• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 12
  • 4
  • 1
  • 1
  • 1
  • Tagged with
  • 19
  • 19
  • 6
  • 5
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Stochastic resonance in biological systems

Fallon, James Bernard, 1975- January 2001 (has links)
Abstract not available
12

An investigation into the effect of electrostatic actuation and mechanical shock on microstructures

Ibrahim, Mahmoud Ibrahim. January 2009 (has links)
Thesis (M.S.)--State University of New York at Binghamton, Thomas J. Watson School of Engineering and Applied Science, Department of Mechanical Engineering, 2009. / Includes bibliographical references.
13

Novo sensor de vazão de fluidos com foco em aplicações biomedicas / New fluid flow sensor aimed at biomedical applications

Ramos, Andre de Paula 14 August 2018 (has links)
Orientadores: Antonio Augusto Fasolo Quevedo, Waldir Antonio Bizzo / Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Eletrica e de Computação / Made available in DSpace on 2018-08-14T20:06:15Z (GMT). No. of bitstreams: 1 Ramos_AndredePaula_M.pdf: 3634888 bytes, checksum: 6ac215157ad6cab344d793b24a2bc1cd (MD5) Previous issue date: 2009 / Resumo: O espirômetro é um dispositivo que avalia a ventilação pulmonar. Este é um trabalho preliminar que propõe um sensor eletromecânico de fluxo com foco na aplicação biomédica de espirometria. O sensor consiste de um corpo rombudo, introduzido em um cano por um orifício, e um acelerômetro. A colisão das partículas do fluido contra o corpo rombudo gera vórtices, que por sua vez induzem vibrações no corpo. Forças de arrasto também estão presentes e tendem a movimentar o corpo. Os movimentos decorrentes do escoamento são captados pelo acelerômetro, que é posicionado na porção do corpo rombudo externa ao cano, evitando o contato do elemento eletrônico (acelerômetro) com o fluido, o que pode facilitar procedimentos de esterilização da luz do cano. Foram analisados corpos rombudos em forma de lâmina (com e sem massa adicional) e cilindro. O procedimento experimental consistiu no estabelecimento de seis regimes permanentes de entrada (vazão de ar) e na captura do sinal de resposta do sensor (nos três eixos). Foram coletadas 24 respostas do sensor para cada um dos regimes e posteriormente foram levantadas as curvas do sensor e realizadas análises estatísticas. Resultados significativos foram encontrados para o eixo do acelerômetro paralelo ao fluxo. Para a lâmina, o Valor Eficaz (RMS) do sinal foi proporcional à vazão com linearidade e coeficiente de correlação variando, respectivamente, de 19% e R2 = 0,99058, para o ensaio sem massa adicional, a até 8,4% e R2 = 0,9741, para o ensaio com massa adicional. O arrasto contínuo (valor médio da resposta) não guardou relação monotônica com o aumento da velocidade do ar. Já para o cilindro, o arrasto foi proporcional à vazão com altíssima linearidade e correlação (0,17% e R2 = 0,96347), mas o RMS do sinal não guardou relação monotônica com a vazão. Finalmente, embora sejam necessários mais estudos para utilizar o sensor proposto em equipamentos de espirometria, este trabalho demonstra que o sensor responde proporcionalmente às entradas (escoamento), dentro (de 0 a até 14 l/s) e fora da faixa (até 21 l/s) de operação do espirômetro com altos coeficientes de correlação e linearidade, além de respostas diferenciadas dadas diferentes entradas (vazões) comprovadas por ANOVA (valor de p < 10-15). / Abstract Spirometer is a device that evaluates pulmonary ventilation. This paper presents a preliminary study of a new electromechanical sensor, focused on the biomedical application of spirometry. The sensor is composed of a bluff body positioned inside a tube trough a hole, being a part of the body inside and another part outside of the tube, and an accelerometer positioned on the outside part. Within a fluid flow, the bluff body causes vortex shedding, and the vortexes induce vibrations on the body. Also, the viscous force of the flow drags the bluff body. Both movements are captured by the accelerometer and correlated with the flow. One important feature of this sensor is that the fluid does not contact any of the electronics, easing tube lumen sterilization procedures. Three types of bluff bodies were studied: two blades (with and without additional mass), and one cylinder. The experimental procedure consisted of establishing six different air flows and then capturing the accelerometer response in all of its three axes. Each of the collected signals from the accelerometer was divided in 24 parts, and these parts where analyzed through statistics; finally the mean response of the sensor was plotted. Best results were found in the accelerometer axis parallel to the air flow. In the blade tests, the RMS value of the AC component was proportional to the air flow, with linearity and correlation varying, respectively, from 19% and R2 = 0.99058 for the blade without mass, to 8.4% and R2 = 0.9741 for the blade with additional mass. It was observed that the mass addition reduced in a meaningful way the response variances. Yet the viscous force (DC value) did not respond in a monotonic way with the increase of air flow. On the other hand, the viscous force was the most expressive regarding the experiments with the cylinder (linearity of 0.17% and R2 = 0.96347), but the RMS value did not respond in a monotonic way. Finally, although further studies are needed to prove that the proposed sensor is efficient to be used in spirometry equipment, this study demonstrates that this sensor responds proportionally to the flow input, within (0 to 14 l/s) and without (up to 21 l/s) the spirometer operation range, with high correlation and linearity, as well as varying responses, given different inputs (flow), as verified by ANOVA test (p < 10-15). / Mestrado / Engenharia Biomedica / Mestre em Engenharia Elétrica
14

Structure And Vibrational Spectra Of Photogenerated Intermediates Of Quinones : A Resonance Raman Study

Balakrishnan, G 11 1900 (has links) (PDF)
No description available.
15

Dynamics of fluid-filled porous media under wave action : Excitation of surf-beats in the ocean

Foda, Mostafa Ameen January 1980 (has links)
Thesis (Sc.D.)--Massachusetts Institute of Technology, Dept. of Civil Engineering, 1980. / MICROFICHE COPY AVAILABLE IN ARCHIVES AND ENGINEERING. / Includes bibliographies. / by Mostafa Ameen Foda. / Sc.D.
16

Influence of Sensory Feedback on Rhythmic Movement: A Computational Study of Resonance Tuning in Biological Systems

Williams, Carrie 20 November 2006 (has links)
Rhythmic movementssuch as swimming, flying, and walkingare ubiquitous in nature. Intrinsically active neural networks called central pattern generators (CPGs) provide the feedforward signals to actuate these movements, but the preferred movement frequency is often equivalent to the resonant frequency of the musculoskeletal system. Sensory feedback is essential to synchronize the neural and musculoskeletal systems to the mechanical resonant frequency, a phenomenon called resonance tuning. In this dissertation, we use a simple computational model of rhythmic movement to understand how the configuration of sensory feedback affects both the sensitivity of resonance tuning to parameter variation and the resiliency of resonance tuning to perturbation. Although previous studies have shown that resonance tuning is limited to frequencies that are above the intrinsic CPG frequency, we demonstrate that this limitation is only valid with negative feedback and with endogenously bursting CPG neurons. Specifically, we show that with positive feedback, resonance tuning occurs at frequencies that are below the intrinsic CPG frequency. Moreover, when the synaptic connections within the CPG are required for bursting activity, resonance tuning occurs both above and below the intrinsic CPG frequency with negative feedback and does not occur with positive feedback. Using Floquet analysis, we then demonstrate that perturbations decay more quickly when resonance tuning is realized with positive than with negative proportional feedback. Finally, we evaluate how the intrinsic CPG frequency, feedback gain, and mechanical damping affect the stability and range of resonance tuning with negative and positive feedback. Overall, these results indicate that the configuration of sensory feedback dramatically affects both the parameter space in which resonance tuning occurs and the stability of the resultant periodic motion.
17

Experimental and Computational Analysis of Dynamic Loading for Bone Formation

Dodge, Todd Randall 12 November 2013 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Bone is a dynamic tissue that is constantly remodeling to repair damage and strengthen regions exposed to loads during everyday activities. However, certain conditions, including long-term unloading of the skeleton, hormonal imbalances, and aging can disrupt the normal bone remodeling cycle and lead to low bone mass and osteoporosis, increasing risk of fracture. While numerous treatments for low bone mass have been devised, dynamic mechanical loading modalities, such as axial loading of long bones and lateral loading of joints, have recently been examined as potential methods of stimulating bone formation. The effectiveness of mechanical loading in strengthening bone is dependent both on the structural and geometric characteristics of the bone and the properties of the applied load. For instance, curvature in the structure of a bone causes bending and increased strain in response to an axial load, which may contribute to increased bone formation. In addition, frequency of the applied load has been determined to impact the degree of new bone formation; however, the mechanism behind this relationship remains unknown. In this thesis, the application of mechanical loading to treat osteoporotic conditions is examined and two questions are addressed: What role does the structural geometry of bone play in the mechanical damping of forces applied during loading? Does mechanical resonance enhance geometric effects, leading to localized areas of elevated bone formation dependent on loading frequency? Curvature in the structure of bone was hypothesized to enhance its damping ability and lead to increased bone formation through bending. In addition, loading at frequencies near the resonant frequencies of bone was predicted to cause increased bone formation, specifically in areas that experienced high principal strains due to localized displacements during resonant vibration. To test the hypothesis, mechanical loading experiments and simulations using finite element (FE) analysis were conducted to characterize the dynamic properties of bone. Results demonstrate that while surrounding joints contribute to the greatest portion of the damping capacity of the lower limb, bone absorbs a significant amount of energy through curvature-driven bending. In addition, results show that enhanced mechanical responses at loading frequencies near the resonant frequencies of bone may lead to increased bone formation in areas that experience the greatest principal strain during vibration. These findings demonstrate the potential therapeutic effects of mechanical loading in preventing costly osteoporotic fractures, and explore characteristics of bone that may lead to optimization of mechanical loading techniques. Further investigation of biomechanical properties of bone may lead to the prescribing of personalized mechanical loading treatments to treat osteoporotic diseases.
18

Mikromechanisches kraftgekoppeltes Sensor-Aktuator-System für die resonante Detektion niederfrequenter Schwingungen / Micro-mechanical force-coupled sensor-actuator-system for the resonant detection of low frequency vibrations

Forke, Roman 25 January 2013 (has links) (PDF)
Die vorliegende Arbeit beschreibt die Entwicklung und Charakterisierung eines mikromechanischen kraftgekoppelten Schwingsystems für die resonante Detektion niederfrequenter Schwingungen. Es wird ein neuartiges Prinzip vorgestellt, das es ermöglicht, niederfrequente Vibrationen frequenzselektiv zu erfassen. Mittels Amplitudenmodulation wird das niederfrequente Signal in einen höheren Frequenzbereich umgesetzt. Durch Ausnutzung der mechanischen Resonanzüberhöhung wird aus dem breitbandigen Signal ein schmales Band herausgefiltert, die anderen Frequenzbereiche werden unterdrückt. Auf diese Weise wird direkt die spektrale Information des niederfrequenten Signals gewonnen. Eine Fourier-Transformation ist hierbei nicht notwendig. Die Abstimmung des Sensors erfolgt über eine Wechselspannung und führt dadurch zu einer einfachen Auswertung. Die Schwerpunkte der Arbeit liegen in den theoretischen Untersuchungen zum neuartigen Sensorprinzip, in der Entwicklung einer mikromechanischen Sensorstruktur zum Einsatz des neuen Prinzips sowie in der Entwicklung und Charakterisierung eines Messsystems zur Detektion niederfrequenter mechanischer Schwingungen mit dem neuen Sensor. / This thesis describes the development and characterization of a micromechanical force coupled oscillator system for the resonant detection of low frequency vibrations. It presents a novel working principle that enables spectral measurements of low frequency vibrations. The low frequency spectral content is converted into a higher frequency range by means of amplitude modulation. Due to the mechanical resonance a narrow band is filtered out of the wide band vibration signal. The remaining frequency content is suppressed. Hence, the spectral information is directly obtained with the sensor system without a fast Fourier transform. The tuning is done with an AC voltage resulting in a simple analysis. The main focuses of the work are the theoretical analysis of this novel sensor principle, the development of the micromechanical sensor structure for the use of the novel principle as well as the development and characterization of a measurement system for the spectral detection of low frequency mechanical vibrations with the developed sensor system.
19

Mikromechanisches kraftgekoppeltes Sensor-Aktuator-System für die resonante Detektion niederfrequenter Schwingungen

Forke, Roman 23 November 2012 (has links)
Die vorliegende Arbeit beschreibt die Entwicklung und Charakterisierung eines mikromechanischen kraftgekoppelten Schwingsystems für die resonante Detektion niederfrequenter Schwingungen. Es wird ein neuartiges Prinzip vorgestellt, das es ermöglicht, niederfrequente Vibrationen frequenzselektiv zu erfassen. Mittels Amplitudenmodulation wird das niederfrequente Signal in einen höheren Frequenzbereich umgesetzt. Durch Ausnutzung der mechanischen Resonanzüberhöhung wird aus dem breitbandigen Signal ein schmales Band herausgefiltert, die anderen Frequenzbereiche werden unterdrückt. Auf diese Weise wird direkt die spektrale Information des niederfrequenten Signals gewonnen. Eine Fourier-Transformation ist hierbei nicht notwendig. Die Abstimmung des Sensors erfolgt über eine Wechselspannung und führt dadurch zu einer einfachen Auswertung. Die Schwerpunkte der Arbeit liegen in den theoretischen Untersuchungen zum neuartigen Sensorprinzip, in der Entwicklung einer mikromechanischen Sensorstruktur zum Einsatz des neuen Prinzips sowie in der Entwicklung und Charakterisierung eines Messsystems zur Detektion niederfrequenter mechanischer Schwingungen mit dem neuen Sensor. / This thesis describes the development and characterization of a micromechanical force coupled oscillator system for the resonant detection of low frequency vibrations. It presents a novel working principle that enables spectral measurements of low frequency vibrations. The low frequency spectral content is converted into a higher frequency range by means of amplitude modulation. Due to the mechanical resonance a narrow band is filtered out of the wide band vibration signal. The remaining frequency content is suppressed. Hence, the spectral information is directly obtained with the sensor system without a fast Fourier transform. The tuning is done with an AC voltage resulting in a simple analysis. The main focuses of the work are the theoretical analysis of this novel sensor principle, the development of the micromechanical sensor structure for the use of the novel principle as well as the development and characterization of a measurement system for the spectral detection of low frequency mechanical vibrations with the developed sensor system.

Page generated in 0.1138 seconds