhas de transmissão / Higher-order statistics and artificial neural networks applied to transmission line protectionCarvalho, Janison Rodrigues de 02 April 2013 (has links)
Neste trabalho, é apresentado e discutido um novo modelo para proteção de Linhas de Transmissão. O sistema proposto executa, individualmente, as etapas tradicionais da filosofia de proteção de distância: detecção, classificação e localização. Este modelo emprega Estatísticas de Ordem Superior (EOS) como ferramenta de extração de características, para posterior aplicação das Redes Neurais Artificiais (RNAs). As RNAs são responsáveis pelas tomadas de decisões do sistema, no sentido de identificar a ocorrência da falta e o tipo da mesma, além de localizar a falta no que tange às zonas de proteção consideradas. O processamento com tais estatísticas é responsável pela transformação dos dados para um domínio onde as diferentes faltas são evidenciadas através de agrupamentos de dados (padrões). O banco de dados disponível com sinais elétricos de LTs em condições de falta é utilizado para cálculo das estatísticas e o posterior treinamento supervisionado (e validação) das redes. A junção das etapas de proteção em um único modelo permitiu o desenvolvimento de um protótipo de relé, sendo executada uma bateria extensiva de testes, com as mais diversas condições de faltas possíveis. Apesar de operar apenas com sinais de corrente, o método proposto alcançou resultados que, em comparação com a técnica tradicional de proteção de distância, baseada na impedância aparente, aumenta consideravelmente o desempenho da proteção de LTs. Especialmente para as faltas monofásicas, de ocorrência mais comum, o desempenho obtido com o algoritmo proposto é largamente superior ao obtido com um relé de distância tradicional normalmente empregado em proteção de LTs, evidenciando a relevância da técnica empregada em aplicações de proteção. / A novel method of Transmission Lines (TLs) protection is presented and discussed in this work. The proposed algorithm performs the traditional steps of distance relaying, such as: fault detection, classification and location. The new method applies the Higher Order Statistics (HOS), also known as cumulants, as a tool for feature extraction in order to apply Artificial Neural Networks (ANN) for pattern classification. These networks are responsible for the processing of information, identifying a possible fault condition, the type of fault and, finally, its location in terms of fault zones considered for the problem. The application of HOS in a protection scheme is responsible for the transformation of electrical data, such as current signals, to a different domain where the different types of faults are highlighted by different classes of samples. The available database was obtained by simulating an Electric Power System and it is used for computing the statistics and training/validating the distinct neural networks of each step of the distance protection. A relay prototype is obtained by combining these steps in a synchronized operation. This prototype allowed the execution of extensive tests, simulating the operation of a protective system in real-time. Despite the use of currents signals only, the proposed method provided efficient protection for the EPS under study. In fact, comparing the results with a traditional method applied to distance protection, based on apparent impedance, an improvement of the protection performance was demonstrated. Especially for faults involving one phase and the ground, the most common in power systems, the results of the new methodology was significantly superior to that of the conventional relay. It can be concluded that the technique presents a high relevance for applications in transmission line protection.
|
309 |
NeuroFSM: aprendizado de Autômatos Finitos através do uso de Redes Neurais Artificiais aplicadas à robôs móveis e veículos autônomos / NeuroFSM: finite state machines learning using artificial neural networks applied to mobile robots and autonomous vehiclesSales, Daniel Oliva 23 July 2012 (has links)
A navegação autônoma é uma tarefa fundamental na robótica móvel. Para que esta tarefa seja realizada corretamente é necessário um sistema inteligente de controle e navegação associado ao sistema sensorial. Este projeto apresenta o desenvolvimento de um sistema de controle para a navegação de veículos e robôs móveis autônomos. A abordagem utilizada neste trabalho utiliza Redes Neurais Artificiais para o aprendizado de Autômatos Finitos de forma que os robôs possam lidar com os dados provenientes de seus sensores mesmo estando sujeitos a imprecisões e erros e ao mesmo tempo permite que sejam consideradas as diferentes situações e estados em que estes robôs se encontram (contexto). Dessa forma, é possível decidir como agir para realizar o controle da sua movimentação, e assim executar tarefas de controle e navegação das mais simples até as mais complexas e de alto nível. Portanto, esta dissertação visa utilizar Redes Neurais Artificiais para reconhecer o estado atual (contexto) do robô em relação ao ambiente em que está inserido. Uma vez que seja identificado seu estado, o que pode inclusive incluir a identificação de sua posição em relação aos elementos presentes no ambiente, o robô será capaz de decidir qual a ação/comportamento que deverá ser executado. O sistema de controle e navegação irá implementar um Autômato Finito que a partir de um estado atual define uma ação corrente, sendo capaz de identificar a mudança de estados, e assim alternar entre diferentes comportamentos previamente definidos. De modo a validar esta proposta, diversos experimentos foram realizados através do uso de um simulador robótico (Player-Stage), e através de testes realizados com robôs reais (Pioneer P3-AT, SRV-1 e veículos automatizados) / Autonomous navigation is a fundamental task in mobile robotics. In order to accurately perform this task it is necessary an intelligent navigation and control system associated to the sensorial system. This project presents the development of a control system for autonomous mobile robots and vehicles navigation. The adopted approach uses Artificial Neural Networks for Finite State Machine learning, allowing the robots to deal with sensorial data even when this data is not precise and correct. Simultaneously, it allows the robots to consider the different situations and states they are inserted in (context detection). This way, it is possible to decide how to proceed with motion control and then execute navigation and control tasks from the most simple ones until the most complex and high level tasks. So, this work uses Artificial Neural Networks to recognize the robots current state (context) at the environment where it is inserted. Once the state is detected, including identification of robots position according to environment elements, the robot will be able to determine the action/- behavior to be executed. The navigation and control system implements a Finite State Machine deciding the current action from current state, being able to identify state changes, alternating between different previously defined behaviors. In order to validade this approach, many experiments were performed with the use of a robotic simulator (Player-Stage), and carrying out tests with real robots (Pioneer P3-AT, SRV-1 and autonomous vehicles)
|
310 |
Imitação de expressões faciais para aprendizado de emoções em robótica social / Imitation of facial expressions for emotion learning in social roboticsSantos, Valéria de Carvalho 12 July 2012 (has links)
Robôs sociáveis devem ser capazes de interagir, se comunicar, compreender e se relacionar com os seres humanos de uma maneira natural. Embora diversos robôs sociáveis tenham sido desenvolvidos com sucesso, ainda existem muitas limitações a serem superadas. São necessários importantes avanços no desenvolvimento de mecanismos que possibilitem interações mais realísticas, bem como regulem o relacionamento entre robôs e humanos. Um forma de tornar mais realísticas as interações é através de expressões faciais de emoção. Nesse contexto, este trabalho fornece capacidade de imitação de expressão facial de emoções a uma cabeça robótica virtual, com o objetivo de permitir interações mais realísticas e duradouras com o ser humano. Para isso, é incorporado à mesma aprendizado por imitação, no qual a cabeça robótica imita expressões faciais apresentadas por um usuário durante a interação social. O aprendizado por imitação foi realizado atráves de redes neurais artificiais. As expressões faciais consideradas neste trabalho são: neutra, alegria, raiva, surpresa e tristeza. Os resultados experimentais são apresentados, os quais mostram o bom desempenho do sistema de imitação proposto / Sociable robots must be able to interact, communicate, understand and relate to humans in a natural way. Although many social robots have been developed successfully, there are still many limitations to overcome. Important advances are needed in the development of mechanisms that allow more realistic interactions and that regulate the relationship between robots and humans. One way to make more realistic interactions is through facial expressions of emotion. In this context, this project provides ability for imitation of facial expressions of emotion to a virtual robotic head, in order to allow more realistic and lasting interactions with humans. For such, learning by imitation is used, in which the robotic head mimics facial expressions made by a user during social interaction. The imitation learning was performed by artificial neural networks. Facial expressions considered in this work are: neutral, happiness, anger, surprise and sadness. Experimental results are presented which show the good performance of the proposed system imitation
|
Page generated in 0.1084 seconds