• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 377
  • 153
  • 69
  • 59
  • 39
  • 30
  • 13
  • 11
  • 8
  • 6
  • 5
  • 4
  • 4
  • 3
  • 3
  • Tagged with
  • 970
  • 204
  • 170
  • 136
  • 103
  • 81
  • 67
  • 63
  • 63
  • 59
  • 59
  • 58
  • 57
  • 56
  • 54
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
371

Développement de modèles réduits adaptatifs pour le contrôle optimal des écoulements / Development of adaptive reduced order models for optimal flow control

Oulghelou, Mourad 26 June 2018 (has links)
La résolution des problèmes de contrôle optimal nécessite des temps de calcul et des capacités de stockage très élevés. Pour s’affranchir de ces contraintes, il est possible d’utiliser les méthodes de réduction de modèles comme la POD (Proper Orthogonal Decomposition). L’inconvénient de cette approche est que la base POD n’est valable que pour des paramètres situés dans un voisinage proche des paramètres pour lesquels elle a été construite. Par conséquent, en contrôle optimal, cette base peut ne pas être représentative de tous les paramètres qui seront proposés par l’algorithme de contrôle. Pour s’affranchir de cet handicap, une méthodologie de contrôle optimal utilisant des modèles réduits adaptatifs a été proposée dans ce manuscrit. Les bases réduites adaptées sont obtenues à l’aide de la méthode d’interpolation ITSGM (Interpolation on Tangent Subspace of Grassman Manifold) ou de la méthode d’enrichissement PGD (Proper Generalized Decomposition). La robustesse de cette approche en termes de précision et de temps de calcul a été démontrée pour le contrôle optimal (basé sur les équations adjointes) des équations 2D de réaction-diffusion et de Burgers. L’approche basée sur l’interpolation ITSGM a également été appliquée avec succès pour contrôler l’écoulement autour d’un cylindre 2D. Deux méthodes de réduction non intrusives, ne nécessitant pas la connaissance des équations du modèle étudié, ont également été proposées. Ces méthodes appelées NIMR (Non Intrusive Model Reduction) et HNIMR (Hyper Non Intrusive Model Reduction) ont été couplées à un algorithme génétique pour résoudre rapidement un problème de contrôle optimal. Le problème du contrôle optimal de l’écoulement autour d’un cylindre 2D a été étudié et les résultats ont montré l’efficacité de cette approche. En effet, l’algorithme génétique couplé avec la méthode HNIMR a permis d’obtenir les solutions avec une bonne précision en moins de 40 secondes. / The numerical resolution of adjoint based optimal control problems requires high computational time and storage capacities. In order to get over these high requirement, it is possible to use model reduction techniques such as POD (Proper Orthogonal Decomposition). The disadvantage of this approach is that the POD basis is valid only for parameters located in a small neighborhood to the parameters for which it was built. Therefore, this basis may not be representative for all parameters in the optimizer’s path eventually suggested by the optimal control loop. To overcome this issue, a reduced optimal control methodology using adaptive reduced order models obtained by the ITSGM (Interpolation on a Tangent Subspace of the Grassman Manifold) method or by the PGD (Proper Generalized Decomposition) method, has been proposed in this work. The robustness of this approach in terms of precision and computation time has been demonstrated for the optimal control (based on adjoint equations) of the 2D reaction-diffusion and Burgers equations. The interpolation method ITSGM has also been validated in the control of flow around a 2D cylinder. In the context of non intrusive model reduction, two non intrusive reduction methods, which do not require knowledge of the equations of the studied model, have also been proposed. These methods called NIMR (Non-Intrusive Model Reduction) and HNIMR (Hyper Non-Intrusive Model Reduction) were developed and then coupled to a genetic algorithm in order to solve an optimal control problem in quasi-real time. The problem of optimal control of the flow around a 2D cylinder has been studied and the results have shown the effectiveness of this approach. Indeed, the genetic algorithm coupled with the HNIMR method allowed to obtain the solutions with a good accuracy in less than 40 seconds.
372

Geology and petrology of the Catface porphyry Cu-Mo deposit, Vancouver Island, and linkages to the Paleogene Cascade Arc

Smith, Colin Michael 12 April 2012 (has links)
The geology, petrology and geochemistry of Catface porphyry Cu (Mo-Au) deposit, located on the west coast of Vancouver Island are examined in detail. Detailed core logging and sampling was carried out to characterize the geometry and identity of different intrusive phases and alteration styles prevalent during the emplacement and formation of the deposit, as well as their geochemical affinity. Early- and late-stage potassic alteration is identified, as well as main-stage sodic-calcic and calcic-sodic alteration. Four distinct Paleogene intrusive phases vary from quartz diorite to granodiorite in composition. The rocks are broadly calc-alkaline, weakly peraluminous to moderately metaluminous, and have typical arc geochemical affinity. The timing of emplacement and mineralization is constrained by U-Pb and Re-Os geochronology at 40.4-41.4 Ma and 40.9 ±0.2 Ma, respectively. All four Paleogene Catface intrusive phases were emplaced close in time with a direct temporal correlation to mineralization. The chalcopyrite- and pyrite-bearing miarolitic cavities in the Halo Porphyry intrusive, combined with U-Pb and Re-Os dates suggest this intrusive phase is the most likely source of mineralizing fluids. The intrusions were emplaced at depths of less four kilometers in the crust, as evidenced by the presence of miarolitic cavities and confirmed through amphibole-plagioclase thermobarometry, which record conditions of 615–700 °C and <200 MPa. The lack of primary anhydrite and hematite, and the presence of pyrrhotite in the ore system indicate a reduced magmatic-hydrothermal event. The SO3 contents in apatites are <450 ppm, indicative of a degassed and/or sulphate-free (reduced) magma. The assemblage K-feldspar-quartz-biotite-ilmenite yields oxygen fugacities (fO2) which are 0.5 to 3.0 log units below the quartz-fayalite-magnetite (QFM) buffer at an assumed pressure of 300 MPa; orders of magnitude more reduced than typical porphyry deposits. Parental magmas to the Catface deposit were either derived from intrinsically-reduced mantle, or more typical oxidized arc magma that was subsequently reduced during ascent and emplacement. Further isotopic work is required to determine which process contributed to the reduction of these magmas in an arc setting. Nevertheless, recognition of reduced porphyry-related magmatism on west-central Vancouver Island is of similar age to that of North Fork (~36.8-38.9 Ma) deposit in Washington suggesting a consanguinity of reduced magmatism with the Paleogene Cascade arc. / Graduate
373

Distortional buckling behaviour of cold-formed steel compression members at elevated temperatures

Ranawaka, Thanuja January 2006 (has links)
In recent times, light gauge cold-formed steel sections have been used extensively in residential, industrial and commercial buildings as primary load bearing structural components. This is because cold-formed steel sections have a very high strength to weight ratio compared with thicker hot-rolled steel sections, and their manufacturing process is simple and cost-effective. However, these members are susceptible to various buckling modes including local and distortional buckling and their ultimate strength behaviour is governed by these buckling modes. Fire safety design of building structures has received greater attention in recent times due to continuing loss of properties and lives during fires. Hence, there is a need to fully evaluate the performance of light gauge cold-formed steel structures under fire conditions. Past fire research has focused heavily on heavier, hot-rolled steel members. The buckling behaviour of light gauge cold-formed steel members under fire conditions is not well understood. The buckling effects associated with thin steels are significant and have to be taken into account in fire safety design. Therefore, a research project based on extensive experimental and numerical studies was undertaken at the Queensland University of Technology to investigate the distortional buckling behaviour of light gauge cold-formed steel compression members under simulated fire conditions. As the first phase of this research program more than 115 tensile coupon tests of light gauge cold-formed steels including two steel grades and five thicknesses were conducted at elevated temperatures. Accurate mechanical properties including the yield strength, elasticity modulus and stress-strain curves were all determined at elevated temperatures since the deterioration of the mechanical properties is one of the major parameters in the structural design under fire conditions. An appropriate stress-strain model was also developed by considering the inelastic characteristics. The results obtained from the tensile coupon tests were then used to predict the ultimate strength of cold-formed steel compression members. In the second phase of this research more than 170 laboratory experiments were undertaken to investigate the distortional buckling behaviour of light gauge coldformed steel compression members at ambient and elevated temperatures. Two types of cross sections were selected with various thicknesses (nominal thicknesses are 0.6, 0.8, and 0.95 mm) and both low and high strength steels (G250 and G550 steels with minimum yield strengths of 250 and 550 MPa). The experiments were conducted at six different temperatures in the range of 20 to 800°C. A finite element model of the tested compression members was then developed and validated with the help of experimental results. The degradation of mechanical properties with increasing temperatures was included in finite element analyses. An extensive series of parametric analyses was undertaken using the validated finite element model to investigate the effect of all the influential parameters such as section geometry, steel thickness and grade, mechanical properties and temperature. The resulting large data base of ultimate loads of compression members subject to distortional buckling was then used to review the adequacy of the current design rules at ambient temperature. The current design rules were reasonably accurate in general, but in order to improve the accuracy further, this research has developed new design equations to determine the ultimate loads of compression members at ambient temperature. The developed equation was then simply modified by including the relevant mechanical properties at elevated temperatures. It was found that this simple modification based on reduced mechanical properties gave reasonable results, but not at higher temperatures. Therefore, they were further modified to obtain a more accurate design equation at elevated temperatures. The accuracy of new design rules was then verified by comparing their predictions with the results obtained from the parametric study. This thesis presents a description of the experimental and numerical studies undertaken in this research and the results including comparison with simply modified current design rules. It describes the laboratory experiments at ambient and elevated temperatures. It also describes the finite element models of cold-formed steel compression members developed in this research that included the appropriate mechanical properties, initial geometric imperfections and residual stresses. Finally, it presents the details of the new design equations proposed for the light gauge coldformed steel compression members subjected to distortional buckling effects at elevated temperatures.
374

Behaviour and design of cold-formed steel compression members at elevated termperatures

Heva, Yasintha Bandula January 2009 (has links)
Cold-formed steel members have been widely used in residential, industrial and commercial buildings as primary load bearing structural elements and non-load bearing structural elements (partitions) due to their advantages such as higher strength to weight ratio over the other structural materials such as hot-rolled steel, timber and concrete. Cold-formed steel members are often made from thin steel sheets and hence they are more susceptible to various buckling modes. Generally short columns are susceptible to local or distortional buckling while long columns to flexural or flexural-torsional buckling. Fire safety design of building structures is an essential requirement as fire events can cause loss of property and lives. Therefore it is essential to understand the fire performance of light gauge cold-formed steel structures under fire conditions. The buckling behaviour of cold-formed steel compression members under fire conditions is not well investigated yet and hence there is a lack of knowledge on the fire performance of cold-formed steel compression members. Current cold-formed steel design standards do not provide adequate design guidelines for the fire design of cold-formed steel compression members. Therefore a research project based on extensive experimental and numerical studies was undertaken at the Queensland University of Technology to investigate the buckling behaviour of light gauge cold-formed steel compression members under simulated fire conditions. As the first phase of this research, a detailed review was undertaken on the mechanical properties of light gauge cold-formed steels at elevated temperatures and the most reliable predictive models for mechanical properties and stress-strain models based on detailed experimental investigations were identified. Their accuracy was verified experimentally by carrying out a series of tensile coupon tests at ambient and elevated temperatures. As the second phase of this research, local buckling behaviour was investigated based on the experimental and numerical investigations at ambient and elevated temperatures. First a series of 91 local buckling tests was carried out at ambient and elevated temperatures on lipped and unlipped channels made of G250-0.95, G550-0.95, G250-1.95 and G450-1.90 cold-formed steels. Suitable finite element models were then developed to simulate the experimental conditions. These models were converted to ideal finite element models to undertake detailed parametric study. Finally all the ultimate load capacity results for local buckling were compared with the available design methods based on AS/NZS 4600, BS 5950 Part 5, Eurocode 3 Part 1.2 and the direct strength method (DSM), and suitable recommendations were made for the fire design of cold-formed steel compression members subject to local buckling. As the third phase of this research, flexural-torsional buckling behaviour was investigated experimentally and numerically. Two series of 39 flexural-torsional buckling tests were undertaken at ambient and elevated temperatures. The first series consisted 2800 mm long columns of G550-0.95, G250-1.95 and G450-1.90 cold-formed steel lipped channel columns while the second series contained 1800 mm long lipped channel columns of the same steel thickness and strength grades. All the experimental tests were simulated using a suitable finite element model, and the same model was used in a detailed parametric study following validation. Based on the comparison of results from the experimental and parametric studies with the available design methods, suitable design recommendations were made. This thesis presents a detailed description of the experimental and numerical studies undertaken on the mechanical properties and the local and flexural-torsional bucking behaviour of cold-formed steel compression member at ambient and elevated temperatures. It also describes the currently available ambient temperature design methods and their accuracy when used for fire design with appropriately reduced mechanical properties at elevated temperatures. Available fire design methods are also included and their accuracy in predicting the ultimate load capacity at elevated temperatures was investigated. This research has shown that the current ambient temperature design methods are capable of predicting the local and flexural-torsional buckling capacities of cold-formed steel compression members at elevated temperatures with the use of reduced mechanical properties. However, the elevated temperature design method in Eurocode 3 Part 1.2 is overly conservative and hence unsuitable, particularly in the case of flexural-torsional buckling at elevated temperatures.
375

Modèle d’ordre réduit en mécanique du contact. Application à la simulation du comportement des combustibles nucléaires / Model order reduction in contact mechanics. Application to nuclear fuels behavior simulation

Fauque de Maistre, Jules 07 November 2018 (has links)
La réduction d'ordre de modèles d'un problème de contact demeure un sujet de recherche important en mécanique numérique des solides.Nous proposons une extension de l'hyper-réduction avec domaine d'intégration réduit à la mécanique du contact sans frottement s'écrivant à l'aide d'une formulation mixte.Comme la zone de contact potentiel se limite au domaine réduit, nous faisons le choix de prendre comme base réduite pour la variable duale (représentative des forces de contact) la base du modèle d'ordre plein restreinte.Nous obtenons ainsi un modèle hyper-réduit hybride avec une approximation de la variable primale par des modes empiriques et de la variable duale par les fonctions de base des éléments finis. Si nécessaire, la condition inf-sup de ce modèle peut être forcée par une approximation hybride la variable primale. Cela mène à une stratégie hybride combinant un modèle d'ordre hyper-réduit et un modèle d'ordre plein permettant l'obtention d'une meilleure approximation de la solution sur la zone de contact.Un post-traitement permettant la reconstruction des multiplicateurs de Lagrange sur l'ensemble de la zone de contact est également introduit.De manière à optimiser la sélection des snapshots, un indicateur d'erreur simple et efficace est avancé pour être couplé à un algorithme glouton. / The model order reduction of mechanical problems involving contact remains an important issue in computational solid mechanics.An extension of the hyper-reduction method based on a reduced integration domain to frictionless contact problems written by a mixed formulation is proposed.As the potential contact zone is naturally reduced through the reduced domain, the dual reduced basis is chosen as the restriction of the dual full-order model basis.A hybrid hyper-reduced model combining empirical modes for primal variables with finite element approximation for dual variables is then obtained.If necessary, the inf-sup condition of this hybrid saddle point problem can be enforced by extending the hybrid approximation to the primal variables. This leads to a hybrid hyper-reduced/full-order model strategy. By this way, a better approximation on the potential contact zone is furthermore obtained.A post-treatment dedicated to the reconstruction of the contact forces on the whole domain is introduced.In order to optimize the snapshots selection, an efficient error indicator is coupled to a greedy sampling algorithm leading to a robust reduced-order model.
376

A new approximation framework for PGD-based nonlinear solvers / Un nouveau cadre d'approximation dédié à la strategie de calcul PGD pour problèmes non-lineaires

Capaldo, Matteo 23 November 2015 (has links)
Le but de ce travail est d'introduire un cadre d'approximation, la Reference Points Method, afin de réduire la complexité de calcul des opérations algébriques lorsqu'elles concernent des approximations à variables séparées dans le cadre de la Proper Generalized Decomposition.La PGD a été introduite dans [1] dans le cadre de la méthode LaTIn pour résoudre efficacement des équations différentielles non linéaires et dépendants du temps en mécanique des structures. La technique consiste à chercher la solution d'un problème dans une base d'ordre réduit (ROB) qui est automatiquement et à la volée générée par la méthode LaTIn. La méthode LaTIn est une stratégie itérative qui génère les approximations de la solution sur l'ensemble du domaine espace-temps-paramètres par enrichissements successifs. Lors d'une itération particulière, la ROB, qui a déjà été formée, est d'abord utilisée pour calculer un nouveau modèle réduit (ROM) et, donc, pour trouver une nouvelle approximation de la solution. Si la qualité de cette approximation ne suffit pas, la ROB est enrichie avec la génération d'un nouveau produit de fonctions PGD en utilisant un algorithme de type 'greedy'.Les techniques de réduction de modèle sont particulièrement efficaces lorsque le ROM a besoin d'être construit qu'une seule fois. Ce n'est pas le cas pour les techniques de réduction de modèle quand elles concernent des problèmes non linéaires. En effet, dans un tel cas, les opérateurs qui sont impliqués dans la construction du ROM varient au cours du processus itératif et des calculs préliminaires ne peuvent pas être effectués à l'avance pour accélérer le processus 'online'.Par conséquent, la construction du ROM est un élément coûteux de la stratégie de calcul en terme de temps de calcul. Il en découle la nécessité d'évaluer, à chaque itération, la fonction non linéaire de grande dimension (et éventuellement sa jacobienne) et ensuite sa projection pour obtenir les opérateurs réduits. Cela représente un point de blocage des stratégies de réduction de modèle dans le cadre non linéaire. Le présent travail a comme but une réduction ultérieure du coût de calcul, grâce à l'introduction d'un nouveau cadre de rapprochement dédiée à la stratégie de calcul LaTIn-PGD. Il est basé sur la notion de temps, de points et de paramètres de référence et permet de définir une version compressée des données. Comparé à d'autres techniques similaires [3,4] cela ne se veut pas une technique d'interpolation, mais un cadre algébrique qui permet de donner une première approximation, peu coûteuse, de toutes les quantités sous une forme à variable séparés par des formules explicites. L'espace de données compressées présente des propriétés intéressantes qui traitent les opérations algébriques élémentaires. Le RPM est introduit dans le solveur LaTIn-PGD non linéaire pour calculer certaines opérations répétitives. Ces opérations sont liées à la résolution du problème du temps / paramètre qui implique la mise à jour de l'opérateur tangent et la projection de ce dernier sur la base réduite. La RPM permet de simplifier et de réduire le nombre d'opérations nécessaires.[1] Ladevèze P., Sur une famille d’algorithmes en mécanique des structures, Comptes Rendus Académie des Sciences. Paris. Ser. II 300, pp.41-44, 1985.[2] Chinesta, F., Ladevèze, P., and Cueto, E. A short review on model order reduction based on proper generalized decomposition. Archives of Computational Methods in Engineering, 18, pp.395-404, 2011.[3] Barrault M., Maday Y., Nguyen N., Patera A., An ’empirical interpolation’ method: application to efficient reduced-basis discretization of partial differential equations, Comptes Rendus Académie des Sciences. Paris. Ser. I, 339, pp. 667-672, 2004.[4] Chaturentabut S., Sorensen D., Nonlinear model reduction via discrete empirical interpolation, Society for Industrial and Applied Mathematics 32(5), pp.2737-2764, 2010. / The aim of this work is to introduce an approximation framework, called Reference Points Method (RPM), in order to decrease the computational complexity of algebraic operations when dealing with separated variable approximations in the Proper Generalized Decomposition (PGD) framework.The PGD has been introduced in [1] in the context of the LATIN method to solve efficiently time dependent and/or parametrized nonlinear partial differential equations in structural mechanics (see, e.g., the review [2] for recent applications). Roughly, the PGD technique consists in seeking the solution of a problem in a relevant Reduced-Order Basis (ROB) which is generated automatically and on-the-fly by the LATIN method. This latter is an iterative strategy which generates the approximations of the solution over the entire time- space-parameter domain by successive enrichments. At a particular iteration, the ROB, which has been already formed, is at first used to compute a projected Reduced-Order Model (ROM) and find a new approximation of the solution. If the quality of this approximation is not sufficient, the ROB is enriched by determining a new functional product using a greedy algorithm.However, model reduction techniques are particularly efficient when the ROM needs one construction only. This is not the case for the model reduction techniques when they are addressed to nonlinear problems. Indeed, in such a case, the operators which are involved in the construction of the ROM change all along the iterative process and no preliminary computations can be performed in advance to speed up the online process. Hence, the construction of the ROM is an expensive part of the calculation strategy in terms of CPU. It ensues from the need to evaluate the high-dimensional nonlinear function (and eventually its Jacobian) and then to project it to get the low-dimensional operators at each computational step of a solution algorithm. This amounts to being the bottleneck of nonlinear model reduction strategies.The present work is then focused on a further reduction of the computational cost, thanks to the introduction of a new approximation framework dedicated to PGD-based nonlinear solver. It is based on the concept of reference times, points and parameters and allows to define a compressed version of the data. Compared to other similar techniques [3,4] this is not an interpolation technique but an algebraic framework allowing to give an inexpensive first approximation of all quantities in a separated variable form by explicit formulas. The space of compressed data shows interesting properties dealing the elementary algebraic operations. The RPM is introduced in the PGD-based nonlinear solver to compute some repetitive operations. These operations are related to the resolution of the time/parameter problem that involves the update of the tangent operator (for nonlinear problems) and the projection of this latter on the Reduced Order Basis. For that the RPM allows to simplify and reduce the number of operations needed.[1] Ladevèze P., Sur une famille d’algorithmes en mécanique des structures, Comptes Rendus Académie des Sciences. Paris. Ser. II 300, pp.41-44, 1985.[2] Chinesta, F., Ladevèze, P., and Cueto, E. A short review on model order reduction based on proper generalized decomposition. Archives of Computational Methods in Engineering, 18, pp.395-404, 2011.[3] Barrault M., Maday Y., Nguyen N., Patera A., An ’empirical interpolation’ method: application to efficient reduced-basis discretization of partial differential equations, Comptes Rendus Académie des Sciences. Paris. Ser. I, 339, pp. 667-672, 2004.[4] Chaturentabut S., Sorensen D., Nonlinear model reduction via discrete empirical interpolation, Society for Industrial and Applied Mathematics 32(5), pp.2737-2764, 2010.
377

Analysis and Compression of Large CFD Data Sets Using Proper Orthogonal Decomposition

Blanc, Trevor Jon 01 July 2014 (has links) (PDF)
Efficient analysis and storage of data is an integral but often challenging task when working with computation fluid dynamics mainly due to the amount of data it can output. Methods centered around the proper orthogonal decomposition were used to analyze, compress, and model various simulation cases. Two different high-fidelity, time-accurate turbomachinery simulations were investigated to show various applications of the analysis techniques. The first turbomachinery example was used to illustrate the extraction of turbulent coherent structures such as traversing shocks, vortex shedding, and wake variation from deswirler and rotor blade passages. Using only the most dominant modes, flow fields were reconstructed and analyzed for error. The reconstructions reproduced the general dynamics within the flow well, but failed to fully resolve shock fronts and smaller vortices. By decomposing the domain into smaller, independent pieces, reconstruction error was reduced by up to 63 percent. A new method of data compression that combined an image compression algorithm and the proper orthogonal decomposition was used to store the reconstructions of the flow field, increasing data compression ratios by a factor of 40.The second turbomachinery simulation studied was a three-stage fan with inlet total pressure distortion. Both the snapshot and repeating geometry methods were used to characterize structures of static pressure fluctuation within the blade passages of the third rotor blade row. Modal coefficients filtered by frequencies relating to the inlet distortion pattern were used to produce reconstructions of the pressure field solely dependent on the inlet boundary condition. A hybrid proper orthogonal decomposition method was proposed to limit burdens on computational resources while providing high temporal resolution analysis.Parametric reduced order models were created from large databases of transient and steady conjugate heat transfer and airfoil simulations. Performance of the models were found to depend heavily on the range of the parameters varied as well as the number of simulations used to traverse that range. The heat transfer models gave excellent predictions for temperature profiles in heated solids for ambitious parameter ranges. Model development for the airfoil case showed that accuracy was highly dependent on modal truncation. The flow fields were predicted very well, especially outside the boundary layer region of the flow.
378

The TLC Method for Modeling Creep Deformation and Rupture

May, David 01 May 2014 (has links)
This thesis describes a novel new method, termed the Tangent-Line-Chord (TLC) method, that can be used to more efficiently model creep deformation dominated by the tertiary regime. Creep deformation is a widespread mechanical mode of failure found in high-stress and temperature mechanical systems. To accurately simulate creep and its effect on structures, researchers utilize finite element analysis (FEA). General purpose FEA packages require extensive amounts of time and computer resources to simulate creep softening in components because of the large deformation rates that continuously evolve. The goal of this research is to employ multi-regime creep models, such as the Kachanov-Rabotnov model, to determine a set of equations that will allow creep to be simulated using as few iterations as possible. The key outcome is the freeing up of computational resources and the saving of time. Because both the number of equations and the value of material constants within the model change depending on the approach used, programming software will be utilized to automate this analytical process. The materials being considered in this research are mainly generic Ni-based superalloys, as they exhibit creep responses that are dominated by secondary and tertiary creep.
379

Global Rates of Free Hydrogen (H2) Production by Serpentinization and other Abiogenic Processes within Young Ocean Crust

Worman, Stacey Lynn January 2015 (has links)
<p>The main conclusion of this dissertation is that global H2 production within young ocean crust (<10 Mya) is higher than currently recognized, in part because current estimates of H2 production accompanying the serpentinization of peridotite may be too low (Chapter 2) and in part because a number of abiogenic H2-producing processes have heretofore gone unquantified (Chapter 3). The importance of free H2 to a range of geochemical processes makes the quantitative understanding of H2 production advanced in this dissertation pertinent to an array of open research questions across the geosciences (e.g. the origin and evolution of life and the oxidation of the Earth’s atmosphere and oceans).</p><p>The first component of this dissertation (Chapter 2) examines H2 produced within young ocean crust [e.g. near the mid-ocean ridge (MOR)] by serpentinization. In the presence of water, olivine-rich rocks (peridotites) undergo serpentinization (hydration) at temperatures of up to ~500°C but only produce H2 at temperatures up to ~350°C. A simple analytical model is presented that mechanistically ties the process to seafloor spreading and explicitly accounts for the importance of temperature in H2 formation. The model suggests that H2 production increases with the rate of seafloor spreading and the net thickness of serpentinized peridotite (S-P) in a column of lithosphere. The model is applied globally to the MOR using conservative estimates for the net thickness of lithospheric S-P, our least certain model input. Despite the large uncertainties surrounding the amount of serpentinized peridotite within oceanic crust, conservative model parameters suggest a magnitude of H2 production (~1012 moles H2/y) that is larger than the most widely cited previous estimates (~1011 although previous estimates range from 1010-1012 moles H2/y). Certain model relationships are also consistent with what has been established through field studies, for example that the highest H2 fluxes (moles H2/km2 seafloor) are produced near slower-spreading ridges (<20 mm/y). Other modeled relationships are new and represent testable predictions. Principal among these is that about half of the H2 produced globally is produced off-axis beneath faster-spreading seafloor (>20 mm/y), a region where only one measurement of H2 has been made thus far and is ripe for future investigation.</p><p>In the second part of this dissertation (Chapter 3), I construct the first budget for free H2 in young ocean crust that quantifies and compares all currently recognized H2 sources and H2 sinks. First global estimates of budget components are proposed in instances where previous estimate(s) could not be located provided that the literature on that specific budget component was not too sparse to do so. Results suggest that the nine known H2 sources, listed in order of quantitative importance, are: Crystallization (6x1012 moles H2/y or 61% of total H2 production), serpentinization (2x1012 moles H2/y or 21%), magmatic degassing (7x1011 moles H2/y or 7%), lava-seawater interaction (5x1011 moles H2/y or 5%), low-temperature alteration of basalt (5x1011 moles H2/y or 5%), high-temperature alteration of basalt (3x1010 moles H2/y or <1%), catalysis (3x108 moles H2/y or <<1%), radiolysis (2x108 moles H2/y or <<1%), and pyrite formation (3x106 moles H2/y or <<1%). Next we consider two well-known H2 sinks, H2 lost to the ocean and H2 occluded within rock minerals, and our analysis suggests that both are of similar size (both are 6x1011 moles H2/y). Budgeting results suggest a large difference between H2 sources (total production = 1x1013 moles H2/y) and H2 sinks (total losses = 1x1011 moles H2/y). Assuming this large difference represents H2 consumed by microbes (total consumption = 9x1011 moles H2/y), we explore rates of primary production by the chemosynthetic, sub-seafloor biosphere. Although the numbers presented require further examination and future modifications, the analysis suggests that the sub-seafloor H2 budget is similar to the sub-seafloor CH4 budget in the sense that globally significant quantities of both of these reduced gases are produced beneath the seafloor but never escape the seafloor due to microbial consumption.</p><p>The third and final component of this dissertation (Chapter 4) explores the self-organization of barchan sand dune fields. In nature, barchan dunes typically exist as members of larger dune fields that display striking, enigmatic structures that cannot be readily explained by examining the dynamics at the scale of single dunes, or by appealing to patterns in external forcing. To explore the possibility that observed structures emerge spontaneously as a collective result of many dunes interacting with each other, we built a numerical model that treats barchans as discrete entities that interact with one another according to simplified rules derived from theoretical and numerical work, and from field observations: Dunes exchange sand through the fluxes that leak from the downwind side of each dune and are captured on their upstream sides; when dunes become sufficiently large, small dunes are born on their downwind sides (“calving”); and when dunes collide directly enough, they merge. Results show that these relatively simple interactions provide potential explanations for a range of field-scale phenomena including isolated patches of dunes and heterogeneous arrangements of similarly sized dunes in denser fields. The results also suggest that (1) dune field characteristics depend on the sand flux fed into the upwind boundary, although (2) moving downwind, the system approaches a common attracting state in which the memory of the upwind conditions vanishes. This work supports the hypothesis that calving exerts a first order control on field-scale phenomena; it prevents individual dunes from growing without bound, as single-dune analyses suggest, and allows the formation of roughly realistic, persistent dune field patterns.</p> / Dissertation
380

STUDIES OF LOW-LYING STATES IN 94ZR EXCITED WITH THE INELASTIC NEUTRON SCATTERING REACTION

Elhami, Esmat 01 January 2008 (has links)
The aim of nuclear structure studies is to observe and describe the structures and associated symmetries in nuclei, which in turn help us in understanding the nature of nucleon-nucleon interactions in a nucleus as a many-body quantum system. The protons and neutrons as constituents of a nucleus and their interactions are responsible for nuclear properties. The evolution of nuclear structure as a function of valence nucleon number, i.e., the number of nucleons beyond a magic number, can be inferred from the experimental level scheme and transition rates. In particular, the studies of low-lying, low-spin excited states in stable nuclei provide valuable information on the interplay of valence neutrons and protons in nuclear structure. The decay scheme and knowledge of transition strengths in the low-lying states become a benchmark for testing theoretical model predictions and understanding the underlying microscopic foundations of nuclear structure. Along with the experimental techniques, theoretical models have been developed to explain and describe the observed nuclear properties, e.g., shell model, Fermi-gas model, optical and liquid-drop models, and several “collective” models. 94/40Zr50 nucleus with 2 protons and 4 neutrons above the shell closures of the 88/38Sr50 core nucleus is considered as a nearly spherical nucleus. Such nuclei present a vibrational structure; surface vibration of the nucleus about a spherical shape. In addition to the symmetric excitations, in which proton and neutron oscillations are in phase, there are another class of excitations in which the wave function is not fully symmetric with respect to the exchange of protons and neutrons. These states are so called mixed-symmetry (MS) states. Such excitations have been observed in the N= 52 neighboring isotones. In this study, the low-lying structure of 94/40Zr has been studied with the (n, n'ƴ) reaction at the University of Kentucky and Triangle Universities Nuclear Laboratories (TUNL) facilities, to identify symmetric and MS excitations in this nucleus. A decay scheme has been established based on excitation function and coincidence measurements. Branching ratios, multipole mixing ratios, and spin assignments have been determined from angular distribution measurements at En= 2.3, 2.8, and 3.5 MeV. Lifetimes of levels up to 3.4 MeV were measured by the Doppler-shift attenuation method (DSAM), and for many transitions reduced transition probabilities were determined. The experimental results were used for the identification of collective symmetric and mixed-symmetric (MS) multiphonon excitations. The 2+/2 state at 1671.4 keV has been identified as the lowest MS state in 94Zr; B(M1; 2+/ms → 2+/1 ) = 0.31(3) μ2/N. This state has an anomalous decay behavior, i.e., B(E2; 2+/ ms → 0+/1 ) = 7.8(7) W.u., which is unusually large compared to the B(E2; 2+/1 → 0+/1 ) = 4.9(3) W.u. More anomalies were identified in the states above the 2+/ms state. For example, the 4+/2 state at 2330 keV decays strongly to the 2+/1 state, B(E2; 4+/2 → 2+/1 ) = 20+3/−2 W.u., compared to the 4+/1 state at 1469 keV, B(E2; 4+/1 → 2+/1 ) = 0.878(23) W.u. The experimental results revealed additional interesting and unusual properties of the low-lying states in 94Zr. Shell model calculations were performed with the Oxbash code, using the Vlow k interaction. Also, the IBM-2 predictions in the vibrational limit were compared with the experimental results. The results from neither of these nuclear models were in good agreement with the observed transition strengths, e.g., the B(E2; 2+/ms → 0+/1 ) value. These observations may indicate that the contributions of valence nucleons in the low-lying excited states of 94Zr differ from what has been perscribed by the shell model and the IBM-2 model. The effects of the Z = 40 and N = 56 subshell closures should be also considered. In a simple interpretation, the excited states are classified in two distinct categories, i.e., those populating the 2+/2 state and those decaying to the 2+/1 state. This approach suggests that in 94Zr the low-lying states may be related to two-configurations coexistence.

Page generated in 0.0359 seconds