• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 63
  • 41
  • 18
  • 15
  • 13
  • 6
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 197
  • 197
  • 78
  • 35
  • 35
  • 29
  • 26
  • 24
  • 17
  • 16
  • 16
  • 15
  • 14
  • 14
  • 13
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
121

Växthusvävens fukttransmission : Hur struktur och materialval påverkar växthusvävens fuktgenomsläpplighet / The greenhouse screens water vapour transmission : How structure and choice of material affects the screens water vapour permeability

Bernardo, Alexandra, Sund, Linda January 2010 (has links)
Växthus används för att ge ett bättre odlingsklimat åt grödor och växter. För ytterligare förbättring av förhållandena används växthusvävar som exempelvis kan reglera temperatur, fuktighet och ljustillförsel. Väven som behandlas i denna rapport är en så kallad energiväv som främst har till uppgift att minska energiåtgången vid uppvärmning.När väven är fördragen nattetid, ökar luftfuktigheten då grödorna avger fukt dygnet runt. Fukten kan kondenseras mot energiväven, vilket gör att det bildas droppar på väven som kan falla ned på växtligheten. Den höga luftfuktigheten kan medföra svampsjukdomar och i övrigt också bidra till att tillväxten avstannar. Ludvig Svensson AB i Kinna som tillverkar växthusvävar vill undersöka hur struktur och materialval påverkar energivävens fuktgenomsläpplighet. Detta skall göras genom framtagning av ett antal olika provmaterial, där modifieringar av energiväven görs. Provmaterialens fukttransmission mäts med fyra metoder, saltmetoden (EN ISO 15 496:2004), kanadensiska burkmetoden (CAN2-4.2-metod 49:1977), hudmodellen (ISO 11 092:1993 (E)) och Permatran-W som baseras på ASTM E96/E96M-05. De två förstnämnda metoderna utfördes på Swerea IVF AB i Mölndal. Ett antal förändringar gjordes på väven, däribland byte av material, ändring av masklängd och bindningstyp. Resultaten visade att en modifiering av plastsorten i väven gav störst förändring av fuktgenomsläppligheten. De flesta provmaterialen påvisade en mindre fukttransmission än hos den ursprungliga energiväven, dessa värden kan i sig ge användbar data inför framtida produktutveckling. / <p>Greenhouses are used for the improvement of the cultivation climate for crops and plants. For further improvement of the environment, climate screens can be used, they control for example the temperature, humidity and brightness. The screen which is treated in this report is an energy saving screen that lowers the energy consumption.</p><p></p><p>When the greenhouse is covered at night, the humidity increases, since the crops transpire round the clock. The moisture can condense on the cold screen which contributes to the forming of drops that fall down on the vegetation. This effect and the high humidity level in the greenhouse could lead to fungus disease and a decrease in the growth of the cultivation.</p><p></p><p>Ludvig Svensson AB in Kinna who produces different climate screens, would like to investigate how structure and choice of material affects the energy saving screens water vapour transmission. This should be done by modifying the existing climate screen. The modified materials will be tested with four water vapour transmission methods, ISO 15496:2004, the cup method (CAN2-4.2-method 49:1977), the sweating hotplate method (ISO 11092:1993 (E)) and Permatran-W (based on ASTM - E 96/E 96M -05). The first two methods will be executed at Swerea IVF in Mölndal.</p><p></p><p>A few changes were made on the original screen, for example an exchange of materials, a change of looplenght and a change of binding. The results showed that a modification of the plastic band in the screen gave the largest vapour transmission. The most of the modified materials showed a lower humidity transport then the now existing screen. The given results can still offer useful information for future product development.</p><p>Program: Textilingenjörsutbildningen</p>
122

Qualidade tecnológica do óleo de soja obtido de grãos armazenados em condições ambientais controladas / Technological Quality Of Soya Oil Obtained Of The Stored Grain Under Controlled environmental Conditions

Bischoff, Tábata Zingano 12 February 2015 (has links)
Made available in DSpace on 2017-05-12T14:47:08Z (GMT). No. of bitstreams: 1 Tabata _Z Bischoff.pdf: 1316294 bytes, checksum: b9584d84274ea8030e2ea272ba9f133e (MD5) Previous issue date: 2015-02-12 / Soy is an important Fabaceae, both for its high nutritional value, as for the commercial production of oil, which is mainly used in human food. The reaction oxidation that takes place in oils and fats is one of the main causes of the deterioration of food, causing thus a decrease of the nutritional quality and the quality of crude oil, which can be remedied or even prevented through the storage appropriate the grain, temperature, relative humidity and the dried optimum of the grain. Given the above, the objective of this study was to evaluate the main changes in the quality the soybean oil crude, present in grain the soybeans, from the storage of grain in the temperature of 30 °C and different relative humidity s (59,6, 67 and 76%). For this purpose, used grain on variety SYN 1059 RR, derived from a grain processing company and producer of seeds of western Paraná. Soybeans grain It was packaged in plastic recipients, within were placed in saturated salt solutions so that the grains reach the desired moisture. The analyzes the dried, lipid, acid value, color, antioxidant capacity, specific extension by absorption in the ultraviolet region were made during storage, because the correlation between these properties indicates the degree of oil oxidation and, consequently, the quality of the grain. A completely randomized design, in a split plot and the results were submitted to analysis of variance and mean comparison test. The storage time caused changes in physical-chemical properties of the grains, therefore, the oil was degraded over time. Another factor that influenced the degradation was the relative humidity because, with the smallest lower relative humidity (56,9%) and most (76,0%) showed the largest degradation. / A soja é uma GR importante, tanto por seu alto valor nutricional quanto para a produção do óleo utilizado na alimentação humana. A reação de oxidação que acontece nos óleos e gorduras é uma das causas principais da deterioração em alimentos, acarretando, deste modo, a diminuição da qualidade nutricional e a qualidade do óleo bruto, que pode ser remediada ou prevenida pelo armazenamento apropriado dos grãos, com temperatura, umidade relativa e teor de água do grão ótimos. Diante do exposto, o objetivo do presente estudo foi avaliar as principais alterações na qualidade do óleo de soja bruto, presente em grãos de soja, a partir do armazenamento dos grãos na temperatura de 30 oC e diferentes umidades relativas (59,6, 67 e 76%). Para tanto, foram utilizados grãos da variedade SYN 1059 RR, oriundos de uma empresa beneficiadora de grãos e produtora de sementes da região oeste do Paraná. Os grãos de soja permaneceram em recipientes de plástico, dentro dos quais foram colocadas soluções saturadas de sais para que os grãos atingissem a umidade desejada. As análises de teor de água, lipídeo, índice de acidez, cor, capacidade antioxidante e extinção específica por absorção na região ultravioleta foram realizadas durante o armazenamento, por 180 dias, pois a correlação destas propriedades indicam o grau de oxidação do óleo e, consequentemente, a qualidade do grão. Utilizou-se delineamento inteiramente casualizado, em esquema de parcela subdividida e os resultados obtidos foram submetidos à análise de variância e teste de comparação de médias. O tempo de armazenamento provocou alterações nas propriedades físico-químicas dos grãos, assim sendo, o óleo foi degradado ao longo do tempo. Outro fator que influenciou na degradação foi a umidade relativa do ar, pois, com a menor umidade relativa (56,9%) e a maior (76,0%) ocorreram as maiores degradações.
123

Comparison of the sutherlandioside B levels in two commercially available Sutherlandia frutescence preparations and the effect of elevated temperature and humidity on these levels

Joseph, Ashton Edward January 2009 (has links)
Magister Pharmaceuticae - MPharm / Sutherlandia frutescens (tribe Galegeae, Fabaceae), is a popular medicinal plant traditionally used in South Africa. In 2000, a company called Phyto Nova (Pty) Ltd. initiated large-scale cultivation and contract manufacturing of tablets, made from the powdered herb (i.e. thin stems and leaves). Most of these commercial Sutherlandia solid dosage forms are made from the dried leaf powder but recently a new product, viz. Promune™ capsules, made from a freeze-dried aqueous extract, came on the market and was claimed to be “better” as it mimics the traditional tea. However, the pharmaceutical quality and stability of these preparations have not yet been investigated. The objectives of this study were firstly, to develop a validated stability-indicating HPLC assay for sutherlandioside B (SU-B); secondly, to compare the SU-B levels in the two commercially available Sutherlandia products viz, the Phyto Nova Sutherlandia SU1™ tablet and the Promune™ capsule, and, thirdly, to determine the effect of elevated temperature and humidity as well as acid hydrolysis on the SU-B levels in these two products. / South Africa
124

Filage par voie électrostatique de polyamide-imide : applications de non-tissés nanofilamentaires à la protection contre la chaleur et les flammes / Electrospinning of meta-aramid polymer solutions (polyamide-imide) : nanofibrous non-woven applications for protection against heat and flame

Oertel, Aurélie 03 May 2017 (has links)
Le filage par voie électrostatique est une technique utilisée pour la production de fibres de diamètres extrêmement petits, de l’ordre de quelques centaines de nanomètres, possédant, sous forme de non-tissés, une grande surface spécifique. Les matériaux non-tissés composés de nanofibres sont de plus en plus utilisés pour de multiples applications, notamment dans le domaine de l’ingénierie tissulaire, pour les textiles de protection, la filtration, le biomédical, l’électronique et l’ingénierie environnementale. Le contrôle des paramètres lors du filage par voie électrostatique est primordial pour obtenir des nanofibres dont les propriétés morphologiques seront optimisées (diamètres des nanofilaments obtenus fins et contrôlés ; qualité de filage acceptable). Le but de ces travaux de thèse est d’établir la faisabilité d’électrofilage des deux solutions de polyamide-imide (le KMP et le KMT) fournies par la société Kermel. Puis, une fois la faisabilité de filage établie, de déterminer plus précisément les paramètres influençant le procédé, afin d’optimiser le procédé de filage et obtenir des nanofilaments à partir des deux solutions de polymères, à l’échelle laboratoire et sur un outil de production à l’échelle semi-industrielle. Cette thèse a fait l’objet d’une collaboration entre l'entreprise alsacienne Kermel, fabricant de fibres techniques résistantes à la chaleur et aux flammes, situé à Colmar et le Laboratoire de Physique et Mécanique Textiles (LPMT) à Mulhouse. Les nanofibres ont été définies ainsi que différentes techniques de filage permettant leur obtention. Les fournisseurs d’équipement ont été identifiés dans un souci de production semi-industrielle à terme. La technique de filage par voie électrostatique (avec ou sans aiguilles) est finalement retenue, car il s’agit de l’outil de prototypage et de compétences disponibles au laboratoire LPMT et dont le passage à l’échelle industrielle est envisageable. La technique des plans d’expériences a été utilisée afin d’optimiser le nombre d’essais de filage nécessaires à l‘étude des diamètres de nanofilaments obtenus. Les différents paramètres liés aux propriétés de la solution de polymère (température, viscosité, concentration) ont été étudiés et les aspects rhéologiques affichés. Une interprétation physico-chimique des comportements observés pour les différentes solutions de polymère est faite. Elle nous permet de conclure que le meilleur régime pour obtenir des nanofibres est le régime concentré, puisqu’il s’agit du régime où la densité de macromolécules est la plus forte. La faisabilité de l’électrofilage du polyamide-imide sur l’équipement à échelle laboratoire du LPMT a été établie. La température, l’humidité et la concentration sont étudiées. Les différentes plages d’optimisation d’électrofilage du polymère considéré ont été établies et il est possible d’envisager le passage à l’échelle semi-industrielle. Le paramètre le plus influent sur les diamètres de fibres obtenus est l’humidité relative, ce qui n’avait jusqu’à présent jamais été mis en avant dans la littérature. La même démarche d’optimisation a été réalisée sur l’équipement semi-industriel. Des applications « produit » ont pu être envisagées. Notamment une application liée à la filtration où une étude de perméabilité à l’air a été réalisée. Cette étude a permis de conclure que l’ajout d’une couche de nanofibres sur un support en tissu permet de diminuer d’1/3 à 2/3 les résultats de perméabilité à l’air. Une corrélation est faite entre les diamètres de nanofibres et les résultats de perméabilité à l’air obtenus, qui est cohérente avec le comportement attendu. Enfin des tests « qualité » ont été réalisés sur des échantillons produits : le taux de solvant résiduel obtenu dans les conditions de filage optimisées est inférieur à 8% ; et des tests de résistance à l’abrasion menés sur des non-tissés recouverts de nanofibres ont donné des résultats encourageant [...] / Electrospinning process has been widely used over the past decades for manufacturing nanofibers. The control of the electrospinning parameters is crucial to obtain nanofibers (nonwoven mats) with optimized morphological properties. The aim of this PhD work is to precisely define the electrospinnability of two meta-aramid solutions through wire-based electrospinning setup processing. Although the viscosity of polymer solution as an influent parameter for electrospinning has been widely investigated, only a few studies have yet made a connection between rheological behavior of polymer and electrospinnability. In our PhD work, rheological analyzes on three meta-aramid solutions have been conducted to confirm its electrospinnability and predict the morphological behavior of resultant nanofibers. A couple polymer/solvent of meta-aramid polymer (polyamide-imide) in a polar aprotic solvent (1,3 dimethyl-2-imidazolidinone) at 60 Pa.s in working viscosity is provided by an industrial partner (KERMEL Company). It has been highlighted through rheological study that 60 Pa.s is the best polymer viscosity to obtain good macromolecular conformation of the polyamide-imide chains while electrospinning and sufficient viscoelastic properties. Experiments have been conducted following a design of experiment to study the influence of several process and ambient parameters. Individual effects and/or combined interactions on obtained fiber diameter and general morphology have been investigated. The obtained nanofibers are expected to have thin diameters with high homogeneity of the products, which means low levels of beads, residual solvent or non-fibrous area and a narrow fiber diameter distribution, in order to validate the industrial requirements. A wide range of process parameters are available at industrial-scale with the NS® technology. The five studied process parameters are: applied voltage, relative humidity, temperature, distance between spinning electrode wire and substrate material, and airflow going through the spinning chamber. Each parameter was varied at three levels. Significant effects of parameters have been observed. The obtained results have allowed us to determine the influential factors (humidity and temperature) and reduce the domain study. Moreover, an estimation of the capacity of production for the NS500 has been calculated for the tested meta-aramid solution. Several applications have been investigated. A nanofibrous coating on 50KMP/50VFR woven media has been produced and permeability air tests have been conducted. A decrease of 1/3 to 2/3 of air permeability results has been obtained. A correlation is drawn between mean diameters of nanofibers and air permeability values, which is coherent with the expected behavior. Quality tests have been conducted through thermogravimetric analyses and proton nuclear magnetic resonance. The residual solvent rate obtained in the optimized conditions of spinning is less than 8 %. Abrasion resistance tests have been conducted on KMP non-woven media coated with nanofibrous layer. The use of the bi-layer structure does not lead to the formation of breathable particles.
125

Comparison of the sutherlandioside B levels in two commercially available Sutherlandia frutescence preparations and the effect of elevated temperature and humidity on these levels

Ashton Edward Joseph January 2009 (has links)
<p>Sutherlandia frutescens (tribe Galegeae, Fabaceae), is a popular medicinal plant traditionally used in South Africa. In 2000, a company called Phyto Nova (Pty) Ltd. initiated large-scale cultivation and contract manufacturing of tablets, made from the powdered herb (i.e. thin stems and leaves). Most of these commercial Sutherlandia solid dosage forms are made from the dried leaf powder but recently a new product, viz. Promune&trade / capsules, made from a freeze-dried aqueous extract, came on the market and was claimed to be &ldquo / better&rdquo / as it mimics the traditional tea. However, the pharmaceutical quality and stability of these preparations have not yet been investigated. The objectives of this study were firstly, to develop a validated stability-indicating HPLC assay for sutherlandioside B (SU-B) / secondly, to compare the SU-B levels in the two commercially available Sutherlandia products viz, the Phyto Nova Sutherlandia SU1&trade / tablet and the Promune&trade / capsule, and, thirdly, to determine the effect of elevated temperature and humidity as well as acid hydrolysis on the SU-B levels in these two products.</p>
126

Measuring routines of ice accretion for Wind Turbine applications : The correlation of production losses and detection of ice

Carlsson, Viktor January 2010 (has links)
Wind power will play a major role in the future energy system in Sweden. Most of the major wind parks are planned to be built in sites where the cold climate and atmospheric icing can cause serious problems. This underlines the importance of addressing these issues. The major cause of these problems is in-cloud icing of the rotor blades due to super cooled liquid droplets of clouds. The droplets freeze upon impact with the rotor blade and form hard rime ice. This rime ice causes disruption in the aerodynamics that leads to production losses, extra loads on the rotor blades and when the ice is shed it poses a safety risk to people in the near environment. This master thesis focuses on how to measure the accretion of ice and the correlation between measured ice and production losses of two wind parks in northern Sweden.   The results show a good correlation between the ice accretion on a stationary sensor and the production loss from a wind turbine. In most icing events the icing of the sensor and large production losses from the wind turbine correlated clearly. Attempts to quantify the production losses at a certain ice rate measured with the stationary sensors was done, however no clear results was produced. The reason for this is that the wind turbines often stop completely during an icing event and that the time series analyzed was too short to be able to quantify the losses at certain wind speed and ice rates.   Recommendations on the type of sensor which should be used was to be produced, however the conclusion was that no single sensor has acted satisfactory and could be recommended to measure ice accretion for wind turbine applications. Due to this, at least two sensors are recommended to increase the redundancy in the measurement system. Modeling ice accretion with standard parameters measured has been done and the results show that the time of icing could be determined quite well when the sensors was ice free, however when the sensors and especially the humidity sensors was iced the time of icing was overestimated.   The main conclusion drawn is that there is a clear relationship between the icing of a stationary sensor and the rotor blade. There is still no which fulfills all demands of measuring ice accretion for wind turbine applications, further it is possible with simple models to roughly determine when icing occurs with standard measurements.
127

Assessment Of Indoor Air Quality In Crowded Educational Spaces

Betuz, Naima Ebru 01 January 2013 (has links) (PDF)
Indoor air quality has become a challenge together with the global aim &lsquo / decreasing energy consumption&rsquo / . Increasing insulation levels of building envelopes but implementing inaccurate building system details has caused excessive heat, accumulation of pollutants, etc. in spaces. In terms of educational spaces, the increase in complaints and illnesses due to unfavorable indoor air conditions leads to a decrease in concentration and so academic performance of students and staff. In the context, the aim of the study was indicating the poor indoor air quality conditions caused by inadequate fresh air supply in crowded educational spaces and making recommendations for the improvement. In the study, a classroom and a design studio in the METU Faculty of Architecture building were investigated. In order to examine the existing situation, at two locations of each room the temperature, relative humidity and CO2 were continuously recorded between 13 September 2011 and 24 February 2012 and air speed for ten-day periods between 26 November 2011 and 5 January 2012. The evaluation of the collected data indicated that both of the rooms had temperature, so relative humidity and CO2 accumulation problems mainly due to insufficient fresh air supply in the winter period. In order to eliminate the poor conditions in the rooms, the needed outdoor air can be provided through the inlet openings coupled with fan coils, which are in existence but not in use.
128

Accelerated Durability Testing via Reactants Relative Humidity Cycling on Polymer Electrolyte Membrane Fuel Cells

Panha, Karachakorn January 2010 (has links)
Cycling of the relative humidity (RH) levels in the reactant streams of polymer electrolyte membrane (PEM) fuel cells has been reported to decay fuel cell performance. This study focuses on the accelerated durability testing to examine different modes of membrane failure via RH cycling. A single PEM fuel cell with an active area of 42.25 cm2 was tested. A Greenlight G50 test station was used to establish baseline cell (Run 1) performance with 840 hours of degradation under high-humidity idle conditions at a constant current density of 10 mA cm-2. Under the same conditions, two other experiments were conducted by varying the RH. For the H2-air RH cycling test (Run 2), anode and cathode inlet gases were provided as dry and humidified gases. Another RH cycling experiment was the H2 RH cycling test (Run 3): the anode inlet gas was cycled whereas keeping the other side constantly at full humidification. These two RH cycling experiments were alternated in dry and 100% humidified conditions every 10 and 40 minutes, respectively. In the experiments, the fuel cells contained a GoreTM 57 catalyst coated membrane (CCM) and 35 BC SGL gas diffusion layers (GDLs). The fuel cell test station had been performed under idle conditions at a constant current density of 10 mA cm-2. Under the idle conditions, operating at very low current density, a low chemical degradation rate and minimal electrical load stress were anticipated. However, the membrane was expected to degrade due to additional stress from the membrane swelling/contraction cycle controlled by the RH. In this work the performance of the 100% RH humidified cell (Run 1) was compared with that of RH cycling cells (Run 2 and Run 3). Chemical and mechanical degradation of the membrane were investigated using in-situ and ex-situ diagnostic methods. The results of each measurement during and after fuel cell operation are consistent. They clearly show that changing in RH lead to an overall PEM fuel cell degradation due to the increase in membrane degradation rate from membrane resistance, fluoride ion release concentration, hydrogen crossover current, membrane thinning, and hot-spot/pin-hole formation.
129

名古屋地域のクロマツ年輪中の炭素・酸素同位体比から探る環境変動

Hayashi, Kazuki, 林, 和樹 03 1900 (has links)
第22回名古屋大学年代測定総合研究センターシンポジウム平成21(2009)年度報告
130

Accelerated Durability Testing via Reactants Relative Humidity Cycling on Polymer Electrolyte Membrane Fuel Cells

Panha, Karachakorn January 2010 (has links)
Cycling of the relative humidity (RH) levels in the reactant streams of polymer electrolyte membrane (PEM) fuel cells has been reported to decay fuel cell performance. This study focuses on the accelerated durability testing to examine different modes of membrane failure via RH cycling. A single PEM fuel cell with an active area of 42.25 cm2 was tested. A Greenlight G50 test station was used to establish baseline cell (Run 1) performance with 840 hours of degradation under high-humidity idle conditions at a constant current density of 10 mA cm-2. Under the same conditions, two other experiments were conducted by varying the RH. For the H2-air RH cycling test (Run 2), anode and cathode inlet gases were provided as dry and humidified gases. Another RH cycling experiment was the H2 RH cycling test (Run 3): the anode inlet gas was cycled whereas keeping the other side constantly at full humidification. These two RH cycling experiments were alternated in dry and 100% humidified conditions every 10 and 40 minutes, respectively. In the experiments, the fuel cells contained a GoreTM 57 catalyst coated membrane (CCM) and 35 BC SGL gas diffusion layers (GDLs). The fuel cell test station had been performed under idle conditions at a constant current density of 10 mA cm-2. Under the idle conditions, operating at very low current density, a low chemical degradation rate and minimal electrical load stress were anticipated. However, the membrane was expected to degrade due to additional stress from the membrane swelling/contraction cycle controlled by the RH. In this work the performance of the 100% RH humidified cell (Run 1) was compared with that of RH cycling cells (Run 2 and Run 3). Chemical and mechanical degradation of the membrane were investigated using in-situ and ex-situ diagnostic methods. The results of each measurement during and after fuel cell operation are consistent. They clearly show that changing in RH lead to an overall PEM fuel cell degradation due to the increase in membrane degradation rate from membrane resistance, fluoride ion release concentration, hydrogen crossover current, membrane thinning, and hot-spot/pin-hole formation.

Page generated in 0.0659 seconds