• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 3
  • 2
  • Tagged with
  • 12
  • 12
  • 5
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Sequential Afterglow Processing and Non-Contact Corona-Kelvin Metrology of 4H-SiC

Short, Eugene L, III 22 June 2009 (has links)
Silicon carbide (SiC) is a wide band-gap semiconductor with advantageous electrical and thermal properties making it attractive for high temperature and power applications. However, difficulties with oxide/SiC structures have posed challenges to the development of practical MOS-type devices. Surface conditioning and oxidation of 4H-SiC were investigated using a novel sequential afterglow processing approach combined with the unique capabilities of non-contact corona-Kelvin metrology. The use of remote plasma assisted thermal oxidation facilitated film growth at low temperature and pressure with the flexibility of sequential in-situ processing options including pre-oxidation surface conditioning. Corona-Kelvin metrology (C-KM) provided a fast, non-destructive method for electrical evaluation of oxide films and semiconductor surfaces. Non-contact C-KM oxide capacitance-voltage characteristics combined with direct measurement of SiC surfaces using C-KM depletion surface barrier monitoring and XPS analysis of surface chemistry were interpreted relating the impact of afterglow conditioning on the surface and its influence on subsequent oxide thin film growth. Afterglow oxide films of thicknesses 50-500 angstroms were fabricated on SiC epi-layers at low growth temperatures in the range 600-850°C, an achievement not possible using conventional atmospheric oxidation techniques. The inclusion of pre-oxidation surface conditioning in forming gas (N2:H2)* afterglow was found to produce an increase in oxide growth rate (10-25%) and a significant improvement in oxide film thickness uniformity. Analysis of depletion voltage transients on conditioned SiC surfaces revealed the highest degree of surface passivation, uniformity, and elimination of sources of charge compensation accomplished by the (N2:H2)* afterglow treatment for 20 min. at 600-700°C compared to other conditioning variations. The state of surface passivation was determined to be very stable and resilient when exposed to a variety of temporal, electrical, and thermal stresses. Surface chemistry analysis by XPS gave evidence of nitrogen incorporation and a reduction of the C/Si ratio achieved by the (N2:H2)* afterglow surface treatment, which was tied to the improvements in passivation, uniformity, and growth rate observed by non-contact C-KM measurements. Collective results were used to suggest a clean, uniform, passivated, Si-enriched surface created by afterglow conditioning of 4H-SiC as a sequential preparation step for subsequent oxidation or dielectric formation processing.
2

Growth of oxide thin films on 4H- silicon carbide in an afterglow reactor

Short, Eugene L 01 June 2006 (has links)
Oxide thin films were grown on 4H-SiC at low pressure and reduced temperatures using a remote plasma afterglow thermal oxidation method, achieving significantly faster growth rates than standard atmospheric furnace processes. The resulting SiO2/SiC structures were characterized by a non-contact corona-voltage metrology technique in order to extract capacitance-voltage information, to facilitate further analysis of the afterglow oxidation growth mechanism, and to determine the electrical behavior of defects. In addition, mass spectrometry experiments revealed the concentration of nitric oxide species in the afterglow reactor gas exhaust produced by the cracking of N2O molecules in the microwave plasma discharge. Oxidations were performed on n- and p-doped epitaxial 4H-SiC wafers at growth temperatures between 700°C and 1100°C. The afterglow oxidation process was determined to be primarily in the parabolic growth regime, and thus rate-limited by diffusion processes. Analysis of the parabolic growth rate temperature dependence revealed a break in activation energy between 0.46 eV and 1.51 eV at lower and higher temperature ranges, indicating a change in the dominating oxidation mechanism. In the proposed transport-limited mechanism, afterglow oxidation was suggested to be rate-limited by parallel diffusion of atomic oxygen radicals and excited singlet oxygen molecules to the SiO2/SiC interface. An alternative stress-relief mechanism suggested that viscous flow of SiO2 could relieve compressive stress in the oxide above 960°C. In this case, growth would be stress-limited at low temperatures and diffusion-limited at higher temperatures. Regardless of the exact mechanism or temperature range, the data developed in this work suggest that afterglow oxidation rates of 4H-SiC are faster than atmospheric growth rates mainly because significant quantities of atomic and excited oxygen are generated in the microwave discharge independent of temperature. Using flatband voltages and accumulation capacitance values extracted from C-V measurements, worst-case charge densities associated with the oxide-semiconductor interfacial region were estimated. The charged defects were found to exist in the 1012/cm2 range regardless of growth temperature or oxide thickness. The charged defects were attributed to interface traps which capture majority carriers while the SiC is electrically stressed into accumulation during measurement. It was suggested that the traps failed to emit their charges within the time of measurement, even when the semiconductor was swept into depletion, and thus caused a shift in the observed flatband voltage. Mass spectrometry analysis showed that no thermal cracking of gas species occurs in the furnace at the detection level of the measurement, but rather significant quantities of nitric oxide are produced by the cracking of N2O molecules in the microwave plasma discharge independent of furnace temperature.
3

Fabrication and characterisation of L10 ordered FePt thin films and bit patterned media

Zygridou, Smaragda January 2016 (has links)
Highly ordered magnetic materials with high perpendicular magnetic anisotropy (PMA), such as the L10 ordered FePt, and new recording technologies, such as bit patterned media (BPM), have been proposed as solutions to the media trilemma problem and provide promising strategies towards future high-density magnetic data storage media. L10 ordered FePt thin films can provide the necessary high PMA. However, the ordering of this material perpendicular to the plane of the films remains challenging since high-temperature and time-consuming processes are required. In this work, a remote plasma sputtering system has been used for the investigation of FePt thin films in order to understand if the greater control of process parameters offered by this system can lead to enhanced ordering in L10 FePt thin films at low temperatures compared with conventional dc magnetron approaches. More specifically, the effect of the different substrate temperatures and the target bias voltages on the ordering, the microstructure and the magnetic properties of FePt thin films was investigated. Highly ordered FePt thin films were successfully fabricated after post-annealing processes and were patterned into arrays of FePt islands. This patterning process was carried out with e-beam lithography and ion milling. Initial MFM measurements of these islands showed their single-domain structure for all the island sizes, which indicated the high PMA of the FePt. Magnetometry measurements were also carried out with a novel polar magneto-optical Kerr effect (MOKE) system which was designed and built during this project. This system has unique capabilities which are: a) the application of uniform magnetic field up to 2 Tesla, b) the rotation of the field to an arbitrary angle and c) the use of lasers of four different wavelengths. The combination of these abilities enabled measurements on ordered FePt thin films and patterned media which can pave the way for further highly sensitive measurements on magnetic thin films and nanostructures.
4

Control of Electrical Transport Mechanisms At Metal-Zinc Oxide Interfaces By Subsurface Defect Engineering With Remote Plasma Treatment

Mosbacker, Howard L., IV 19 March 2008 (has links)
No description available.
5

Remote plasma sputtering for silicon solar cells

Kaminski, Piotr M. January 2013 (has links)
The global energy market is continuously changing due to changes in demand and fuel availability. Amongst the technologies considered as capable of fulfilling these future energy requirements, Photovoltaics (PV) are one of the most promising. Currently the majority of the PV market is fulfilled by crystalline Silicon (c-Si) solar cell technology, the so called 1st generation PV. Although c-Si technology is well established there is still a lot to be done to fully exploit its potential. The cost of the devices, and their efficiencies, must be improved to allow PV to become the energy source of the future. The surface of the c-Si device is one of the most important parts of the solar cell as the surface defines the electrical and the optical properties of the device. The surface is responsible for light reflection and charge carrier recombination. The standard surface finish is a thin film layer of silicon nitride deposited by Plasma Enhanced Chemical Vapour Deposition (PECVD). In this thesis an alternative technique of coating preparation is presented. The HiTUS sputtering tool, utilising a remote plasma source, was used to deposit the surface coating. The remote plasma source is unique for solar cells application. Sputtering is a versatile process allowing growth of different films by simply changing the target and/or the deposition atmosphere. Apart from silicon nitride, alternative materials to it were also investigated including: aluminium nitride (this was the first use of the material in solar cells) silicon carbide, and silicon carbonitride. All the materials were successfully used to prepare solar cells apart from the silicon carbide, which was not used due to too high a refractive index. Screen printed solar cells with a silicon nitride coating deposited in HiTUS were prepared with an efficiency of 15.14%. The coating was deposited without the use of silane, a hazardous precursor used in the PECVD process, and without substrate heating. The elimination of both offers potential processing advantages. By applying substrate heating it was found possible to improve the surface passivation and thus improve the spectral response of the solar cell for short wavelengths. These results show that HiTUS can deposit good quality ARC for silicon solar cells. It offers optical improvement of the ARC s properties, compared to an industrial standard, by using the DL-ARC high/low refractive index coating. This coating, unlike the silicon nitride silica stack, is applicable to encapsulated cells. The surface passivation levels obtained allowed a good blue current response.
6

Remote plasma chemical vapor deposition for high efficiency heterojunction solar cells on low cost, ultra-thin, semiconductor-on-metal substrates

Onyegam, Emmanuel U. 01 September 2015 (has links)
In the crystalline Si solar cell industry, there is a push to reduce module cost through a combination of thinner substrates and increased cell efficiency. Achieving solar cells with sub-100 µm substrates cost-effectively is a formidable task because such thin substrates impose stringent handling requirements and thermal budget due to their flexibility, ease of breakage, and low yield. Moreover, as the substrate thickness decreases the surface passivation quality dictates the performance of the cells. Crystalline Si heterojunction (HJ) solar cells based on hydrogenated amorphous silicon (a-Si:H) have attracted significant interest in recent years due to their excellent surface passivation properties, potential for high efficiency, low thermal budget and low cost. HJ cells with ultra-passivated surfaces showing > 700 mV open-circuit voltages (Voc) and > 20% conversion efficiency have been demonstrated. In these cells, it has been identified that high-quality a-Si:H films deposited by a low-damage plasma process is key to achieving such high cell performance. However, the options for low-damage plasma deposition process are limited. The main objectives of this work are to develop a low-plasma damage a-Si:H thin film deposition process based on remote plasma chemical vapor deposition (RPCVD) and to demonstrate high efficiency HJ solar cells on bulk substrates as well as on ultra-thin silicon and germanium substrates obtained by a novel, low-cost semiconductor-on-metal (SOM) technology. This manuscript presents a detailed description of the RPCVD system and the process leading to the realization of high quality a-Si:H thin films and high efficiency HJ solar cells. First, p-type a-Si:H thin films are developed and optimized, then HJ solar cells are subsequently fabricated on bulk and ultra-thin Si and Ge SOM substrates without intrinsic a-Si:H passivation. Single HJ cells on ~ 500 µm bulk Si and ~25 µm ultra-thin substrates exhibited conversion efficiencies of η = 16% (Voc = 615 mV, Jsc = 34 mA/cm2, and FF = 77%) and η = 11.2% (Voc = 605 mV, Jsc = 29.6 mA/cm2, and FF = 62.8%), respectively. The performance of the ~25 µm cell was further improved to η = 13.4% (Voc = 645 mV, Jsc = 31.4 mA/cm2, and FF = 66.2%) by implementing the dual HJ architecture without front side i-layer passivation. For single HJ cells based on Ge substrates, the results were η = 1.78 % (Voc = 148 mV, Jsc = 35.1 mA/cm2, and FF = 1.78%) on ~500 µm bulk Ge, compared to η =5.3% (Voc = 203 mV, Jsc = 44.7 mA/cm2, and FF = 5.28%) on ~ 50 µm Ge SOM substrates. Respectively, the results obtained on ultra-thin SOM substrates are among the highest reported in literature for based on comparable architecture and substrate thickness. In order to achieve improved cell performance, dual HJ cells with i-layer passivation of both surfaces were fabricated. First, optimized RPCVD-based i-layer films were developed by varying the deposition temperature and H2 dilution ratio (R). It was found that excellent surface passivation on planar substrates with as-deposited minority carrier lifetimes > 1 ms is achievable by using deposition temperature of 200 ºC and moderate dilution ratio 0.5 ≤ R ≤ 1, even without the more rigorous RCA pre-cleaning process typically used in literature for achieving comparable results. Subsequently, dual HJ solar cells with i-layer films were demonstrated on planar and textured bulk Si substrates showing improved conversion efficiencies of η = 17.3% (Voc = 664 mV, Jsc = 34.34 mA/cm2 and FF = 76%) and η = 19.4% (Voc = 643 mV, Jsc = 38.99 mA/cm2, and FF = 77.5%), respectively. / text
7

Ätzen von Titannitrid mit Halogenverbindungen / Kammerreinigung mit externer Plasmaquelle / Dry etch of Titanium Nitride TiN with halogenides in remote plasma source for chamber clean applications

Hellriegel, Ronald 19 June 2009 (has links) (PDF)
Mit zunehmender Miniaturisierung mikroelektronischer Bauelemente steigen die Anforderungen an reproduzierbare qualitätskonforme Schichten. Um die zur Herstellung notwendigen ALD/PVD/CVD-Schichtabscheideanlagen in einen zuverlässigen Zustand zu versetzen, ist eine regelmäßige Kammerreinigung notwendig. Während des Abscheideprozesses werden nicht nur das Substrat, sondern auch die umliegenden Kammerteile beschichtet. Diese Schichten wachsen mit jedem Beschichtungszyklus weiter an. Der Stress zwischen Schicht und Kammerwand steigt beständig, und es besteht das Risiko das Teile abplatzen und auf die Waferoberfläche fallen und damit die Struktur unbrauchbar machen. Um das zu verhindern, muss die Kammerwand in einen regelmäßigen Zustand versetzt werden, in dem sichergestellt ist, daß keine Schichtreste abplatzen können. In der vorliegenden Arbeit wird ein neues Verfahren zur Trockenreinigung von ALD-Titannitrid Kammern vorgestellt. Dazu wurden TiN-Stücke (hergestellt im ALD, CVD, PVD-Verfahren) auf einem temperaturgeregelten Probenhalter platziert. Eine Argon/NF3 Gasmischung wurde in einer externen Plasmaquelle (RPS) zerlegt und in die Reaktionskammer geschleust. Die Ätzung wurde mit in-situ Reflexionsmessung beobachtet. Experimente mit Chlorzugabe wurden unternommen und ein starker Einfluss auf den Ätzmechanismus beobachtet. Die Ätzraten des TiN sind exponentiell abhängig von der Temperatur und proportional abhängig von der Verfügbarkeit atomaren Fluors. Dieses wird bei der Zerlegung von NF3 frei gesetzt und steht der Reaktion zur Verfügung. Die NF3-Zerlegung in Fluor und Stickstoff wurde mit Hilfe der Massenspektrometrie (QMS) untersucht, Zerlegungsgrade größer 96% wurden erreicht. Mit Hilfe dieser Messung kann der Einfluss der Kammerreinigung auf den Treibhausgasausstoß (GWP) bestimmt werden. Mit dem Ar/NF3-Verfahren können die GWP-Emissionen um 90% im Vergleich zur RIE-Ätzung mit SF6 reduziert werden. Mit Argon/Chlor-Plasmen konnte kein Titannitrid geätzt werden, da die physikalische Sputterkomponente fehlte. Durch Hinzufügen von Chlor zu einer Ar/NF3-Gasmischung konnte die Ätzrate um bis zu 270% im Bereich niedrige Temperaturen/niedriger Druck gesteigert werden. Bei höheren Temperaturen/höherem Druck fielen die Ar/NF3/Chlor Ätzraten allerdings deutlich hinter die des Ar/NF3 zurück. Die dazu führenden Effekte werden untersucht und ausgeführt. Die Nutzung von externen Plasmaquellen bietet eine vielversprechende Alternative um Abscheideanlagen von TiN-Rückständen reinigen zu können. Bei hohen Temperaturen werden deutlich höhere Ätzraten als bei anderen Schichten (SiN, SiO2, W) erreicht. Für Anwendungen im niedrigen Temperaturbereich erlaubt die Zugabe von Chlor interessante Anwendungsmöglichkeiten. / Demands on state of the art deposition technologies for semiconductor production focus on uniformity, repeatability and low defectivity. The chamber condition is a key parameter to achieve these high demands in chemical vapour deposition (CVD) processes and are even more critical to the atomic layer deposition processes (ALD). During the deposition process not only the wafer surface but other chamber parts as well are covered with a thin film. This film accumulates during the deposition cycles and is prone to fall off the walls and pollute the wafer surface. The chamber parts that are exposed to the deposition must be set back to a steady state so that no deposits fall off the walls. The chamber condition also changes uncontrolled with varying film condition on the wall. A new approach for cleaning of ALD-titanium nitride (TiN) deposition chambers was investigated. To determine etch rates TiN-samples (created by ALD, CVD and PVD) were placed on a temperature controlled sample holder. An argon/NF3 mixture was excited in an upstream remote plasma source (RPS) and then routed through the reaction chamber. No further plasma activation inside the reaction chamber was done. The etching was monitored by in-situ reflectometry and etch rates were calculated. The effect of chlorine addition was also studied and strong influence on etch rates was found. The etch rate of TiN is dependent exponentially on temperature and very low etch rates were achieved below 70◦C at a chamber pressure ranging from 20-300 Pa. It was found that this correlates very well with the vapour pressure of the reaction product TiF4. At temperatures of 300◦C etch rates up to 800 nm/min were achieved. The optimum pressure for etching was found at 100 Pa while the pressure effect was small. The etch rate was mainly dependent on the availability of activated fluorine to create TiF4 by the reaction 2 NF3 → N2 + 6 F* 2 TiN + 8 F* → 2 TiF4 + N2 The NF3 decomposition to nitrogen and fluorine was monitored by quadrupole mass spectrometry (QMS) and was found to be greater than 96%. This figure allows an estimation of the amount of Global warm potential (GWP) gas emmited by the process for environmental considerations. Using argon/NF3 or argon/fluorine mixtures in RPS devices reduces the GWP emissions by more than 90% compared to RIE plasma cleaning with SF6. No etching occurred by using argon/chlorine only mixtures as no physical etch component was involved in RPS etch. However adding chlorine to the argon/NF3 mixture accelerated the etching process. Chlorine addition to the argon/NF3 mixture increased the etch rates up to 270% in the low pressure/low temperature regime. At higher temperatures or higher pressures the etch rates dropped below the etch rates achieved solely with fluorine chemistry. It must be emphasized that there is no physical acceleration of the ionized molecules toward the etched sample in this remote plasma setup. The usage of a remote plasma offers an alternative way to remove residues from chambers running TiN deposition processes. At high temperatures the Ar/NF3 offers remarkably high etching rates for TiN compared to other films (silicon nitride, -oxide, tungsten) usually cleaned by remote plasma. For low temperature applications the chlorine enhancement offers an interesting alternative to accelerate the etch process.
8

Ätzen von Titannitrid mit Halogenverbindungen: Kammerreinigung mit externer Plasmaquelle

Hellriegel, Ronald 19 May 2009 (has links)
Mit zunehmender Miniaturisierung mikroelektronischer Bauelemente steigen die Anforderungen an reproduzierbare qualitätskonforme Schichten. Um die zur Herstellung notwendigen ALD/PVD/CVD-Schichtabscheideanlagen in einen zuverlässigen Zustand zu versetzen, ist eine regelmäßige Kammerreinigung notwendig. Während des Abscheideprozesses werden nicht nur das Substrat, sondern auch die umliegenden Kammerteile beschichtet. Diese Schichten wachsen mit jedem Beschichtungszyklus weiter an. Der Stress zwischen Schicht und Kammerwand steigt beständig, und es besteht das Risiko das Teile abplatzen und auf die Waferoberfläche fallen und damit die Struktur unbrauchbar machen. Um das zu verhindern, muss die Kammerwand in einen regelmäßigen Zustand versetzt werden, in dem sichergestellt ist, daß keine Schichtreste abplatzen können. In der vorliegenden Arbeit wird ein neues Verfahren zur Trockenreinigung von ALD-Titannitrid Kammern vorgestellt. Dazu wurden TiN-Stücke (hergestellt im ALD, CVD, PVD-Verfahren) auf einem temperaturgeregelten Probenhalter platziert. Eine Argon/NF3 Gasmischung wurde in einer externen Plasmaquelle (RPS) zerlegt und in die Reaktionskammer geschleust. Die Ätzung wurde mit in-situ Reflexionsmessung beobachtet. Experimente mit Chlorzugabe wurden unternommen und ein starker Einfluss auf den Ätzmechanismus beobachtet. Die Ätzraten des TiN sind exponentiell abhängig von der Temperatur und proportional abhängig von der Verfügbarkeit atomaren Fluors. Dieses wird bei der Zerlegung von NF3 frei gesetzt und steht der Reaktion zur Verfügung. Die NF3-Zerlegung in Fluor und Stickstoff wurde mit Hilfe der Massenspektrometrie (QMS) untersucht, Zerlegungsgrade größer 96% wurden erreicht. Mit Hilfe dieser Messung kann der Einfluss der Kammerreinigung auf den Treibhausgasausstoß (GWP) bestimmt werden. Mit dem Ar/NF3-Verfahren können die GWP-Emissionen um 90% im Vergleich zur RIE-Ätzung mit SF6 reduziert werden. Mit Argon/Chlor-Plasmen konnte kein Titannitrid geätzt werden, da die physikalische Sputterkomponente fehlte. Durch Hinzufügen von Chlor zu einer Ar/NF3-Gasmischung konnte die Ätzrate um bis zu 270% im Bereich niedrige Temperaturen/niedriger Druck gesteigert werden. Bei höheren Temperaturen/höherem Druck fielen die Ar/NF3/Chlor Ätzraten allerdings deutlich hinter die des Ar/NF3 zurück. Die dazu führenden Effekte werden untersucht und ausgeführt. Die Nutzung von externen Plasmaquellen bietet eine vielversprechende Alternative um Abscheideanlagen von TiN-Rückständen reinigen zu können. Bei hohen Temperaturen werden deutlich höhere Ätzraten als bei anderen Schichten (SiN, SiO2, W) erreicht. Für Anwendungen im niedrigen Temperaturbereich erlaubt die Zugabe von Chlor interessante Anwendungsmöglichkeiten. / Demands on state of the art deposition technologies for semiconductor production focus on uniformity, repeatability and low defectivity. The chamber condition is a key parameter to achieve these high demands in chemical vapour deposition (CVD) processes and are even more critical to the atomic layer deposition processes (ALD). During the deposition process not only the wafer surface but other chamber parts as well are covered with a thin film. This film accumulates during the deposition cycles and is prone to fall off the walls and pollute the wafer surface. The chamber parts that are exposed to the deposition must be set back to a steady state so that no deposits fall off the walls. The chamber condition also changes uncontrolled with varying film condition on the wall. A new approach for cleaning of ALD-titanium nitride (TiN) deposition chambers was investigated. To determine etch rates TiN-samples (created by ALD, CVD and PVD) were placed on a temperature controlled sample holder. An argon/NF3 mixture was excited in an upstream remote plasma source (RPS) and then routed through the reaction chamber. No further plasma activation inside the reaction chamber was done. The etching was monitored by in-situ reflectometry and etch rates were calculated. The effect of chlorine addition was also studied and strong influence on etch rates was found. The etch rate of TiN is dependent exponentially on temperature and very low etch rates were achieved below 70◦C at a chamber pressure ranging from 20-300 Pa. It was found that this correlates very well with the vapour pressure of the reaction product TiF4. At temperatures of 300◦C etch rates up to 800 nm/min were achieved. The optimum pressure for etching was found at 100 Pa while the pressure effect was small. The etch rate was mainly dependent on the availability of activated fluorine to create TiF4 by the reaction 2 NF3 → N2 + 6 F* 2 TiN + 8 F* → 2 TiF4 + N2 The NF3 decomposition to nitrogen and fluorine was monitored by quadrupole mass spectrometry (QMS) and was found to be greater than 96%. This figure allows an estimation of the amount of Global warm potential (GWP) gas emmited by the process for environmental considerations. Using argon/NF3 or argon/fluorine mixtures in RPS devices reduces the GWP emissions by more than 90% compared to RIE plasma cleaning with SF6. No etching occurred by using argon/chlorine only mixtures as no physical etch component was involved in RPS etch. However adding chlorine to the argon/NF3 mixture accelerated the etching process. Chlorine addition to the argon/NF3 mixture increased the etch rates up to 270% in the low pressure/low temperature regime. At higher temperatures or higher pressures the etch rates dropped below the etch rates achieved solely with fluorine chemistry. It must be emphasized that there is no physical acceleration of the ionized molecules toward the etched sample in this remote plasma setup. The usage of a remote plasma offers an alternative way to remove residues from chambers running TiN deposition processes. At high temperatures the Ar/NF3 offers remarkably high etching rates for TiN compared to other films (silicon nitride, -oxide, tungsten) usually cleaned by remote plasma. For low temperature applications the chlorine enhancement offers an interesting alternative to accelerate the etch process.
9

Nanoscale Characterization and Control of Native Point Defects in Metal Oxide Semiconductors and Device Structures

Gao, Hantian 07 October 2021 (has links)
No description available.
10

Entwicklung einer lichtbogengestützten PECVD-Technologie für die Synthese siliziumbasierter Schichtsysteme unter Atmosphärendruck – Untersuchung des diffusionslimitierten Wachstumsregimes

Rogler, Daniela 29 October 2012 (has links) (PDF)
Atmosphärendruckplasmen sind aufgrund ihrer vergleichsweise einfachen Anlagentechnik, potentiell geringen Betriebs- und Investitionskosten sowie ihrer Flexibilität bezüglich Substratgröße seit vielen Jahren von großem Interesse. Die Nutzung von Plasmaquellen mit hoher Precursoranregungseffizienz und ausgedehnter Beschichtungszone ist in diesem Zusammenhang besonders vorteilhaft. In der vorliegenden Arbeit wird deshalb erstmals eine neuartige Langlichtbogenplasmaquelle vom Typ LARGE (Long Arc Generator) zur plasmagestützten Synthese von Schichten bei AP (Atmosphärendruck) eingesetzt. Bei der Remoteaktivierung des Precursors erweisen sich insbesondere sauerstoff- sowie stickstoffhaltige Plasmagase als geeignet, um einen signifikanten Anteil der Plasmaenergie in den Remotebereich zu transferieren. Die entwickelte bogenbasierten PECVD (Plasma Enhanced Chemical Vapour Deposition) unter Atmosphärendruckbedingungen ist durch die Erzeugung hochenergetischer Plasmen gekennzeichnet, der Precursor wird stark fragmentiert und ursprüngliche Bindungen des Precursormoleküls werden vollkommen aufgebrochen. Die Ergebnisse der Gasphasencharakterisierung mittels optischer Emissions- sowie Infrarotspektroskopie lassen beim Prozess der Precursorfragmentierung im Remoteplasma auf eine zentrale Bedeutung metastabiler sowie dissoziierter Spezies schließen. Weiterhin sind hohe Plasmaleistungen, Molekulargasanteile im Plasmagas und große Plasmagasflüsse für eine wirkungsvolle Remoteaktivierung des Precursors von Vorteil. Einen wichtigen Aspekt des Verfahrens stellt darüber hinaus die Möglichkeit der Synthese sauerstofffreier Schichtmaterialien dar. Es konnte gezeigt werden, dass sowohl der genutzte Atmosphärendruckreaktoraufbau mit seinem Gasschleusenkonzept, als auch die Gasreinheit des verwendeten Prozessgases zu keiner nennenswerten Einlagerung von Sauerstoff in die Schicht führt. Die Schichthärte synthetisierter Siliziumnitrid-Schichten lässt sich ohne zusätzliche Substratheizung durch Prozessparameteroptimierung bis auf eine Härte von 17 GPa steigern. Die dynamische Abscheiderate ist mit 39 nm∙mm/s ebenfalls für eine technische Anwendung ausreichend hoch. Eine eingehende Analyse aller Daten legt den Schluss nahe, dass das Schichtwachstum bei der Atmosphärendruck Remote-PECVD häufig kinetisch gehemmt ist und nicht im thermodynamischen Gleichgewicht stattfindet. Der Wachstumsprozess ist in diesem Fall durch das Phänomen des DLG (Diffusion Limited Growth) gekennzeichnet. Homogennukleation bzw. Gasphasennukleation spielt anders als bislang angenommen auch bei Atmosphärendruckbedingungen keine bzw. eine nur untergeordnete Rolle und ist damit nicht limitierend für die erzielbare mechanische und chemische Stabilität der gebildeten Schichten. Mit steigender Diffusionslimitierung des Schichtbildungsvorganges wird eine Zunahme der Schichtrauheit beobachtet, daraus und aus dem Zuwachs an strained sowie dangling Bonds in der Schicht resultiert eine gesteigerte Affinität der synthetisierten Schichten gegenüber Sauerstoff. Als Schlüsselparameter bezüglich Schichtmorphologie sowie Topographie wird der DLG-Quotient angesehen, welcher das Verhältnis aus Oberflächendiffusionskoeffizient und Auftreffrate schichtbildender Spezies auf dem Substrat darstellt. Damit wurden im Rahmen dieser Arbeit die entscheidenden und verfahrenslimitierenden Aspekte identifiziert und die Grundlage für die weitere Optimierung dieses und anderer Remote-AP-PECVD-Verfahren geschaffen. In ähnlicher Weise wie dies auch durch die Bereitstellung einer verbesserten thermischen Aktivierung des Diffusionsprozesses schichtbildender Spezies auf der Substratoberfläche geschieht, lässt sich mit Hilfe eines niedrigen Stickingkoeffizienten eine Diffusionslimitierung des Schichtbildungsvorgangs bei AP-PECVD unterdrücken. In diesem Zusammenhang besitzt insbesondere Ammoniak im Remotegas einen günstigen Einfluss auf die entstehende Schichtmorphologie und Konformalität der Beschichtung.

Page generated in 0.0587 seconds