• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 250
  • 70
  • 68
  • 24
  • 23
  • 18
  • 14
  • 10
  • 4
  • 3
  • 3
  • 3
  • 3
  • 1
  • 1
  • Tagged with
  • 565
  • 105
  • 96
  • 95
  • 93
  • 93
  • 87
  • 86
  • 81
  • 80
  • 79
  • 79
  • 69
  • 60
  • 55
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Non-Orthogonal Multiple Access for Massive Multiple-Input Multiple-Output Relay-Aided/Cell-Free Networks

Li, Yikai 01 June 2021 (has links) (PDF)
The recent developments in Internet-of-Things (IoT) and the next-generation wireless communication systems (5G and beyond) are posing unprecedented demands for massive connectivity, enhanced spectrum efficiency, and strengthened reliability. Moreover, the conventional orthogonal multiple access (OMA) techniques have approached their fundamental limits or the improvements in performance are marginal. To this end, a paradigm-shift from OMA to massive multiple-input multiple-output (MIMO) non-orthogonal multiple access (NOMA) technology is proposed. The proposed techniques are capable of serving multiple spatially-distributed user nodes/IoTs in the same frequency-time resource block by reaping out the benefits of power-domain NOMA, and favorable propagation and channel hardening brought by very large antenna arrays.First, a comprehensively literature survey has been conducted. Next, system, channel and signal models were developed by considering practical transmission impairments of the proposed massive MIMO NOMA. Then, novel NOMA relaying strategies via massive MIMO with pilot designs, per-hop and cascaded channel estimation, statistical-parameter based power allocation policy, and reliable precoding scheme are designed. Then, a complete analytical framework to derive the fundamental performance metrics is developed. A MATLAB-based simulation framework is developed to verify the proposed system designs.Then, the detrimental effects of residual interference caused by intra-cluster pilot sharing and error propagation caused by imperfect successive interference cancellation are quantified. The results acquired can provide insights for refining the proposed techniques in terms of signal model and pilot design.Trade-offs among massive connectivity and spectral efficiency will be established and refined for the proposed relay aided/cell-free massive MIMO NOMA via carefully designing per-hop and cascaded channel estimation, low-complexity statistical-parameter-based power allocation, and conjugate precoding schemes. The proposed technique is expected to significantly outperform the conventional OMA scheme in all overloaded system scenarios by virtue of the proposed aggressive spatial multiplexing and power-domain NOMA techniques. Hence, the proposed technique can simultaneously serve many users with fast data rates than that of the existing OMA techniques. The proposed NOMA techniques are expected to provide higher spectral and energy efficiencies with ultra-low end-to-end latency than those of existing OMA. Thus, the proposed relay-aided/cell-free massive MIMO NOMA can significantly contribute as a novel candidate technology for the next-generation wireless standards.
52

Development of overcurrent relay model and power system simulator using National Instruments devices in real-time

Palla, Sunil Kumar 13 December 2008 (has links)
One of the major objectives at Mississippi State University’s Power and Energy Research Laboratory (PERL) is to develop an adaptive protective controller for Shipboard Power System (SPS) protection. This thesis work focuses on developing an overcurrent relay model in LabVIEW software and validating the developed model by conducting Hardware-in-the-Loop (HIL) tests with Real-Time Digital Simulator (RTDS) and commercial Schweitzer Engineering Laboratories (SEL)-351S directional over-current relay. Simulation results show that the developed relay model is quite flexible, efficient and can be used in real-time. Modeling efforts to establish a HIL platform using National Instruments devices have been presented here. This thesis work also proposes a high-performance and low-cost National Instruments-PXI platform for power system simulations. Two-bus, eight-bus and shipboard power system (SPS) test cases are developed using Matlab/Simulink.Software-in-the-Loop (SIL) tests are conducted for these test cases with Matlab/Simulink overcurrent relay model for several fault conditions. To determine the performance of the NI-PXI system, open loop tests are done between the NI-PXI and the SEL-351S relay and these results are compared with the results of open loop test conducted between the RTDS and SEL-351S relay. HIL tests are done between the NI-PXI system and the dSPACE relay model. HIL tests are also done between the NI-PXI and the commercial SEL-351S relay. These results show that the NI-PXI controller can be used as a power system simulator.
53

An improved bus protection technique with dissimilar current transformers

Dolloff, Paul A. 30 December 2008 (has links)
A microprocessor based bus protection scheme has been developed and relay hardware constructed for bus number two in the Oglethorpe substation within the transmission system of the Tennessee Valley Authority. The relay software is a hybrid combining the percentage differential principle with the phase comparison scheme. The phase comparison scheme incorporates a newly developed square wave generator unique to this thesis. The digital bus relay includes a new technique to detect current transformer saturation. This saturation detector is the Masters thesis work of Dr. Lifeng Yang, an alumnus of Virginia Tech. A newly developed type of measuring device called a Magneto Optic Current Transducer (MOCT) has been installed on both ends of a transmission line in the Oglethorpe substation. Because the other five lines connected to the bus under investigation have conventional electro-mechanical CTs, the digital bus relay has to deal with dissimilar current sources. Models of the substation were built using both the Electromagnetic Transients Program (EMTP) and the Transient Network Analyzer (TNA) in the Power Systems Laboratory at Virginia Tech. Data from these models was used to test the relay software and hardware. Development of the digital bus relay software was done in FORTRAN. Because EMTP is a digital simulation, results from the EMTP models were easily converted for use by the FORTRAN code. The EMTP models include a saturable current transformer (CT) module. The EMTP CT module is a part of the Ph.D. work of Dr. Arvind Chaudhary, an alumnus of Virginia Tech. This off-line study encompassed a wide array of fault types and locations of which only a very few are presented in this thesis. All hardware for this project was built in the Power Systems Laboratory at Virginia Tech. The hardware components include shunts, signal conditioners, the field computer with an analog to digital conversion board, IBM personal computers for communications, and relay output contacts. Software for communications and data interrogation has also been written. Because the TNA model allows relay testing in real time, a time study of the digital bus relay software was conducted. After construction of the relay hardware and the software conversion from FORTRAN to assembly language for the Motorola 68020 32-bit microprocessor was complete, the relay was directly connected to the TNA. This study was instrumental in determining the sampling frequency of 720 Hertz for the relay. At this rate, the relay can correctly identify CT saturation in a quarter cycle and differentiate between a bus and an external fault in a half cycle. The bus protection scheme and hardware worked correctly in all of the fault cases studied. / Master of Science
54

Data Relay System for Space Shuttle and Payload Pre-Launch Checkout

O'Donnell, Hugh B., Wise, Thomas E., Ngo, David Q. 10 1900 (has links)
International Telemetering Conference Proceedings / October 26-29, 1987 / Town and Country Hotel, San Diego, California / Engineering requirements and design characteristics of the coherent throughput relay system which supports East Coast pre-launch checkout of NASA's Space Shuttle and its Payloads are presented. The Relay system is required to provide communications through NASA's Tracking and Data Relay Satellite System for the Shuttle and Payload-Users while they are encapsulated in the launch preparation facilities at the John F. Kennedy Space Center and the Eastern Test Range, Florida. The Relay system is required to be transparent to its users' data at all rates up to three MB/s at S-band and 300 MB/s at Ku-band. Noise and group-delay distortion are major contributors to wide band RF signal degradation. These were major factors in the Relay system design. Antenna design, pointing angle and location were constrained by the need to maximize end-to-end RF signal isolation at both S-band and KU-band, simultaneous forward and return frequencies. System characteristics and link analysis are also presented. In addition, a similar Data Relay located at Vandenberg Air Force Base is briefly described.
55

National Guard Data Relay and the LAV Sensor System

Defibaugh, June, Anderson, Norman 10 1900 (has links)
International Telemetering Conference Proceedings / October 28-31, 1996 / Town and Country Hotel and Convention Center, San Diego, California / The Defense Evaluation Support Activity (DESA) is an independent Office of the Secretary of Defense (OSD) activity that provides tailored evaluation support to government organizations. DESA provides quick-response support capabilities and performs activities ranging from studies to large-scale field activities that include deployment, instrumentation, site setup, event execution, analysis and report writing. The National Guard Bureau requested DESA's assistance in the development and field testing of the Light Armored Vehicle (LAV) Sensor Suite (LSS). LSS was integrated by DESA to provide a multi-sensor suite that detects and identifies ground targets on foot or in vehicles with minimal operator workload. The LSS was designed primarily for deployment in high density drug trafficking areas along the northern and southern borders using primarily commercial-off-the-shelf and government-off-the-shelf equipment. Field testing of the system prototype in summer of 1995 indicates that the LSS will provide a significant new data collection and transfer capability to the National Guard in control of illegal drug transfer across the U.S. borders.
56

Proteção adaptativa de relés de sobrecorrente com lógica fuzzy / Adaptive protection of overcurrent relays with fuzzy logic

Momesso, Antonio Eduardo Ceolin 25 July 2017 (has links)
O avanço tecnológico e a modernização do sistema elétrico de potência trouxeram vários benefícios para uma operação mais robusta. Neste avanço tecnológico surgiram os relés digitais baseados em microprocessador que possuem diversas funcionalidades, dentre elas o ajuste imediato de seus parâmetros. Tal função permite adotar vários ajustes conforme alterações na rede. Porém, realizar a correção dos parâmetros do dispositivo de proteção de sobrecorrente de forma manual, não apenas torna a rede mais vulnerável a falhas humanas, diminuindo a segurança, como também pode ser inviável dependendo do tamanho do sistema. Portanto, um sistema automático seria uma solução para essa dificuldade. Desta forma, este trabalho propõe um ajuste adaptativo, por meio da Lógica Fuzzy, da corrente de pick-up do relé de sobrecorrente. Para tanto, duas variáveis foram levadas em consideração, a corrente pré-falta e a variação da corrente, onde, através da regra de inferência fuzzy, foram definidos diversos conjuntos de termos da variável corrente de pick-up (saída). A implementação e simulação deste equipamento foram realizadas no software Alternative Transients Program - The Electromagnetic Transients Program (ATP-EMTP) tendo em vista se tratar de uma plataforma computacional de livre acesso e utilização a todos aqueles que se interessem pelo tema. Neste trabalho, foram implementados os relés de sobrecorrente temporizados de tempo inverso e instantâneo, com e sem a unidade direcional. Também foi elaborado um sistema de teleproteção para realizar a coordenação dos equipamentos. Uma vez estruturados tais modelos, foram feitos estudos em sistemas teste do IEEE no sentido de demonstrar e avaliar o desempenho dos relés implementados. Os resultados obtidos mostraram as vantagens da utilização do sistema fuzzy implementado, uma vez que ele é capaz de eliminar diferentes tipos de faltas, além de aumentar a velocidade de atuação em sistemas com geração intermitente e com variação de carga. / The technological advance and modernization of the electric power system have brought several benefits for a more robust operation. In this technological advance, microprocessor-based digital relays have emerged with several functionalities, among them the real-time adjustment of their parameters. This function allows to make various adjustments according to changes in the network. However, performing the correction of the overcurrent protection device parameters manually, not only makes the network more vulnerable to human failure, but also may be unfeasible depending on the size of the system. Therefore, an automatic system would be a solution to this difficulty. In this way, this work proposes an adaptive adjustment, through the Fuzzy Logic, of the pick-up current of the overcurrent relay. For that, two variables were taken into account, the pre-fault current and the current variation, in which, through the fuzzy inference rule, several sets of terms of the current variable of pick-up (output) were defined. The implementation and simulation of this equipment was carried out in the software Alternative Transients Program - The Electromagnetic Transients Program (ATP-EMTP) in order to be a computer platform of free access and use to all those who are interested in the subject. In this work, the inverse time and instantaneous overcurrent relays were implemented, with and without the directional unit. A teleprotection system was also developed to carry out equipment coordination. Once these models were structured, studies were done on IEEE test systems in order to demonstrate and evaluate the performance of the implemented relays. The results have confirmed the advantages on the use of fuzzy system, since it was able to eliminate different types of faults, besides increasing the speed of operation in systems with intermittent generation and with variation of load.
57

Proteção adaptativa de relés de sobrecorrente com lógica fuzzy / Adaptive protection of overcurrent relays with fuzzy logic

Antonio Eduardo Ceolin Momesso 25 July 2017 (has links)
O avanço tecnológico e a modernização do sistema elétrico de potência trouxeram vários benefícios para uma operação mais robusta. Neste avanço tecnológico surgiram os relés digitais baseados em microprocessador que possuem diversas funcionalidades, dentre elas o ajuste imediato de seus parâmetros. Tal função permite adotar vários ajustes conforme alterações na rede. Porém, realizar a correção dos parâmetros do dispositivo de proteção de sobrecorrente de forma manual, não apenas torna a rede mais vulnerável a falhas humanas, diminuindo a segurança, como também pode ser inviável dependendo do tamanho do sistema. Portanto, um sistema automático seria uma solução para essa dificuldade. Desta forma, este trabalho propõe um ajuste adaptativo, por meio da Lógica Fuzzy, da corrente de pick-up do relé de sobrecorrente. Para tanto, duas variáveis foram levadas em consideração, a corrente pré-falta e a variação da corrente, onde, através da regra de inferência fuzzy, foram definidos diversos conjuntos de termos da variável corrente de pick-up (saída). A implementação e simulação deste equipamento foram realizadas no software Alternative Transients Program - The Electromagnetic Transients Program (ATP-EMTP) tendo em vista se tratar de uma plataforma computacional de livre acesso e utilização a todos aqueles que se interessem pelo tema. Neste trabalho, foram implementados os relés de sobrecorrente temporizados de tempo inverso e instantâneo, com e sem a unidade direcional. Também foi elaborado um sistema de teleproteção para realizar a coordenação dos equipamentos. Uma vez estruturados tais modelos, foram feitos estudos em sistemas teste do IEEE no sentido de demonstrar e avaliar o desempenho dos relés implementados. Os resultados obtidos mostraram as vantagens da utilização do sistema fuzzy implementado, uma vez que ele é capaz de eliminar diferentes tipos de faltas, além de aumentar a velocidade de atuação em sistemas com geração intermitente e com variação de carga. / The technological advance and modernization of the electric power system have brought several benefits for a more robust operation. In this technological advance, microprocessor-based digital relays have emerged with several functionalities, among them the real-time adjustment of their parameters. This function allows to make various adjustments according to changes in the network. However, performing the correction of the overcurrent protection device parameters manually, not only makes the network more vulnerable to human failure, but also may be unfeasible depending on the size of the system. Therefore, an automatic system would be a solution to this difficulty. In this way, this work proposes an adaptive adjustment, through the Fuzzy Logic, of the pick-up current of the overcurrent relay. For that, two variables were taken into account, the pre-fault current and the current variation, in which, through the fuzzy inference rule, several sets of terms of the current variable of pick-up (output) were defined. The implementation and simulation of this equipment was carried out in the software Alternative Transients Program - The Electromagnetic Transients Program (ATP-EMTP) in order to be a computer platform of free access and use to all those who are interested in the subject. In this work, the inverse time and instantaneous overcurrent relays were implemented, with and without the directional unit. A teleprotection system was also developed to carry out equipment coordination. Once these models were structured, studies were done on IEEE test systems in order to demonstrate and evaluate the performance of the implemented relays. The results have confirmed the advantages on the use of fuzzy system, since it was able to eliminate different types of faults, besides increasing the speed of operation in systems with intermittent generation and with variation of load.
58

Validation of Results of Smart Grid Protection through Self-Healing

Assumpção, Felipe Framil 29 October 2018 (has links)
This is a verification of the results of “Smart Grid Protection through Self-Healing” from the publication of Chathurika Chandraratne, et al., that proposes a protection solution for the smart grid. The paper used as reference has as the main focus on three different protections; directional overcurrent protection, overcurrent protection, and transformer protection, which are validated through ETAP software simulation of IEEE- 9 bus and 14 bus electrical power systems, the same used by the author. It was validated after repeated simulation, that just as intended, self-healing increases system agility, and it helped prevent false-tripping14 bus electrical power systems.
59

Design and implementation of ANN based phase comparators applied to transmission line protection

Chawla, Gaganpreet 24 February 2010
There has been significant development in the area of neural network based power system protection in the previous decade. Neural network technology has been applied for various protective relaying functions including distance protection. The reliability and efficiency of ANN based distance relays is improving with the developing digital technologies. There are, however, some inherent deficiencies that still exist in the way these relays are designed. This research addresses some of these issues and proposes an improved protective relaying scheme.<p> The traditional ANN distance relay designs use parameter estimation algorithms to determine the phasors of currents and voltages. These phasors are used as inputs to determine the distance of a fault from relay location. The relays are trained and tested on this criterion; however, no specific relay characteristic has been defined. There is a need for development of a new methodology that will enable designing of an ANN that works as a generic distance relay with clearly defined operating boundary.<p> This research work presents a modified distance relaying algorithm that has been combined with a neural network approach to eliminate the use of phasors. The neural network is trained to recognize faults on basis of a specific relay characteristic. The algorithm is flexible and has been extended for the design of other relays. The neural network has been trained using pure sinusoidal values and has been tested on a 17-bus power system simulated in PSCAD. The training and testing of the neural network on different systems ensures that the relay is generic in nature. The proposed relay can be used on any transmission line without re-training the neural network.<p> The design has been tested for different fault conditions including different fault resistances and fault inception angles. The test results show that the relay is able to detect faults in lesser time as compared to conventional relay algorithms while maintaining the integrity of relay boundaries.
60

Design and implementation of ANN based phase comparators applied to transmission line protection

Chawla, Gaganpreet 24 February 2010 (has links)
There has been significant development in the area of neural network based power system protection in the previous decade. Neural network technology has been applied for various protective relaying functions including distance protection. The reliability and efficiency of ANN based distance relays is improving with the developing digital technologies. There are, however, some inherent deficiencies that still exist in the way these relays are designed. This research addresses some of these issues and proposes an improved protective relaying scheme.<p> The traditional ANN distance relay designs use parameter estimation algorithms to determine the phasors of currents and voltages. These phasors are used as inputs to determine the distance of a fault from relay location. The relays are trained and tested on this criterion; however, no specific relay characteristic has been defined. There is a need for development of a new methodology that will enable designing of an ANN that works as a generic distance relay with clearly defined operating boundary.<p> This research work presents a modified distance relaying algorithm that has been combined with a neural network approach to eliminate the use of phasors. The neural network is trained to recognize faults on basis of a specific relay characteristic. The algorithm is flexible and has been extended for the design of other relays. The neural network has been trained using pure sinusoidal values and has been tested on a 17-bus power system simulated in PSCAD. The training and testing of the neural network on different systems ensures that the relay is generic in nature. The proposed relay can be used on any transmission line without re-training the neural network.<p> The design has been tested for different fault conditions including different fault resistances and fault inception angles. The test results show that the relay is able to detect faults in lesser time as compared to conventional relay algorithms while maintaining the integrity of relay boundaries.

Page generated in 0.0432 seconds