Spelling suggestions: "subject:"redes neurais artificial"" "subject:"aedes neurais artificial""
401 |
Proposta de um sistema baseado em redes neurais e wavelets para caracterização de movimentos do segmento mão-braçoBermudez, Rosa Maria Jimenez January 2018 (has links)
Este trabalho apresenta um sistema para o processamento do sinal mioelétrico baseado em Redes Neurais e Wavelets. Com a aquisição dos sinais mioelétricos dos músculos do segmento mão-braço, é possível determinar diversos parâmetros para a caracterização dos movimentos executados. A Transformada Wavelets foi utilizada na etapa de segmentação do sinal e a rede neural artificial na caracterização do movimento executado. O sistema é constituído de um eletromiógrafo (EMG de 8 canais), placa de aquisição de dados e um computador responsável pelo processamento dos dados. Foram utilizado eletrodos de superfície posicionados em lugares estratégicos no segmento mão-braço. O experimento consiste em repetir movimentos do segmento mão-braço executados por um modelo virtual. Os movimentos avaliados, neste trabalho, são: contração da mão, extensão do punho, flexão do antebraço, flexão do punho, rotação do braço, rotação e flexão do antebraço, rotação do braço e contração da mão, extensão e flexão do punho, contração da mão e elevação do braço. Esses movimentos são apresentados ao sujeito em determinadas sequências através dos modelos virtuais desenvolvidos, permitindo assim, a padronização do movimento a ser executado pelo voluntário O sinal é adquirido através de uma placa de aquisição e processado. As etapas principais de processamento são: segmentação do sinal de interesse através da Wavelet Discreta, extração de características (r.m.s, variância, desvio padrão, sesgo, curtose ) e uso da Rede Neural para determinar o movimento executado final dos testes, foi verificado que o movimento contração da mão e elevação do braço apresentou uma taxa de acerto média de 75%; o movimento flexão do antebraço obteve 81% de acerto médio; a contração da mão obteve 33% de acerto médio, o movimento contração da mão 76% de acerto médio; o movimento de flexão do punho 100 % de acerto médio, rotação e flexão do antebraço 66% de acerto médio, extensão e flexão do punho um 16% de acerto médio, extensão do punho 83,3% de acerto médio, rotação do braço 16,7% de acerto médio. Rotação do braço e contração da mão 83,3% de acerto médio. / This work presents a neural-network myoelectric processing-based system. With the acquisition of myoelectric signals from the muscles of the hand-arm segment, it is possible to determine the parameters that characterize the executed movements. Therefore, in this work Artificial Neural Networks are implemented to recognize patterns in order to determine the executed movement. The system is constituted by an electromyography (8-channel EMG), a data acquisition board and a computer responsible for data processing. In this research an experimental system is developed to capture the myoelectric signals by means of an EMG and a data acquisition board. Surface electrodes located in strategic places in the hand-arm segment are used. The experiment consists of repeated movements of the hand-arm segment executed by a virtual model. The movements examined in this work are: hand contraction, fist extension, forearm flexion, fist flexion, arm rotation, forearm rotation and flexion, fist contraction and extension and arm elevation. Those movements are presented to a volunteer in a random way by means of the virtual models developed, permitting a standardization of the movements that are to be executed by the volunteer. In the last part it is verified that the hand-contraction movement and the arm-elevation movement present an accuracy rate average of 75%; the forearm-flexion movement reaches 81% of accuracy rate average, the hand-contraction movement with 33% of accuracy rate average, the hand-contraction movement with 76% of accuracy rate average, the fist-flexion movement reached a 100% in the accuracy rate average, the forearm rotation flexion movement with a 66% in the accuracy rate average, the fist extension and flexion movement reaches the 16% in the accuracy rate average and the fist-extension movement with a 83.3% of accuracy rate average.
|
402 |
Quantificação óptica de carboidratos e etanol em mosto cervejeiro / Optical quantification of carbohidrates ; ethanol in beer wortÉverton Sérgio Estracanholli 08 October 2012 (has links)
Neste estudo realizamos uma prova de conceito através da combinação de três técnicas com a finalidade de monitorar a mosturação e fermentação da cerveja durante o processo de fabricação. O princípio deste trabalho é baseado em uma análise espectral, utilizando um equipamento de absorção na região do infravermelho médio por transformada de Fourier (FTIR - Fourier Transform Infrared) de amostras coletadas durante a fabricação da cerveja. Combinado com técnicas de processamento de Análise de Componentes Principais e Redes Neurais Artificiais é possível quantificar a concentração dos principais carboidratos e etanol presentes nestas amostras. Estas medidas físicas e químicas irão permitir a redução de erros durante a produção de cerveja além de optimizar as reações enzimáticas intrínsecas de suas principais etapas de análise. As técnicas ópticas de absorção, juntamente com o processamento neural, apresentam grandes vantagens, principalmente devido ao fato de serem facilmente adaptáveis aos equipamentos industriais, fornecendo respostas em curtos intervalos de tempo com alta sensibilidade e especificidade. / This study is fundamentally a proof of concept. By the combination of three techniques, our aim is to develop a new method of monitoring beer wort production and fermentation during brewing. The principle is based on spectral analyses, using Fourier Transform Infrared (FTIR) spectroscopy to collect absorption data from beer wort samples. This data is refined by the application of a statistical method, Principal Component Analysis (PCA), to reduce the number of variables. A computational method, Artificial Neural Network (ANN), enables quantification of carbohydrates and ethanol concentrations. Such physical-chemical measurements are expected to allow both reduction of mistakes during beer processing and optimization of enzymatic reactions, enhancing brewing processes. Optical absorption techniques associated with Artificial Neural Network present great advantages, mainly because the first ones are more easily inserted in industries than the latter ones, since they enable assessing the process status at short intervals, with high sensibility ; specificity.
|
403 |
Imagem de fluorescência aplicada em doenças de citros / Fluorescence image applied on citrus diseasesCaio Bruno Wetterich 31 May 2016 (has links)
Nos últimos anos, tem havido um crescente interesse na detecção precoce das doenças que afetam as culturas agrícolas a fim de evitar grandes perdas econômicas devido à contaminação de novas plantas. As principais doenças cítricas, cancro cítrico e greening, são uma séria ameaça à produção de citros em todo o mundo, incluindo regiões do Brasil e dos Estados Unidos. A disseminação rápida das doenças leva à redução do número de pomares cultivados, resultando em danos econômicos aos produtores e às indústrias relacionadas. O desenvolvimento de métodos para o diagnóstico precoce pode resultar em uma importante ferramenta para o controle e gestão dos citros. Algumas deficiências nutricionais como a de ferro e zinco apresentam sintomas visuais semelhantes com o greening, enquanto que o cancro cítrico pode ser confundido com a verrugose ou leprose dos citros, podendo levar ao diagnóstico incorreto. Atualmente, somente testes bioquímicos são capazes de detectar especificamente o cancro cítrico e o greening, e consequentemente diferenciá-los das demais doenças e deficiências de nutrientes. No presente trabalho, a técnica de espectroscopia por imagens de fluorescência em conjunto com os métodos de aprendizado e classificação, SVM (do inglês, Support Vector Machine) e ANN (do inglês, Artificial Neural Network), foram utilizadas a fim de identificar e discriminar as principais doenças que afetam a citricultura nos estados de São Paulo/Brasil e da Flórida/EUA. As amostras em estudo são cancro cítrico, verrugose, greening e deficiência de zinco. O objetivo principal é discriminar as doenças com sintomas visuais semelhantes, no caso, cancro cítrico de verrugose e greening de deficiência de zinco para as amostras do Brasil, e greening de deficiência de zinco para as amostras dos Estados Unidos. Os resultados mostram que é possível utilizar a técnica de espectroscopia por imagens de fluorescência em conjunto com os métodos de classificação na discriminação das doenças que apresentam sintomas visuais semelhantes. Ambos os classificadores apresentaram uma elevada precisão na classificação tanto das amostras do Brasil como dos Estados Unidos, destacando assim eficácia da técnica sob condições diferentes. / In recent years, there has been an increasing interest in early detection of diseases that affect agricultural crops to avoid great economic losses due to contamination of new plants. The main citrus diseases, citrus canker and HLB, are a serious threat to citrus production worldwide, including regions in Brazil and the United States. The rapid spread of the diseases leads to the reduction of cultivated orchards resulting in economic losses to producers and industries. The development of methods for early diagnosis can result in an important tool for the control and management of citrus. Some nutritional deficiencies such as iron and zinc have similar visual symptoms to HLB, while the citrus canker can be confused with citrus scab and citrus leprosies, which may lead to incorrect diagnosis. Currently, only biochemical tests are able to detect, specifically, citrus canker and HLB, and thus distinguish them from other diseases and nutrient deficiencies. In this work, the fluorescence imaging spectroscopy technique with the learning and classification methods, SVM (Support Vector Machine) and ANN (Artificial Neural Network), were used to identify and discriminate the main diseases that affect citrus production in the states of São Paulo/Brazil and Florida/USA. The samples studied are citrus canker, citrus scab, HLB and zinc deficiency. The objective is to discriminate the diseases with similar visual symptoms, such as citrus canker from citrus scab and HLB from zinc deficiency for samples from Brazil and HLB from zinc deficiency for samples from the United States. The results show that it is possible to use the fluorescence imaging spectroscopy technique together with the classification methods for the discrimination of the diseases that have similar visual symptoms. Both classifiers showed high accuracy in the classification of the samples from Brazil and the United States, highlighting the efficiency of the technique under different conditions.
|
404 |
Implementação de redes convolucionais para a segmentação de imagens em tempo real com vistas à aplicação em robôs autônomos com dispositivos de visão de baixo custo / Implementation of convolutional networks to real time segmentation aiming at applications in autonomous robots with vision devices of low costRodrigues, Carlos Alberto de Sousa Parente 16 March 2018 (has links)
Submitted by Franciele Moreira (francielemoreyra@gmail.com) on 2018-08-17T13:33:19Z
No. of bitstreams: 2
Dissertação - Carlos Alberto de Sousa Parente Rodrigues - 2018.pdf: 6333824 bytes, checksum: a035fcc2026db7dbe0a7b6945a83690e (MD5)
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2018-08-20T10:46:35Z (GMT) No. of bitstreams: 2
Dissertação - Carlos Alberto de Sousa Parente Rodrigues - 2018.pdf: 6333824 bytes, checksum: a035fcc2026db7dbe0a7b6945a83690e (MD5)
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Made available in DSpace on 2018-08-20T10:46:35Z (GMT). No. of bitstreams: 2
Dissertação - Carlos Alberto de Sousa Parente Rodrigues - 2018.pdf: 6333824 bytes, checksum: a035fcc2026db7dbe0a7b6945a83690e (MD5)
license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)
Previous issue date: 2018-03-16 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / This work presents a study of convolutional networks to segment and classify images. The
purpose of this network is to eventually give more autonomy to LEIA 1 robot, using the
computer vision information in its processing. Methods such as this attempts to adapt the
visual perception system of living beings. The complexity of this task lies in not having
sufficient understanding of the biological system to model a system capable of processing
images with the same speed and efficiency as a human. To accomplish this work, two different
convolutional network architectures were validated. The first network has 13 layers, while the
second has 15 layers, and more adjustable weights than the first one. For training and
validation, a slice of Playing for Data dataset was used and adapted. The training set was
composed of 300 images, and the network was validated using 2500 patterns. For each
architecture, three training routines were performed, using the Adam, Nadam and Adamax
methods. The most relevant results used the 15-layer architecture with Adamax optimizer. / Este trabalho apresenta um estudo de redes convolucionais para segmentar e classificar
imagens. O objetivo desta rede é futuramente deixar o robô LEIA 1 mais autônomo, utilizando
as informações de visão computacional no seu processamento. Métodos como esse são
tentativas de adaptação do sistema de processamento de visão dos seres vivos. A
complexidade desta tarefa está em não haver entendimento suficiente do sistema biológico
para modelar um sistema capaz de processar imagens com a mesma velocidade e eficiência
que um ser humano. Para realizar este trabalho, duas diferentes arquiteturas de redes
completamente convolucionais foram validadas. A primeira rede possui 13 camadas, enquanto
a segunda possui 15 camadas, e mais pesos ajustáveis do que a primeira. Para o treinamento
e validação, uma parcela do dataset Playing for Data foi utlizado e adaptado. O conjunto de
treinamento foi composto de 300 imagens, e a rede foi validada utilizando 2500 padrões. Para
cada arquitetura, três rotinas de treinamento foram executadas, com os métodos Adam,
Nadam e Adamax. Os resultados mais relevantes utilizaram a arquitetura de 15 camadas com
o otimizador Adamax.
|
405 |
Classificação de maciços rochosos: uma abordagem por redes neurais / Rock mass classification: a neural network approachPaulo Gustavo Cavalcante Lins 24 April 2002 (has links)
Os sistemas de classificação maciços rochosos e as redes neurais artificiais possuem diversas similaridades. Existem características que estão presentes nos dois tipos de sistemas: bases de dados são usadas para o seu desenvolvimento; e pesos são parte da representação do conhecimento. Os principais sistemas de classificação geomecânicas (Sistema Q e RMR) podem ser escritos como representações neurais locais. Tais representações permitem uma melhor compreensão do processo de classificação e identificação de padrões realizado pelas classificações convencionais. Experimentos convencionais foram realizados com modelos de redes neurais não-supervisionados. Os modelos não supervisionados permitiriam uma melhor compreensão da distribuição dos dados no espaço de feições. Um modelo supervisionado para escavações subterrâneas em todo domínio do espaço de feições. Importantes relações entre características foram encontradas. / Rock mass classification systems and artificial neural networks have several similarities. There is some characteristics present in both systems: data bases are used in they development, and weights are part of the knowledge representation. The main rock mass classification systems (Q-system and RMR) can be written as local neural network representations. This representation helps a better understanding of the pattern classification and identification process made by the conventional classifications. Computational experiments were made with unsupervised and supervised neural networks models. Unsupervised models allow a better understanding of the data in the feature space. A supervised model allow to make a mapping of the support type used in underground excavation in all feature space domain. Important relations between domain regions characteristics and type of support used were found.
|
406 |
Diagnóstico automático de redes Profibus / Automatic diagnosis for Profibus networksEduardo André Mossin 19 September 2012 (has links)
Esta tese propõe a utilização de sistemas inteligentes para, automaticamente, realizar diagnósticos e localizar falhas na instalação e na operação de redes de comunicação industrial que utilizam o protocolo Profibus DP. Para tais tarefas, uma série de análises é realizada a partir dos sinais transmitidos pela camada física, de telegramas transmitidos pela camada de enlace e de funções da camada de usuário do protocolo Profibus DP. Para a análise da camada física, amostras dos sinais elétricos transmitidos são processadas e apresentadas a algumas Redes Neurais Artificiais para que sejam classificadas de acordo com a sua forma de onda. Caso estes sinais apresentem alguma deformação, o sistema indica uma provável causa para o problema, afinal, os problemas das redes Profibus originam padrões específicos e característicos impressos nas formas de onda do sinal digital. Ainda através da análise das amostras dos sinais oriundos da camada física, algumas fontes de problemas são detectadas a partir da análise do nível médio de tensão do sinal que um determinado dispositivo está transmitindo. Tal análise é realizada a partir de um Sistema Especialista. Também utilizando Sistemas Especialistas, os telegramas transmitidos pela camada de enlace deste protocolo são analisados e a partir destes, falhas de configuração são detectadas. Por fim, é proposto um sistema nebuloso responsável por indicar ao usuário um valor próximo ao ideal para a variável de tempo denominada target rotation time. A proposta foi testada e validada a partir de dados obtidos de redes Profibus estabelecidas em laboratório e de alguns dados sintéticos originados por software. Os resultados obtidos foram suficientes para a comprovação da tese de que sistemas computacionais inteligentes podem contribuir de maneira efetiva no diagnóstico de problemas em redes Profibus DP e até mesmo em outros tipos de rede. / This thesis proposes the use of intelligent systems to automatically perform diagnostics and locate faults during the installation and operation of industrial communication networks that use the Profibus DP protocol. For such tasks, some analyzes are performed from the signals transmitted by the physical layer, from telegrams transmitted by the data link layer and from some user layer functions of the Profibus DP protocol. For physical layer analysis, the transmitted electrical signals samples are processed and submitted for some artificial neural networks that classifies each signal according to its waveshape. If these signals have some deformation, the system indicates a probable cause for the problem, after all, the Profibus problems originate specific and characteristic patterns printed on the digital signal waveform. Still analyzing the physical layer signal samples, some problems sources are detected from the signal voltage analysis. Such analysis is performed from an Expert System. Also using expert systems, the data link layer telegrams are analyzed and configuration faults are detected. Finally, it is proposed a fuzzy system responsible for specify a value close to ideal for the target rotation time variable. The proposal has been tested and validated with data from Profibus networks established in laboratory. Besides, some synthetic data were generated by software. The results were sufficient to prove the thesis that intelligent computational systems can contribute effectively to diagnose problems in Profibus DP networks and even in other types of networks.
|
407 |
Elaboração de rankings por meio do uso de técnicas estruturadas: uma aplicação no setor de seguros privados / Preparation of rankings through the use of structured techniques: an application in the sector of private insurancePedro Henrique de Sousa Leão Araujo 26 November 2008 (has links)
A demanda por metodologias para classificação de empresas que possuam características em comum e que componham um mesmo setor de atividade tem instigado pesquisadores a avaliar alternativas que sejam fidedignas à representação da realidade, e que façam uso reduzido de quesitos voltados à subjetividade de julgamento. Por isso, adotou-se como objetivo desta pesquisa a elaboração de rankings utilizando as técnicas de análise por envoltória de dados e redes neurais artificiais, com aplicação no setor de seguros privados, setor este de forte influência na economia nacional. Como dados para a aplicação das duas técnicas propostas, foram considerados alguns indicadores, via de regra adotados pelo setor, para avaliar o desempenho das empresas no cumprimento de suas atividades. Como resultado obtido, foi verificado que a ponderação direta de acordo com a importância de cada indicador não representa a única forma de apresentar uma ordenação justa das empresas consideradas com base em seus desempenhos. Por meio das técnicas utilizadas, foi observado que empresas que mantiveram um resultado satisfatório na maioria das variáveis consideradas obtiveram os melhores posicionamentos nos rankings. A rede neural, mesmo requerendo um maior tempo de processamento e oferecendo uma complexidade de aplicação maior que a técnica DEA, apresentou resultados mais consistentes. / The demand for methodologies and procedures to classify companies that have some characteristics in common and that are part of the same activity sector has instigated researchers to evaluate alternatives that represent the real situation according to their performance as business units, by making use of reduced amount of subjectivity in the performance judgment. Therefore, this research has as its main goal the objective to set up some rankings using the techniques of analysis and data envelopment by artificial neural networks, by making applying these techniques in the insurance sector, a activity with great influence in national economy. As data for the implementation of both techniques proposed, some indicators well known by specialists were considered to evaluate the performance of companies in their activities. As a result, it was found that the direct weighting used to enforce the importance of each indicator is not the only way to make a fair ranking of the insurance companies. About the techniques used, it was observed that companies that have maintained a satisfactory performance in most of the variables considered occupied best positions in the rankings. The neural network, even though requiring a longer processing time, and offering a greater complexity of application than DEA technique, showed some more consistent results.
|
408 |
Utilização de redes neurais artificiais na previsão do VTEC visando a geração de estações de referência virtuais em tempo-real. / Use of artiificial neural networks to predict VTEC aiming to generate virtual reference stations in real-time.Wagner Carrupt Machado 20 June 2012 (has links)
Dentre as técnicas de posicionamento utilizando os sistemas de navegação por satélite globais (GNSS - Global Navigation Satellite Systems), merece destaque a que utiliza dados de uma rede de estações GNSS para gerar estações de referência virtuais. Desde que as estações da rede não estejam separadas por mais de 100 km e o receptor do usuário esteja dentro da região interna à rede de referência, esta técnica de posicionamento pode proporcionar posicionamento com precisão melhor que 10 cm a usuários de receptores de uma frequência. No entanto, o posicionamento em tempo-real pode ser inviabilizado caso ocorra problema de comunicação com as estações da rede de referência. Tendo em vista a relação do conteúdo total de elétrons (TEC - Total Electron Content) com o atraso ionosférico de primeira ordem, esta pesquisa apresenta uma forma de se prever 72 horas do TEC na direção vertical (VTEC - Vertical Total Electron Content) regionalmente com a arquitetura de redes neurais artificiais (RNA) denominada perceptrons de múltiplas camadas (MLP MultiLayer Perceptrons). A metodologia de previsão do VTEC proposta foi empregada na geração de estações de referência virtuais, onde arquivos de previsão do atraso troposférico zenital, produzidos pelo Instituto Nacional de Pesquisas Espaciais (INPE), foram utilizados para considerar o atraso provocado pela atmosfera neutra e as efemérides preditas pelo serviço internacional do GNSS (IGS - International GNSS Service) foram empregadas para calcular a posição dos satélites. As RNA foram treinadas e avaliadas com dados de VTEC extraídos dos mapas da ionosfera globais (GIM - Global Ionospheric Map) produzidos pelo IGS e dos arquivos produzidos com o software Mod_Ion, ambos no formato IONEX (IONosphere Map EXchange), mostrando que o VTEC pode ser previsto por 72 horas com diferença média quadrática (RMS Root Mean Square) que varia de 1,2 unidades de TEC (TECU - TEC Units) a 12,5 TECU, em baixa e alta atividade solar, respectivamente. Dezoito linhas de base, localizadas no oeste do Estado de São Paulo, foram calculadas utilizando estações de referência virtuais e estações de referência reais, verificando-se que o posicionamento relativo tridimensional empregando a metodologia proposta apresentou RMS de aproximadamente 46 cm. Quando avaliada no posicionamento absoluto preciso (PPP Precise Point Positioning), o RMS relacionado com o posicionamento tridimensional foi de 26 cm. / The positioning technique that uses data from a network of GNSS reference stations to generate virtual reference stations should be detached among the Global Navigation Satellite Systems (GNSS) positioning techniques. Since the inter reference station distances are up to 100 km and the user receiver is within the internal region of the network, this technique can provide single frequency receiver users positioning with better accuracy than 10 cm. However, real-time positioning can be impracticable if communication breakdown involving such reference stations occurs. Given the relation between the Total Electron Content (TEC) and the first-order ionospheric delay, this research presents a way to predict 72 hours of vertical TEC (VTEC) regionally using the Artificial Neural Networks (ANN) architecture called MultiLayer Perceptorns (MLP). The proposed VTEC prediction methodology was employed in the generation of virtual reference stations, where files of prediction of zenithal tropospheric delay, produced by the National Institute For Space Research (INPE Instituto de Pesquisas Espaciais), were used to take the neutral atmospheric delay into account and the precise ephemeris predicted by the GNSS International Service (GNSS) were employed to compute satellites positioning. ANN were trained and assessed using VTEC data from the Global Ionospheric Maps (GIM) produced by IGS and the files produced by Mod_Ion software, both in IONEX (IONosphere Map EXchange) format, showed VTEC can be predicted for 72 hours with Root Mean Square difference (RMS) of about 1.2 TEC units (TECU) and 12.5 TECU, respectively, in low solar activity and high solar activity. Eighteen baselines, in the west region of Sao Paulo State, were computed using virtual reference stations and real reference stations, verifying that the three-dimensional relative positioning using the proposed methodology showed RMS of 46 cm. When assessed by precise point positioning (PPP), the three-dimensional RMS positioning was of 26 cm.
|
409 |
Redes neurais artificiais na avaliação de concentração de tensões em juntas tubulares soldadas. / Artificial neural networks to calculate stress concentration factors in welded tubular joints.Ademar de Azevedo Cardoso 30 April 1999 (has links)
Neste trabalho está apresentada uma alternativa para o cálculo do fator de concentração de tensões (FCT) em juntas tubulares soldadas do tipo Y. Redes Neurais Artificiais (RNA) foram utilizadas para representar a distribuição de tensões ao longo da junta tubular para os casos de carregamento força axial no plano e momento fletor no plano. As RNA podem aprender a partir de um conjunto de dados sem a necessidade de uma expressão matemática entre as variáveis dependentes e independentes; representa uma vantagem sobre o procedimento normalmente utilizado, ou seja, as equações paramétricas. O modelo proposto representa um avanço no projeto de juntas tubulares, uma vez que evita a necessidade de se conhecer uma expressão matemática para representar a distribuição de tensões na junta e fornece um método mais preciso para avaliar a distribuição de tensões ao longo da junta soldada. O conjunto de dados utilizado foi formado a partir de simulações numéricas das juntas soldadas através do MEF, nas quais foi considerada a geometria do cordão de solda. / An alternative approach to calculate stress concentration factors (SCF) in Y-type welded tubular joints is presented. Artificial Neural Networks (ANN) were used to represent the stress distribution along the tubular joints in both in-plane axial force and in-plane bending moment load cases. ANN can learn from a database without establishing a mathematical expression between dependent and independent variables, which is an advantage over the usual parametric equations approach. The proposed model represents an improvement in the tubular joints design, since it avoids the previous knowing of a mathematical expression to represent the stress distribution in the joint and provides an accurate method to evaluate the stress distribution along the welded fillet joint. The database herein used was completed with FE simulations of tubular joints which consider the geometry of the weld fillet.
|
410 |
Metodologia de extração automática de características da mão para a estimação da idade óssea utilizando redes neurais artificiais no processo de decisão / Methodology of automatic extraction of hand characteristics for the estimation of the bone age using artificial neural nets in the decision processAlini da Cruz Queiroz 26 May 2006 (has links)
Este trabalho tem como objetivo principal apresentar uma metodologia para estimação da idade óssea baseada no método de Eklof & Ringertz utilizando redes neurais artificiais como classificador, com a finalidade de auxiliar o diagnóstico do radiologista e diminuir a dimensionalidade dos dados analisados pela rede neural, diminuindo a quantidade de centros de ossificação do método utilizado. A metodologia contém um processo automático de extração de características de imagens radiográficas da mão. Na etapa de classificação é utilizada a rede neural perceptron multicamadas, com o algoritmo de treinamento de Levenberg-Marquardt. As características extraídas da imagem são utilizadas como entrada para a rede neural, e os dados do Atlas de Eklof & Ringertz são utilizados como matriz de treinamento. Os resultados da etapa de classificação chegaram a uma taxa de 95% de acerto ao utilizar um centro de ossificação a menos que o método de Eklof & Ringertz simplificado / Grounded an Eklof & Ringertzs method and using artificial neural networks as classifier, the main purpoise of this work is to present a methodology to reckon the bone age to the effect to help the radiologists diagnosis and to reduce the dimensionality of the data analyzed by neural network, reducing the quantity of the ossifications centers of the used method. The methodology holds an automatic process to the hands radiographies images features. The multilayer perceptron neural network is used in the classification stage, with the Levemberg-Marquardts training algorithm. The taken images features are used as an input to the neural network, and Eklof & Ringertzs Atlas data are used as training source. The results of the classification stage reached a rate of 95% of accuracy when applying the Eklof & Ringertzs simplified method, excluding one of the ossification center
|
Page generated in 0.11 seconds