Spelling suggestions: "subject:"redes neurais artificial"" "subject:"aedes neurais artificial""
361 |
Estimativa do teor de água no solo em bacia hidrográfica com redes neurais artificiais utilizando fatores físicos e climáticos / Estimation of soil water content in watershed with artificial neural networks using physical factors and weatherOliveira, Marquis Henrique Campos de January 2014 (has links)
O teor de água no solo é um dos fatores determinantes nos processos de transferência entre o solo e a atmosfera, contribuindo nos balanços de água e de energia. Esse teor é influenciado pelas entradas de água na bacia hidrográfica, por características climáticas, topográficas, de cobertura vegetal, práticas de manejo agrícola e propriedades do solo. A grande heterogeneidade desses fatores faz com que a caracterização desse teor seja ainda um grande desafio. Essa pesquisa objetivou desenvolver abordagens baseadas em Redes Neurais Artificiais (RNAs) para determinação da variação espacial e temporal do teor de água no solo, utilizando informações climáticas, propriedade físicas do solo e variáveis topográficas de uma bacia hidrográfica, com área aproximada de 78 km², localizada na Região Sul do Brasil (bacia do Taboão). A RNA adotada é uma rede de duas camadas, com 25 neurônios na camada intermediária, sendo o treinamento realizado por meio do algoritmo retropropagativo, considerando16 iterações iniciais dos pesos sinápticos, e número máximo de ciclos igual a 30.000. No total foram testadas 40 variáveis de entrada, sendo quatro referentes à topografia (altitude, declividade, distância do ponto ao trecho do rio mais próximo e desnível do ponto ao trecho mais próximo do rio); oito relacionadas ao solo (tipo de solo, densidade do solo, resistência à penetração no solo para as camadas de 0 a 20 cm e 20 a 40 cm, tensão da água no solo em apenas um ponto na bacia e percentual de argila, silte e areia), 10 relativas ao clima (clima, evapotranspiração de referência, temperatura do ar máxima e temperatura do ar, umidade relativa do ar máxima e umidade relativa do ar mínima, pressão atmosférica, radiação solar global, velocidade do vento e temperatura na relva), e 18 variáveis de chuva (chuva de 1, 2, 3, 4, 5, 6 e 12h; chuva de 1, 2, 3, 5, 10, 15, 20, 25 e 30 dias; chuva média ponderada horária; chuva média ponderada diária). A saída dos modelos foi comparada com valores de umidade gravimétrica determinados por amostras coletadas em 26 pontos da bacia, distribuídos espacialmente na bacia, no período compreendido entre 15/01 e 10/08/2013. Neste período o teor de água no solo (umidade gravimétrica) variou entre 13,73 e 33,75%. Os resultados demonstram que é possível estimar o teor de água no solo, com distribuição espacial e temporal, com boa eficiência (NSverificação = 0,77), empregando dados topográficos da bacia, propriedades físicas do solo e dados de chuva. As informações climáticas, por outro lado, não afetam significativamente essa estimativa (NSv=0,28), podendo até diminuir a eficiência do modelo (NSv=0,77 para NSv=0,68). O emprego de muitas variáveis não gera necessariamente o melhor desempenho do modelo, pois uma variável pode mascarar a outra e, até mesmo, interferir a eficiência do modelo (NSv=0,70 e NS=0,61 para os modelos onde foram utilizadas 38 variáveis de entrada), além de aumentar o custo e o tempo para aquisição dessas variáveis, e a dificuldade de interpretação dos resultados em relação às várias entradas. Alternativamente, pode-se estimar o teor de água no solo utilizando modelos mais simplificados que empregam dados de chuva monitorados e informações extraídas de mapas (topografia e tipo de solo), mas o desempenho desses modelos é menor (NSv 0,66). A análise de importância das variáveis de entrada delimitou a tensão da água no solo e a chuva como as variáveis mais influentes nos modelos de melhor desempenho, e a densidade do solo como a menos importante. Nos modelos mais simples, a variável menos relevante é a declividade e a mais importante é a chuva. A análise de sensibilidade demonstrou que nem sempre os modelos conseguem reproduzir o que deveria ocorrer no ambiente natural. / The water content in the soil is one of the determining factors in the transfer processes between the soil and the atmosphere, contributing to the balances of water and energy. This content is influenced by inputs to the basin, climate characteristics, topography, land cover characteristics, agricultural practices, and soil properties. These wide heterogeneity factors make the soil water content characterization still a challenge. This research aimed to develop an Artificial Neural Network (ANN) model to determine the spatial and temporal variation of the water content in the soil, using climate data, physical properties of soil, and topographic variables, of a basin with an area of approximately 78 km2, located in Brazil`s southern region (Taboão basin). The model adopted is a double layer feedforward neural network with 25 neurons in the hidden layer. The learning method is the back propagation algorithm, with 16 interactions to avoid local minima, and the maximum number of cycles chosen was 30,000. A total of 40 input variables were tested, including four of topography (altitude, slope, distance from the point to the nearest stretch of river and unevenness of the point closest to the stretch of the river), eight of soil related variables (soil type, soil density, soil penetration resistance for layers from 0 to 20 cm and from 20 to 40 cm, soil water tension at a single point in the basin and percentage of clay, silt and sand), 10 climate-related variables (climate, evapotranspiration reference, maximum and minimum air temperature, maximum and minimum air relative humidity, atmospheric pressure, global solar radiation, wind speed and temperature on grass) and 18 variables related to rain (accumulated precipitation in 1, 2, 3, 4, 5, 6 e 12h; accumulated precipitation in 2, 3, 5, 10, 15, 20, 25 and 30 days; weighted hourly accumulated precipitation; weighted daily accumulated precipitation). The outputs of the models were compared with values determined by gravimetric moisture samples collected from 26 points spatially distributed in the basin, in the period between 15/01 and 10/08/2013. During this period the soil water content (gravimetric water content) ranged from 13.73 to 33.75%. The results show that it is possible to estimate the water content of the soil, temporal and spatial distribution, with good efficiency (NSverication = 0.77), using topographic data from the basin, soil physical properties and precipitation data. The weather information, on the other hand, did not significantly affect the estimate (NSv = 0.28) and may even decrease the efficiency (NSv) of the model (from 0.77 to 0.68). The use of many variables not necessarily generates the best performance of the model as a variable may mask another and even disrupt the efficiency of the model (NSv = 0.70 and NSv = 0.61, where 38 input variables were used), besides increasing the cost and the time to acquire these variables, and the difficulty of interpreting the results in relation to the various inputs. Alternatively, one can estimate the water content in soil using more simplified models, employing monitored rainfall data and information extracted from maps (topography and soil type), but the performance of these models is smaller (NSv 0.66). The analysis of the importance of input variables delimited the soil water tension and the rain as the most influential variables in the best models, and the density of the soil as the least important. In the simplest models, the less relevant variable is the slope and the most important is the rain. The sensitivity analysis showed that the models cannot always play what should occur in the natural environment.
|
362 |
Um método de avaliação da amplitude do potencial P300 comparando indivíduos com alto risco e baixo risco para o alcoolismoLopes, Carla Diniz January 2010 (has links)
A ocorrência de variações nos sinais de eletroencefalograma (EEG) de indivíduos que apresentam predisposição a desenvolver a doença do alcoolismo é conhecida e documentada na literatura médica e científica. Dentre as possíveis variações, encontram-se as anormalidades no potencial relacionado ao evento (ERP) P300, um dos principais endofenótipos da doença. Geralmente, este componente tem uma amplitude significativamente menor em indivíduos com alto risco (AR) de desenvolver a doença, quando comparada à amplitude observada em sinais de indivíduos com baixo risco (BR). A técnica atualmente empregada para distinguir os sinais de ERPs P300 dos indivíduos com AR e BR para desenvolver o alcoolismo é baseada na análise visual da amplitude máxima no domínio do tempo e do espectro de frequencias do sinal, obtido através da transformada de Fourier. O objetivo deste trabalho é contribuir para o estudo da identificação da predisposição ao alcoolismo, utilizando técnicas de processamento de sinais, como a transformada wavelet (WT), e de inteligência artificial, por meio das redes neurais artificiais (ANNs). A WT foi utilizada por ser mais adequada ao tratamento de sinais como os ERPs (sinais nãoestacionários), quando comparada, por exemplo, à transformada de Fourier. As redes neurais possibilitam a automatização do processo de identificação dos diferentes grupos. Através de um sistema híbrido formado por estas duas técnicas, pretende-se extrair características de sinais de ERP que identifiquem indivíduos com predisposição ao alcoolismo, e automatizar a identificação destes indivíduos. No desenvolvimento da pesquisa, foi identificada a necessidade de aplicar um préprocessamento aos sinais de ERP, preparando-os para a transformação wavelet. Os coeficientes wavelet assim obtidos formaram os dados de entrada que alimentaram as (ANNs), as quais utilizaram o algoritmo de erro backpropagation no treinamento. Com as técnicas utilizadas, após o treinamento, as ANNs foram capazes de classificar cerca de 90% dos sinais de ERP dos indivíduos com AR e BR. / The occurrence of variations in electroencephalogram (EEG) signals of individuals who are predisposed to develop the disease of alcoholism is known and documented in the medical and scientific literature. Among these variations, are the abnormalities in the event related potential (ERP) P300, a major endophenotype of this disease. Generally, this component has an amplitude significantly smaller in patients at high risk (HR) of developing the disease when compared to the amplitude seen in the signals of individuals with low risk (LR). The technique currently used to distinguish signals of P300 ERPs in individuals with HR and LR for developing alcoholism is based on visual analysis of the maximum amplitude in the time domain and of the frequency spectrum of the signal, obtained via Fourier transform. The aim of this thesis is to study the identification of predisposition to alcoholism, by techniques of signal processing such as wavelet transform (WT) and artificial intelligence through artificial neural networks (ANNs). The WT was used because it is more appropriate for processing signals such as ERP (non-stationary signals), when compared, for example, to the Fourier transform. Neural networks enable the automation of the process of identifying the different groups. Using a hybrid system formed by these two techniques, it is intended to extract features of ERP signals that identify individuals predisposed to alcoholism, and automate the identification of these individuals. The research has identified the need to apply a pre-processing to the signals of ERP, preparing them for the wavelet transformation. The wavelet coefficients thus obtained formed the input data to fed the ANNs, which used the error algorithm backpropagation in training. Using these techniques, after training, the ANNs were able to classify about 90% of ERP signs of individuals with LR and HR.
|
363 |
[en] A SYSTEM TO FORECAST WEEKLY LOAD ELECTRICITY DATA / [pt] SISTEMA DE PREVISÃO DE CARGA SEMANALLAURA VALERIA LOPES DE ALMEIDA 09 November 2005 (has links)
[pt] A presente dissertação tem por objetivo o estudo
quantitativo da previsão da demanda de carga elétrica
semanal para a região sudeste e em particular, para os
Estados do Rio de Janeiro e São Paulo. Foram estudadas
para tanto as séries reais dos últimos 7(sete) anos, ou
seja, de janeiro de 1991 a novembro de 1997 das
concessionárias LIGHT, CERJ, CESP, CPFL e ELETROPAULO.
Para o estudo de previsão foi utilizado o conceito in
sample, ou seja, parte real dos dados foram separados e
mais tarde comparados com os valores previstos
experimentalmente para aquela mesma época dos dados reais
separados. Desta forma, permitiu-se averiguar qual seria a
precisão da previsão, verificando-se os erros entre os
valores experimentais e reais.
Para os cálculos das previsões, também foi utilizado o
conceito de bayesiano de combinação de previsões
(outperformance) das duas técnicas a saber: redes neurais
artificiais (software Neunet) e o modelo clássico Box &
Jenkins (software Autobox).
Para se obter o valor combinado das previsões, foi
utilizado software matlab que se comportou de maneira
adequada para o estudo em questão. Além disso vale
acrescentar que o software Neunet foi utilizado, pois
possui em seu ambiente a técnica de eliminação de sinapses
enquadra-se dentro do conceito de redes neurais
multicamadas com retropropagação dos erros. / [en] The goal of this dissertation is to present a quantitative
study in time series of weekly electrical charge demand at
the southeast region, particulary at Rio de Janeiro and
São Paulo.
In this work will be analysed the last 7 years, from
january 1991 to november of 1997. The next time series
were study: LIGHT, CERJ, CESP, CPFL and ELETROPAULO.
Aimming to test the model against real data the concept of
sample data was utilized in this dissertation.
Another concept used in this work was outperformance.
Outperformance is a Bayesian concept that involves the
combination of two or more techniques in order to enchance
the forecasting results. Artificial neural network and Box
and Jenkins method are combined in this work. It is also
interesting to notice that weight elimination, which is a
new ANN technique, proved to be faster then classical back-
propagation and yielded better results.
|
364 |
Construção de modelos de previsão de risco de créditoSelau, Lisiane Priscila Roldão January 2008 (has links)
A presente dissertação tem como objetivo propor uma sistemática para a construção de modelos de previsão de risco de crédito e também comparar o desempenho de três técnicas estatísticas multivariadas utilizadas para sua construção: análise discriminante, regressão logística e redes neurais. O método proposto (denominado Modelo PRC) é composto de seis etapas: (i) delimitação da população; (ii) seleção da amostra; (iii) análise preliminar; (iv) construção do modelo; (v) escolha do modelo e (vi) passos para implantação. O Modelo PRC foi aplicado em uma amostra de 17.005 clientes de uma rede de farmácias com crediário próprio. Os resultados encontrados demonstram uma superioridade das redes neurais em relação às outras duas técnicas, o que era esperado devido a sua abordagem nãolinear na combinação das variáveis. Considerando a venda anual aos clientes da base em estudo e utilizando o modelo neural desenvolvido, estima-se um acréscimo de 65% nos lucros. / This work presents a methodology for credit risk prediction, comparing the performance of three statistical techniques used in the prediction process: discriminant analysis, logistic regression and neural networks. The proposed method (entitled PRC Model) embraces six steps: (i) population definition, (ii) sampling, (iii) preliminary analysis, (iv) model development, (v) model selection and (vi) implementation steps. The PRC Model was applied to a sample of 17,005 customers from an organization, which manages his own credit system and controls a pool of drugstores. The results show the superiority of neural networks over the other two techniques. This was expected due to the non-linear approach of the neural network when dealing with the explanatory variables. Considering the neural network model and the annual sales due to customers included on this study, the use of the proposed methodology indicates a 65% potential profits.
|
365 |
Comparação de modelos MLP/RNA e modelos Box-Jenkins em séries temporais não linearesFlores, João Henrique Ferreira January 2009 (has links)
A capacidade de prever resultados futuros, ao se analisar uma série de dados, é uma importante ferramenta para o planejamento de qualquer empresa ou indústria. Porém, a literatura oferece muitas opções de ferramentas e modelos estatísticos que permitem obter estas previsões. Cada qual com suas características e recomendações. Dentre estes modelos, destacam-se os modelos de Box e Jenkins, e os modelos de Redes Neurais Artificiais (RNA) - com destaque aos modelos de perceptron de múltiplas camadas (MLP). Estas duas diferentes abordagens são comparadas nesta dissertação com relação a sua capacidade de obter previsões acuradas em séries de dados não lineares quanto a sua média. As abordagens foram comparadas utilizando-se a série mensal do índice de produção física industrial do Estado do Rio Grande do Sul. Bem como a série anual de manchas solares, sendo a segunda utilizada como caso-controle para as comparações, devido ao fato de que as suas propriedades já foram amplamente estudadas. No estudo da série do índice de produção física mensal, os modelos de Box e Jenkins obtiveram melhor rendimento. Na série das manchas solares foram os modelos MLP que se destacaram. Desta forma, não é possível afirmar se alguma das abordagens é superior - tratando-se de séries de dados não lineares quanto a sua média. / The capacity to preview future outcomes on the time series analysis is an important tool for any business and industry planning. However, the literature offers many options on statistical tools and models which allow to obtain these forecasts. Each one with their features and recommendations. 1n these models, the Box and Jenkins and Artificial Neural Networks (ANN) models, with the multilayer perceptron (MLP) highlighted, stand out. These two different approaches are compared in this thesis related to the capacity to obtain accurate forecasts in mean related non-linear time series analysis. These approaches were compared using the monthly physical production index of Rio Grande do Sul time series and the sunspot series, being the second one used as a case-control to the comparisons, due the fact of its properties are already widely studied. 1n the monthly physical production index series study, t,he Box and Jenkins models obtained better efficiency. 1n the sunspot series, the MLP models were highlighted. So, it isn't possible to affirm if any of the approaches is superior, in the case of mean related non-linear time series.
|
366 |
Otimização de estruturas de materiais compósitos laminados, baseada em confiabilidade, utilizando algoritmos genéticos e redes neurais artificiais / Reliability based design optimization of composite structures using genetic algorithms and artificial neural networksLopes, Paulo André Menezes January 2009 (has links)
A resistência e a rigidez de materiais compósitos variam consideravelmente devido a mudanças no tipo de material, espessura das camadas, ângulo de orientação das fibras e seqüência das lâminas. O projeto de uma estrutura ótima pode ser obtido dada uma determinada condição de carga. Vários métodos de otimização determinísticos foram desenvolvidos para tratar esse problema. Algumas vezes a orientação ótima das fibras muda quando as condições de carga variam e o desempenho da estrutura é altamente afetado pelas variáveis de projeto e condições de carregamento. Dessa forma, a otimização deste tipo de estrutura utilizando a confiabilidade como restrição é um importante problema a ser tratado. Este trabalho trata do problema da otimização de estruturas de materiais compósitos laminados com restrição de confiabilidade utilizando algoritmos genéticos e redes neurais. A análise da estrutura é feita via elementos finitos e as tensões na direção dos eixos principais de cada lâmina são utilizadas para o cálculo do índice de confiabilidade da estrutura, sendo a função de estado limite o critério de Tsai-Wu para falha de materiais compósitos laminados. A análise de confiabilidade é feita através de um dos seguintes métodos: FORM com um ponto de linearização, FORM para sistemas em série, Monte Carlo Direto e Monte Carlo com Amostragem por Importância. O processo de otimização via Algoritmos Genéticos (com suas fases de geração, seleção e cruzamento dos indivíduos da população), é usado em conjunto com os métodos de determinação do índice de confiabilidade e análises por elementos finitos. Isto gera um alto custo computacional, o qual é contornado utilizando-se Redes Neurais do tipo Perceptron e Base Radial, treinadas para substituir a análise via elementos finitos, diminuindo consideravelmente o tempo de processamento. É mostrado por meio de diversos exemplos que esta metodologia pode ser usada sem perda de precisão e com economia de tempo de processamento até mesmo em exemplos fortemente não lineares. / Strength and stiffness of composite materials vary considerable due to changes in the material to be used, the thickness of each layer, the fiber orientation angles and the stacking sequence. The optimum structural design may be obtained for a specific load condition. Several optimization criteria were been developed to treat that problem. Sometimes the optimal fiber orientation angles are highly dependent on the load conditions and the structural performance is also influenced by the design variables and acting loads. Thus, structural optimization using a reliability index as a constraint is an important problem to be analyzed. This work deals with the problem of reliability based optimization of laminated composite structures, using genetic algorithms and neural networks. The analysis of the structure is carried out by finite elements and the stress in the direction of the principal axes of each lamina are used to the calculation of the reliability index of the structure, where the limit state function is the Tsai-Wu criterion assuming first ply failure. The reliability analyses are accomplished through one of the following methods: FORM with one linearization point, FORM for in-series systems, Direct Monte Carlo and Monte Carlo with Importance Sampling. The optimization process through Genetic Algorithms (with its phases of generation, selection and crossover of the individuals of the population), is used jointly with the reliability evaluation methods and analysis by finite elements. This leads to high computational costs, which are overcome using trained Neural Networks of the type Perceptron and Radial Base to substitute the analysis with finite elements, reducing considerably the processing time. Several examples are used to show that this methodology can be used without loss of accuracy and with large computational timesaving even for strongly non-linear problems.
|
367 |
[en] PERIODIC STOCHASTIC MODEL BASED ON NEURAL NETWORKS / [pt] MODELO ESTOCÁSTICO PERIÓDICO BASEADO EM REDES NEURAISLUCIANA CONCEICAO DIAS CAMPOS 14 March 2011 (has links)
[pt] Processo Estocástico é um ramo da teoria da probabilidade onde se define um conjunto de modelos que permitem o estudo de problemas com componentes aleatórias. Muitos problemas reais apresentam características complexas, tais como não-linearidade e comportamento caótico, que necessitam de modelos capazes de capturar as reais características do problema para obter um tratamento apropriado. Porém, os modelos existentes ou são lineares, cuja aplicabilidade a esses problemas pode ser inadequada, ou necessitam de uma formulação complexa, onde a aplicabilidade é limitada e específica ao problema, ou dependem de suposições a priori sobre o comportamento do problema para poderem ser aplicados. Isso motivou a elaboração de um novo modelo de processo estocástico genérico, intrinsecamente não-linear, que possa ser aplicado em uma gama de problemas de fenômenos não-lineares, de comportamento altamente estocástico, e até mesmo com características periódicas. Como as redes neurais artificiais são modelos paramétricos não-lineares, simples de entendimento e implementação, capazes de capturar comportamentos de variados tipos de problemas, decidiu-se então utilizá-las como base do novo modelo proposto nessa tese, que é denominado Processo Estocástico Neural. A não-linearidade, obtida através das redes neurais desse processo estocástico, permite que se capture adequadamente o comportamento da série histórica de problemas de fenômenos não-lineares, com características altamente estocásticas e até mesmo periódicas. O objetivo é usar esse modelo para gerar séries temporais sintéticas, igualmente prováveis à série histórica, na solução desses tipos de problemas, como por exemplo os problemas que envolvem fenômenos climatológicos, econômicos, entre outros. Escolheu-se, como estudo de caso dessa tese, aplicar o modelo proposto no tratamento de afluências mensais sob o contexto do planejamento da operação do sistema hidrotérmico brasileiro. Os resultados mostraram que o Processo Estocástico Neural consegue gerar séries sintéticas com características similares às séries históricas de afluências mensais. / [en] Stochastic Process is a branch of probability theory which defines a set of
templates that allow the study of problems with random components. Many
real problems exhibit complex characteristics such as nonlinearity and chaotic
behavior, which require models capable of capture the real characteristics
of the problem for a appropriate treatment. However, existing models have
limited application to certain problems or because they are linear models
(whose application gets results inconsistent or inadequate) or because they
require a complex formulation or depend on a priori assumptions about the
behavior of the problem, which requires a knowledge the problem at a level
of detail that there is not always available. This motivated the development
of a model stochastic process based on neural networks, so that is generic
to be applied in a range of problems involving highly stochastic phenomena
of behavior and also can be applied to phenomena that have periodic characteristics.
As artificial neural networks are non-linear models, simple to
understand and implementation, able to capture behaviors of varied types
problems, then decided to use them as the basis of new model proposed
in this thesis, which is an intrinsically non-linear model, called the Neural
Stochastic Process. Through neural networks that stochastic process,
can adequately capture the behavior problems of the series of phenomena
with features highly stochastic and / or periodical. The goal is to use this
model to generate synthetic time series, equally likely to historical series,
in solution of various problems, eg problems phenomena involving climatology,
economic, among others. It was chosen as a case study of this thesis,
applying the model proposed in the treatment of monthly inflows in the
context of operation planning of the Brazilian hydrothermal system. The
Results showed that the process can Stochastic Neural generate synthetic
series of similar characteristics to the historical monthly inflow series.
|
368 |
Modelo híbrido SOM-ANN/BP para previsão de índices da NYSE através de redes neurais artificiaisBeluco, Adriano January 2013 (has links)
Este estudo propõe um modelo híbrido que reúne uma rede neural do tipo SOM (Self-Organizing Map) com uma rede neural do tipo Multicamadas com Retropropagação (BPN: Backpropagation Network). A utilização da rede SOM tem o intuito de segmentar a base de dados em diversos clusters, onde são ressaltadas suas diferenças. A rede BPN é usada para construir um modelo matemático de previsão que descreve a relação entre os indicadores e o valor de fechamento de cada cluster formado na rede SOM. A viabilidade e o percentual de efetividade do modelo proposto são demonstrados através de experimentos de predição de índices utilizados pelo NYSE (New York Stock Exchange). O modelo foi elaborado a partir de uma base de dados composta pelo índice NYSE Composite U.S. 100 no período entre 02 de abril de 2004 a 08 de novembro de 2012. Como variáveis de entrada para as redes neurais, foram utilizados 10 índices: MA_10, BIAS_20, WMS%R_9, K_9, D_9, MTM_10, ROC_10, CCI_24, AR_26, BR_26. Os resultados obtidos com o modelo híbrido proposto se mostraram superiores aos obtidos com modelos convencionais estatísticos. / This study proposes a hybrid model that combines a neural network SOM (Self-Organizing Map) with a neural network with Multilayer Backpropagation (BPN: Backpropagation Network). The SOM aims to segment the database into different clusters, where they highlight their differences. The BPN network is used to build a predictive mathematical model that describes the relationship between the indicators and the closing value of each cluster formed in the SOM. The percentage of viability and effectiveness of the proposed model are demonstrated through experiments predict index used by the NYSE (New York Stock Exchange). The model was developed from a database composed of 100 U.S. NYSE Composite Index in the period from April, 02, 2004 to November, 08, 2012. As input variables for neural networks, we used 10 indices: MA_10, BIAS_20, WMS%R_9, K_9, D_9, MTM_10, ROC_10, CCI_24, AR_26, BR_26. Results obtained with the proposed hybrid model were higher than those obtained with conventional statisticals techniques.
|
369 |
Previsão da estrutura a termo da taxa de juros brasileira usando redes neurais artificiaisArantes, Breno de Oliveira January 2013 (has links)
Avaliamos as previsões fora da amostra da curva de juros geradas por modelos de redes neurais artificiais e as comparamos com os modelos tradicionalmente usados para este fim. A curva de juros foi segmentada em três regiões distintas e para cada uma dessas regiões e horizontes de previsão, foram estimados duas classes de modelos de redes neurais (modelos dinâmicos e modelos estáticos), totalizando 198 modelos estimados. Afim de verificar a significância estatística das previsões dos modelos de RNA em relação aos outros modelos, foi realizado o teste Diebold-Mariano. Os resultados mostram que em média, os modelos estimados através de RNA conseguiram superar as previsões realizadas pelo random walk em todos os horizontes de previsão, sendo essas previsões em torno de 2% e 5% melhores para os horizontes de 1 dia e 1 semana a frente, e de 12% e 7% melhores para os horizontes mais longos, de 1 mês e 3 meses. Além disso, apresentou previsões em torno de 15% e 10% melhores que o modelo de NS para os horizontes de 1 mês e 3 meses a frente. Concluimos que os modelos de redes neurais são capazes de realizar previsões superiores para todos os horizontes testados, principalmente para região de curto prazo da curva, com destaque especial para as previsões com horizontes de 1 dia e 1 semana a frente. / We evaluate the out of sample forecasts of the yield curve generated by artificial neural network models and compare them with the models traditionally used for this purpose. The yield curve was segmented into three distinct regions and for each region and forecast horizons, we estimated two classes of neural network models (dynamic models and static models), totaling 198 models estimated. In order to check the statistical significance of the model predictions of RNA compared to other models, was performed the Diebold-Mariano’s test. The results show that on average, the models estimated using RNA overcame the predictions made by the random walk at all forecast horizons, and these forecasts around 2% and 5% better for horizons of 1 day and 1 week forward and 12% and 7% better for longer horizons, 1 month and 3 months. Moreover, forecasts showed around 15% and 10% better than the NS model for horizons of 1 month and 3 months ahead. We conclude that the neural network models are capable of superior forecasts for all horizons tested, especially for short-term region of the curve, with particular attention to the forecasts with horizons of 1 day and 1 week ahead.
|
370 |
Previsão da geração de energia elétrica no médio prazo para o Estado do Rio Grande do Sul empregando redes neurais artificiaisRola, Marcelo Coleto January 2017 (has links)
A demanda e, consequentemente, a geração de energia elétrica são questões de suma importância para o desenvolvimento econômico e social dos países. Modelos para previsão destes parâmetros no longo e médio prazo são empregados com a finalidade de antever possíveis cenários e propor estratégias para a realização de um planejamento energético adequado. Neste contexto, o presente estudo tem como objetivo realizar a previsão da geração de energia elétrica no estado do Rio Grande do Sul (RS) em um horizonte de médio prazo (um ano), utilizando Redes Neurais Artificiais (RNA’s) do tipo feedforward com algoritmo de aprendizado supervisionado backpropagation. Para o desenvolvimento deste trabalho elaborou-se um script para executar as simulações necessárias, as quais foram realizadas através do software Matlab®. As variáveis de influência selecionadas como entradas do modelo de previsão referem-se à economia (estadual e nacional), ao balanço de energia elétrica e à meteorologia do estado, durante o período de janeiro de 2009 a março de 2016. Para realizar o treinamento da rede neural, adicionou-se a matriz de entrada este conjunto de dados, com frequência mensal, referentes a janeiro de 2009 a março de 2015 e para previsão foram inseridos dados de abril de 2015 a março de 2016. Por fim, depois de realizada a simulação completa da RNA, comparou-se o resultado observado da geração de energia elétrica do estado com o obtido através do modelo de previsão, indicando um erro percentual absoluto médio (MAPE) de 5,86% e um desvio absoluto médio (MAD) de 134,15 MW médio. Os resultados obtidos neste trabalho mostram-se promissores, além de semelhantes aos encontrados na literatura, demonstrando assim confiabilidade e eficácia do método empregado. / The demand and, consequently, the generation of electric power are very important issues for social and economic development of countries. Models to forecast these parameters in long and medium terms are used to anticipate possible sceneries and propose strategies for the energy planning of countries. In this context, the present study aims to forecast the generation of electric energy in Rio Grande do Sul State (RS) in a medium-term horizon (one year) using, Artificial Neural Networks (ANNs) of the feedforward type with algorithm of supervised learning backpropagation. For the development of this work, a script was elaborated in order to execute the necessary simulations, which were carried out through Matlab® software. The selected variables of influence as inputs of forecasting model refer to economy (State and National), to the electric energy balance and to the meteorology State, during the period from January, 2009 to March, 2016. In order to train the neural network, this data set was added to the entrance matrix, with monthly frequency, from January, 2009 to March, 2015 and for prediction, data were inserted from April, 2015 to March, 2016. Finally, after RNA complete simulation, the observed result of the electric power generation of the State was compared with the one obtained through the prediction model, indicating a mean absolute percent error (MAPE) of 5.86% and a mean absolute deviation (MAD) of 134.15 average MW. The obtained results in this work are promising, besides; they are similar to those found in literature, in this way demonstrating the reliability and efficacy of the using method.
|
Page generated in 0.1175 seconds