• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 18
  • 5
  • 4
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 43
  • 6
  • 6
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Možnosti využití vláken na bázi druhotných a snadnoobnovitelných surovin při výrobě pokročilých stavebních materiálů / Possibilities of utilization fiber-based and secondary easy-renewable raw sources in the production of lightweight building materials

Horáková, Lucie January 2018 (has links)
The diploma thesis dealt with the possibilities of of utilization fiber-based and secondary easy-renewable raw sources in the production of lightweight building materials. The theoretical part includes literature search of the researches, which dealt with this issue. Appropriate sources of fibers were selected within the theoretical part and the findings were used in the practical part of the thesis. Within the practical part laboratory measurements and subsequent selection of the most suitable fibers were performed. Laboratory measurements and subsequent selection of the most suitable fibers were performed in the practical part. Subsequently, designs of thermal insulating plasters (with the possibility of using as repairing plasters) were made on the basis of lightweight glass aggregate, to which the production of test specimens was connected. Laboratory tests were performed on fresh and hardened mortars and subsequently evaluated. In conclusion, an economic evaluation and assessment of the competitiveness of the proposed plasters was carried out.
42

Vývoj speciálních sanačních hmot na beton pro extrémní namáhání s využitím druhotných surovin / DEVELOPMENT OF SPECIAL REHABILITATION MATERIALS FOR CONCRETE FOR EXTREME STRESS WITH USE OF SECONDARY RAW MATERIALS

Hodul, Jakub January 2019 (has links)
The doctoral thesis deals with finding the use of some waste and secondary raw materials in the production of special polymer remediation materials for concrete, which could be applied even in constructions, where extreme mechanical and chemical load is occurred. The aim of this doctoral thesis is experimental examination of the possibility of using selected types of waste, including hazardous waste which represent the highest risk to environment, and secondary raw materials as a substitute for the currently used primary fillers in order to reduce the ecological footprint of the product itself. Some types of secondary raw materials, such as filter fly ash contaminated by flue gas denitrification process, are no longer used as a concrete admixture or partial cement substitution due to unwanted release of toxic ammonia (NH3). Mainly for this reason, the thesis deals with the progressive utilization of such types of secondary raw materials as well as with another currently unused waste into polymeric patching, grouting and anchoring materials while preserving or improving the final properties compared to reference materials using only primary raw materials. The result of this thesis is to find out suitable formulations for efficient preparation of special polymeric remediation materials for concrete containing waste and secondary raw materials as fillers. The partial aim of the thesis and a the scientific contribution is an observation of the developed materials internal structure using a modern device, CT tomography, an influence of the filler type on the long-term durability, and last but not least the observation of the rate of pollutants incorporation, found in hazardous waste, into the polymeric matric with the aid of EDX and FTIR analysis.
43

Rehabilitation of Exterior RC Beam-Column Joints using Web-Bonded FRP Sheets

Mahini, Seyed Saeid Unknown Date (has links)
In a Reinforced Concrete (RC) building subjected to lateral loads such as earthquake and wind pressure, the beam to column joints constitute one of the critical regions, especially the exterior ones, and they must be designed and detailed to dissipate large amounts of energy without a significant loss of, strength, stiffness and ductility. This would be achieved when the beam-column joints are designed in such a way that the plastic hinges form at a distance away from the column face and the joint region remain elastic. In existing frames, an easy and practical way to implement this behaviour following the accepted design philosophy of the strong-column weak-beam concept is the use a Fibre Reinforced Plastic (FRP) retrofitting system. In the case of damaged buildings, this can be achieved through a FRP repairing system. In the experimental part of this study, seven scaled down exterior subassemblies were tested under monotonic or cyclic loads. All specimens were designed following the strong-column weak-beam principal. The three categories selected for this investigation included the FRP-repaired and FRP-retrofitted specimens under monotonic loads and FRP-retrofitted specimen under cyclic loads. All repairing/retrofitting was performed using a new technique called a web-bonded FRP system, which was developed for the first time in the current study. On the basis of test results, it was concluded that the FRP repairing/retrofitting system can restore/upgrade the integrity of the joint, keeping/upgrading its strength, stiffness and ductility, and shifting the plastic hinges from the column face toward the beam in such a way that the joint remains elastic. In the analytical part of this study, a closed-form solution was developed in order to predict the physical behaviour of the repaired/retrofitted specimens. Firstly, an analytical model was developed to calculate the ultimate moment capacity of the web-bonded FRP sections considering two failure modes, FRP rupture and tension failure, followed by an extended formulation for estimating the beam-tip displacement. Based on the analytical model and the extended formulation, failure mechanisms of the test specimens were implemented into a computer program to facilitate the calculations. All seven subassemblies were analysed using this program, and the results were found to be in good agreement with those obtained from experimental study. Design curves were also developed to be used by practicing engineers. In the numerical part of this study, all specimens were analysed by a nonlinear finite element method using ANSYS software. Numerical analysis was performed for three purposes: to calculate the first yield load of the specimens in order to manage the tests; to investigate the ability of the web-bonded FRP system to relocate the plastic hinge from the column face toward the beam; and to calibrate and confirm the results obtained from the experiments. It was concluded that numerical analysis using ANSYS could be considered as a practical tool in the design of the web-bonded FRP beam-column joints.

Page generated in 0.0656 seconds