• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 3
  • 1
  • Tagged with
  • 8
  • 8
  • 8
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Integrated multi-spectral imaging, analysis and treatment of an Egyptian tunic.

Haldane, E.A., Gillies, Sara, O'Connor, Sonia A., Batt, Catherine M., Stern, Ben January 2010 (has links)
no
2

National Guard Data Relay and the LAV Sensor System

Defibaugh, June, Anderson, Norman 10 1900 (has links)
International Telemetering Conference Proceedings / October 28-31, 1996 / Town and Country Hotel and Convention Center, San Diego, California / The Defense Evaluation Support Activity (DESA) is an independent Office of the Secretary of Defense (OSD) activity that provides tailored evaluation support to government organizations. DESA provides quick-response support capabilities and performs activities ranging from studies to large-scale field activities that include deployment, instrumentation, site setup, event execution, analysis and report writing. The National Guard Bureau requested DESA's assistance in the development and field testing of the Light Armored Vehicle (LAV) Sensor Suite (LSS). LSS was integrated by DESA to provide a multi-sensor suite that detects and identifies ground targets on foot or in vehicles with minimal operator workload. The LSS was designed primarily for deployment in high density drug trafficking areas along the northern and southern borders using primarily commercial-off-the-shelf and government-off-the-shelf equipment. Field testing of the system prototype in summer of 1995 indicates that the LSS will provide a significant new data collection and transfer capability to the National Guard in control of illegal drug transfer across the U.S. borders.
3

Imagerie multi-spectrale par résonance des plasmons de surface : développement et applications / Multi-spectral imaging for surface plasmon resonance sensors : development and applications

Sereda, Alexandra 25 November 2014 (has links)
Dépistage du VIH, test de grossesse, mais également surveillance des eaux, détection de contaminants agro-alimentaires : la biodétection est au coeur des problématiques de santé actuelles. Dans ce contexte, les biocapteurs plasmoniques connaissent depuis quelques années un essor particulièrement important : de plus en plus de sociétés, telles que HORIBA Scientific, proposent des prototypes commerciaux, destinés tant à des utilisateurs du domaine de la recherche que de l'industrie. Basée sur le phénomène de résonance des plasmons de surface (communément appelé SPR) la biodétection plasmonique repose sur l'extrême sensibilité d’une onde évanescente se propageant à l’interface entre un film d’or, la biopuce, et le milieu diélectrique couvrant, siège des interactions biomoléculaires étudiées. De manière plus concrète, toute adsorption de matériel biologique se produisant à cette interface entraîne une modification importante des propriétés optiques d’un faisceau de lumière réfléchi par la biopuce : le principe de transduction par SPR consiste alors à mesurer directement ces variations. A l'heure actuelle, différents modes d'interrogation, offrant des performances intéressantes, mais également des limitations propres à chaque configuration. Pour répondre aux exigences de précision et de dynamique de mesure posées par de nombreuses applications, un développement théorique et instrumental, présenté dans ce document, a été initié dans le but de proposer un nouveau un nouveau mode d'interrogation des biopuces plasmoniques : l'interrogation multi-spectrale. Les résultats obtenus par cette technique ont été exploités pour concevoir et réaliser une source multi-spectrale à base de LEDs, particulièrement avantageuse vis-à-vis des configurations existant à l'heure actuelle. La caractérisation du système développé dans le cadre du diagnostic génétique (mucoviscidose) et celui du cancer, ouvre la voie à une nouvelle génération de biocapteurs performants, compacts et de coût relativement raisonnable, présentant un potentiel industriel certain. / Biodetection is at the core of the current health concerns, as shown through the variety of applications to HIV screening, food contaminant analysis or water quality monitoring. In this field, plasmonic biosensing is a well-established label-free technique on the market: commercial systems from HORIBA Scientific are currently available for both research and industrial users.Based on the surface plasmon resonance (SPR) phenomenon, plasmonic biodetection uses the high sensitivity of an evanescent wave propagating along a metallic film (forming the biochip) and the surrounding dielectric medium interface. More specifically, the adsorption of biomolecules onto the metal surface induces a strong change in the optical properties of a light beam reflected by the biochip: the main principle of plasmonic transduction consists in measuring these physical changes. Several interrogation techniques have therefore been developed to access such optical information, but they fail in meeting the most demanding user requirements for precise, real-time, high-throughput measurement.Initiated by these issues, the instrumentation work presented in this document has led to the development of a novel SPR interrogation technique, referred to as multi-spectral interrogation. Moreover, the promising results obtained have been pushed forward to propose a multi-spectral illumination system based on LEDs, providing attractive performances compared to existing configurations. The biosensing potential of the developed system, demonstrated through applications to genetic diagnosis and cancer detection, opens the door to a new generation of compact, high-performance, low-cost SPR sensors.
4

Imagerie polarimétrique active à large spectre pour l’amélioration du contraste et la microscopie. / Broadband active polarization imaging for contrast improvement and microscopy

Thomas, Lijo 06 November 2017 (has links)
L’imagerie de polarisation est une technique permettant de révéler des contrastes qui n’apparaissent pas dans les images d’intensité classiques. En d’autres termes, elle permet de transformer une différence de propriétés polarimétriques en différence de niveau de gris. Elle trouve des applications en décamouflage, télédétection, microscopie, etc. Les imageurs polarimétriques utilisent souvent des modulateurs de polarisation basés sur des matrices de cristaux liquides rapides et fiables. Cependant, les LCVR contrôlent l’état de polarisation de la lumière à seulement une longueur d’onde donnée, et si le système est utilisé à d’autres longueurs d’ondes, il a des performances réduites. Si la lumière qui illumine la scène à un spectre large, il est donc nécessaire d’insérer un filtre spectral de bande étroite dans la voie d’imagerie, ce qui a pour effet de réduire la quantité de lumière entrant dans le système et donc le rapport signal à bruit des images.Un moyen de résoudre ce problème est d’utiliser des modulateurs de polarisation achromatiques, mais cela induit un coût et une complexité accrus qui peuvent ne pas être nécessaires si l’objectif est d’améliorer la performance de détection de cible en augmentant le contraste entre l’objet d’intérêt et le fond. Dans cette thèse, j’étudie l’impact d’un élargissement du spectre d’illumination sur la performance de détection de cible par des systèmes d’imagerie polarimétriques utilisant des composants chromatiques. A travers des simulations, je montre tout d’abord qu’élargir le spectre d’illumination peut augmenter le contraste car l’augmentation du flux de lumière compense la perte de précision polarimétrique. De plus, en prenant en compte les caractéristiques polarimétriques chromatiques des composants, on peut accroître encore l’augmentation du contraste. Ces résultats sont ensuite validés à travers des expériences réelles d’imagerie polarimétrique active. Ils démontrent que la largeur du spectre d’éclairement peut être considérée comme un paramètre additionnel pour optimiser ces systèmes d’imagerie.Afin de mettre en pratique l’expertise acquise en imagerie polarimétrique active à un autre domaine, j’ai collaboré avec un partenaire industriel (Carl Zeiss, Germany) pour doter un microscope optique d’une capacité polarimétrique. L’imagerie d’un échantillon fin et transparent est un problème difficile. Par exemple, la coloration de l’échantillon peut ajouter des détails parasites et n’est pas applicable à l’imagerie du vivant. Une technique prometteuse est le contraste de phase différentiel (DPC) qui consiste à extraire le gradient de phase de l’objet à partir de deux images illuminées de manière asymétrique et acquises selon des angles complémentaires. La source de lumière est une matrice de LED programmables qui peut générer différents motifs d’illumination. Cependant, cette méthode d’imagerie prend du temps et les flashs intermittents émis par la source peuvent rendre l’observation inconfortable.J’ai donc proposé une solution alternative consistant à installer deux polariseurs avec des axes orthogonaux devant la source de lumière et une caméra sensible à la polarisation qui peut détecter simultanément des polarisations orthogonales. La lumière polarisée atteint la caméra sensible à la polarisation après avoir traversé l’échantillon transparent. Les composantes orthogonales sont extraites de l’image acquise par un procédé de débayerisation. A travers différentes expériences, je compare les performances de cette méthode innovante avec la méthode de DPC classique. Je montre qu’elles fournissent des qualités d’images similaires dans la plupart des cas alors que la nouvelle méthode permet de diviser le temps d’acquisition par deux, tout en supprimant les flashs intermittents. / Polarization imaging is a technique which reveals contrasts that do not appear in classical intensity images. It transforms the difference in polarimetric properties of a scene into difference in gray level of an image. This technique has found applications in decamouflaging, remote sensing, microscopy etc. Polarimetric imagers often use polarization modulation devices based on liquid crystal variable retarders (LCVR), which are fast and reliable. However, LCVR control the polarization state of light only at one given nominal wavelength, and performance loss might be observed if imaging is performed at other wavelengths, due to the wavelength dependence of the LCVR. If the light source that illuminates the scene has a broad spectrum, it is thus necessary to insert a narrowband spectral filter in the imaging path. However, spectral filtering significantly decreases the amount of light entering the system and thus the signal-to-noise ratio of polarimetric images.A way to circumvent this issue is to achromatize the polarization modulators. However, this comes at the price of higher complexity and cost, and this may not be needed if the objective is to improve target detection performance by increasing the target/background discriminability (or contrast). In the thesis, we present the investigation of the impact of broadening the spectrum of the light entering the system on the discriminability performance of active polarimetric systems. Through simulations, we show that broadening the bandwidth of the illumination can increase the contrast between two regions, as the increase of light flux compensates for the loss of polarimetric precision. Moreover, we show that taking into account the chromatic characteristics of the components of the imaging system, it is possible to further enhance the contrast. We validate these findings through experiments in active polarimetric imaging configuration, and demonstrate that the spectral bandwidth can be considered as an additional parameter to optimize polarimetric imaging set-ups.We collaborated with an industrial partner (Carl Zeiss, Germany) to implement polarization imaging in optical microscopy. Imaging thin and transparent specimen in microscopy is a challenging task. Staining the sample is a solution but it adds false/spurious details to the image, thus not suitable for live imaging. Recently, differential phase contrast (DPC) imaging by asymmetric illumination is proved to be a desirable choice. This works on the principle that the phase gradient of a transparent specimen can be extracted from two images, illuminated and recorded at complementary angles. Then, DPC is computed as normalized difference between two images. Here the light source is programmable LED array and different pattern of illumination can be generated. This imaging method consumes more time and intermittent flash of light from light source makes sample observation inconvenient for the observer.A practical solution we propose is to install two polarization foils with orthogonal polarization axes below the light source side by side and a polarization sensitive camera which can detect orthogonal eigen polarization states at a time in the existing setup. The polarization foils separate light waves from complementary angles since orthogonally polarized light waves do not interact with each other. The polarized light reaches polarization sensitive camera after passing through transparent sample. The pixels sensitive to horizontal and vertical polarization detect horizontal and vertical polarized light respectively. Then horizontal and vertical polarized light information are separated from the recorded image and reconstructed the missing information using debayering process. Through experiments, we show that polarization based DPC and standard DPC images have similar quality in most cases and the new technique reduces time consumption by half.
5

Digitization and Digital Preservation of P.Herc. 817

Bischoff, Marissa Anne 14 December 2023 (has links) (PDF)
The large cache of scrolls from Herculaneum were opened to scholars in spite of and because of the destruction of the volcano and damaging unfurling techniques. The fragments inherited have been studied closely by scholars. Digitization and technological work on the Herculaneum papyri, including the important infrared imaging completed by BYU in the early 2000s, and the 3-D imaging and inchoate virtual unwrapping technology by EduceLab, have amplified and aided scholarship on the scrolls and will continue to do so. P.Herc. 817 is a unique Latin text within the collection that has been heavily studied by scholars due to its fascinating subject matter on the Battle of Actium and Cleopatra and its readability. This fragment serves as a case study to demonstrate the value of each set of digital images in transcription and interpretation research, which suggests at the value of the varying digital images for other Herculaneum fragments. I closely compare digital surrogates of P.Herc. 817 including the early 2000s infrared images, 1960's era negatives, and recent 3-D images with the original artifacts as seen at the Biblioteca Nazionale in July 2023. This autopsy of versions of P.Herc. 817 substantiates the need for scholars to use all available digital images in concert with the original papyri when doing scholarly work. It also reinforces the need for digital stewardship and preservation of each distinct image set. Finally, a hypothetical case study is offered to show the loss to scholarship if the digital images and originals were lost and solely secondary sources remained. Each image set offers value and captures a moment in time of the papyri. As technology continues to progress and excitingly unlocks unseen papyri, care needs to be taken to safeguard and digitally preserve the new along with the older data sets.
6

Design and Validation of a Sensor Integration and Feature Fusion Test-Bed for Image-Based Pattern Recognition Applications

Karvir, Hrishikesh 21 December 2010 (has links)
No description available.
7

Conception et évaluation d'un dispositif d'imagerie multispectrale de proxidétection embarqué pour caractériser le feuillage de la vigne / "On-the-go" multispectral imaging system embedded on a track laying tractor to characterize the vine foliage

Bourgeon, Marie-Aure 30 October 2015 (has links)
En Viticulture de Précision, l’imagerie multi-spectrale est principalement utilisée pour des dispositifs de télédétection. Ce manuscrit s’intéresse à son utilisation en proxidétection, pour la caractérisation du feuillage. Il présente un dispositif expérimental terrestre mobile composé d’un GPS, d’une caméra multi-spectrale acquérant des images visible et proche infrarouge, et d’un Greenseeker RT-100 mesurant l’indice Normalized Difference Vegetation Index (NDVI). Ce système observe le feuillage de la vigne dans le plan de palissage, en lumière naturelle. La parcelle étudiée comporte trois cépages (Pinot Noir, Chardonnay et Meunier) plantés en carré latin. En 2013, six jeux de données ont été acquis à différents stades phénologiques.Pour accéder aux propriétés spectrales de la végétation, il est nécessaire de calibrer les images en réflectance. Cela requiert l’utilisation d’une mire de MacBeth comme référence radiométrique. Lorsque la mire est cachée par les feuilles, les paramètres de calibration sont estimés par une interpolation linéaire en fonction des images les plus proches sur lesquelles la mire est visible. La cohérence de la méthode d’estimation employée est vérifiée par une validation croisée (LOOCV).La comparaison du NDVI fournie par le Greenseeker avec celui déterminé via les images corrigées permet de valider les données générées par le dispositif. La polyvalence du système est évaluée via les images où plusieurs indices de végétation sont déterminés. Ils permettant des suivis de croissance de la végétation originaux offrant des potentialités de phénotypage ou une caractérisation de l’état sanitaire de la végétation illustrant la polyvalence et le gain en précision de cette technique. / Mutispectral imaging systems are widely used in remote sensing for Precision Viticulture. In this work, this technique was applied in the proximal sensing context to characterize vine foliage. A mobile terrestrial experimental system is presented, composed of a GPS receiver, a multi-spectral camera acquiring visible and near infrared images, and a Greenseeker RT-100 which measures the Normalized Difference Vegetative Index (NDVI). This optical system observes vine foliage in the trellis plan, in natural sunlight. The experimental field is planted with Chardonnay, Pinot Noir and Meunier cultivars in a latin squared pattern. In 2013, six datasets were acquired at various phenological stages.Spectral properties of the vegetation are accessible on images when they are calibrated in reflectance. This step requires the use of a MacBeth colorchart as a radiometric reference. When the chart is hidden by leaves, the calibration parameters are estimated by simple linear interpolation using the results from resembling images, which have a visible chart. The performance of this method is verified with a cross-validation technique (LOOCV).To validate the data provided by the experimental system, the NDVI given by the Greenseeker was compared to those computed from the calibrated images. The assessment of the versatility of the system is done with the images where several indices were determined. It allows an innovative follow-up of the vegetative growth, and offering phenotyping applications. Moreover, the characterization of the sanitary state of the foliage prove that this technique is versatile and accurate.
8

Increasing temporal, structural, and spectral resolution in images using exemplar-based priors

Holloway, Jason 16 September 2013 (has links)
In the past decade, camera manufacturers have offered smaller form factors, smaller pixel sizes (leading to higher resolution images), and faster processing chips to increase the performance of consumer cameras. However, these conventional approaches have failed to capitalize on the spatio-temporal redundancy inherent in images, nor have they adequately provided a solution for finding $3$D point correspondences for cameras sampling different bands of the visible spectrum. In this thesis, we pose the following question---given the repetitious nature of image patches, and appropriate camera architectures, can statistical models be used to increase temporal, structural, or spectral resolution? While many techniques have been suggested to tackle individual aspects of this question, the proposed solutions either require prohibitively expensive hardware modifications and/or require overly simplistic assumptions about the geometry of the scene. We propose a two-stage solution to facilitate image reconstruction; 1) design a linear camera system that optically encodes scene information and 2) recover full scene information using prior models learned from statistics of natural images. By leveraging the tendency of small regions to repeat throughout an image or video, we are able to learn prior models from patches pulled from exemplar images. The quality of this approach will be demonstrated for two application domains, using low-speed video cameras for high-speed video acquisition and multi-spectral fusion using an array of cameras. We also investigate a conventional approach for finding 3D correspondence that enables a generalized assorted array of cameras to operate in multiple modalities, including multi-spectral, high dynamic range, and polarization imaging of dynamic scenes.

Page generated in 0.1392 seconds