• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 176
  • 37
  • 27
  • 16
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 2
  • 2
  • 1
  • Tagged with
  • 339
  • 58
  • 50
  • 45
  • 42
  • 39
  • 38
  • 36
  • 35
  • 32
  • 30
  • 29
  • 29
  • 29
  • 27
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
151

High frequency capacitive single crystal silicon resonators and coupled resonator systems

Pourkamali, Siavash 11 October 2006 (has links)
The objective of the work presented in this thesis is to implement high-Q silicon capacitive micromechanical resonators operating in the HF, VHF and UHF frequency bands. Several variations of a fully silicon-based bulk micromachining fabrication process referred to as HARPSS have been developed, characterized and optimized to overcome most of the challenges facing application of such devices as manufacturable electronic components. Several micromechanical structures for implementation of high performance capacitive silicon resonators covering various frequency ranges have been developed under this work. Design criteria and electromechanical modeling of such devices is presented. Under this work, HF and VHF resonators with quality factors in the tens of thousands and RF-compatible equivalent electrical impedances have been implemented successfully. Resonance frequencies in the GHz range with quality factors of a few thousands and lowest motional impedances reported for capacitive resonators to date have been achieved. Several resonator coupling techniques for implementation of higher order resonant systems with possibility of extension to highly selective bandpass filters have been investigated and practically demonstrated. Finally, a wafer-level vacuum sealing technique applicable to such resonators has been developed and its reliability and hermeticity is characterized.
152

High brightness lasers

Naidoo, Darryl 04 1900 (has links)
Thesis (PhD)--Stellenbosch University, 2015.
153

Integrated inertial measurement units using silicon bulk-acoustic wave gyroscopes

Serrano, Diego Emilio 07 January 2016 (has links)
This dissertation discusses the design, simulation and characterization of process-compatible accelerometers and gyroscopes for the implementation of multi-degree-of-freedom (multi-DOF) systems. All components presented herein were designed to operate under the same vacuum-sealed environment to facilitate batch fabrication and wafer-level packaging (WLP), enabling the development of small form-factor single-die inertial measurement units (IMUs). The high-aspect-ratio poly and single-crystal silicon (HARPSS) process flow was used to co-fabricate the devices that compose the system, enabling the implementation ultra-narrow capacitive gaps (< 300 nm) in thick device-layer substrates (40 um). The presented gyroscopes were implemented as high-frequency BAW disk resonators operating in a mode-matched condition. A new technique to reduced dependencies on environmental stimuli such as temperature, vibration and shock was introduced. Novel decoupling springs were utilized to effectively isolate the gyros from their substrate, minimizing the effect that external sources of error have on offset and scale-factor. The substrate-decoupled (SD) BAW gyros were interfaced with a customized IC to achieve supreme random-vibration immunity (0.012 (deg/s)/g) and excellent rejection to shock (0.075 (deg/s)/g). With a scale factor of 800 uV/(deg/s), the complete SD-BAW gyro system attains a large full-scale range (2500 deg/s) with excellent linearity. The measured angle-random walk (ARW) of 0.36 deg/rthr and bias-instability of 10.5 deg/hr are dominated by the thermal and flicker noise of the IC, respectively. Additional measurements using external electronics show bias-instability values as low as 3.5 deg/hr. To implement the final monolithic multi-DOF IMU, accelerometers were carefully designed to operate in the same vacuum environment required for the gyroscopes. Narrow capacitive gaps were used to adjust the accelerometer squeeze-film damping (SFD) levels, preventing an under-damped response. Robust simulation techniques were developed using finite-element analysis (FEA) tools to extract accurate values of SFD, which were then match with measured results. Ultra-small single proof-mass tri-axial accelerometers with Brownian-noise as low as 30 ug/rtHz were interfaced with front-end electronics exhibiting scale-factor values in the order of 5 to 10 mV/g and cross-axis sensitivities of less than 3% before any electronic compensation.
154

Optical properties of semiconductors quantum microcavity structures

Afshar, Abolfazl Mozaffari January 1996 (has links)
No description available.
155

Cavity Techniques for Volume Holography

Miller, Bo Elliot, Miller, Bo Elliot January 2016 (has links)
Volume Holographic Data Storage Systems (HDSS) has been of interest for almost seven decades, and are now considered as a viable option for Write Once Read Many (WORM) cold data storage applications. Thanks to the Bragg selectivity of thick volume holograms, HDSS stores several hundreds of holograms on top of each other, called multiplexed data pages, by which data recording density can be substantially increased compared to surface recordings. On the other hand, signal intensity upon reconstruction of such multiplexed data pages inversely scales with number of multiplexing squared. Therefore, longer detection time and/or a high power laser along with a large dynamic range material is needed to make HDSS a truly viable "fast and high density" option for WORM applications. Historically, the trade-off between data density and data rate is well recognized. The challenge has been partially solved by continuous efforts such as improvement of materials, optical architectures, opto-mechanical systems and signal processing [1,2]. In this dissertation, we provide an additional pathway for HDSS to further increase both data density and transfer rates which is Cavities Enhancement Techniques for HDSS, to overcome the fundamental tradeoff. Key ideas are: recycling light with cavity to enhance data rate, and increasing number of multiplexing by combining cavity-eigenmode multiplexing, a subset of orthogonal phasecode multiplexing, with angular multiplexing. Based on this idea, we design and demonstrate Cavity-enhanced HDSS in such a way that we increase data rate and/or data density by at least factor of 2 while taking advantage of previous improvements as they are, or only with the minimum amount of modifications. In Section 1, we review history of HDSS and summarize the latest research results of HDSS and requirements on modern optical data storage systems as they relate to our solutions. In Section 2, theory of volume holography is reviewed by emphasizing understanding of angular and orthogonal phase code multiplexing. In Section 3 the theory of cavity enhanced reference arms is presented. We discuss how cavities provide a coherent boost to the beam power, which can be used in recording to alleviate source power requirements and/or increase the data recording rate and demonstrate the enhancement experimentally. Beyond basic enhancement, cavities also enable orthogonal phase code multiplexing via cavity eigenmodes. In Section 4, we experimentally demonstrate angular and orthogonal phase code hybrid multiplexing to overcome the limitation of the maximum number of multiplexing imposed by the geometrical constraints of angular multiplexing. In Section 5, novel aspects of the research are discussed in conjunction with the application of the technology for commercial use. Conclusions and future research direction are addressed in Section 6.
156

Experimental Synchronization of Chaotic Attractors Using Control

Newell, Timothy C. (Timothy Charles) 12 1900 (has links)
The focus of this thesis is to theoretically and experimentally investigate two new schemes of synchronizing chaotic attractors using chaotically operating diode resonators. The first method, called synchronization using control, is shown for the first time to experimentally synchronize dynamical systems. This method is an economical scheme which can be viably applied to low dimensional dynamical systems. The other, unidirectional coupling, is a straightforward means of synchronization which can be implemented in fast dynamical systems where timing is critical. Techniques developed in this work are of fundamental importance for future problems regarding high dimensional chaotic dynamical systems or arrays of mutually linked chaotically operating elements.
157

Nonlinear mechanics and nonlinear material properties in micromechanical resonators

Boales, Joseph Anthony 11 December 2018 (has links)
Microelectromechanical Systems are ubiquitous in modern technology, with applications ranging from accelerometers in smartphones to ultra-high precision motion stages used for atomically-precise positioning. With the appropriate selection of materials and device design, MEMS resonators with ultra-high quality factors can be fabricated at minimal cost. As the sizes of such resonators decrease, however, their mechanical, electrical, and material properties can no longer be treated as linear, as can be done for larger-scale devices. Unfortunately, adding nonlinear effects to a system changes its dynamics from exactly-solvable to only solvable in specific cases, if at all. Despite (and because of) these added complications, nonlinear effects open up an entirely new world of behaviors that can be measured or taken advantage of to create even more advanced technologies. In our resonators, oscillations are induced and measured using aluminum nitride transducers. I used this mechanism for several separate highly-sensitive experiments. In the first, I demonstrate the incredible sensitivity of these resonators by actuating a mechanical resonant mode using only the force generated by the radiation pressure of a laser at room temperature. In the following three experiments, which use similar mechanisms, I demonstrate information transfer and force measurements by taking advantage of the nonlinear behavior of the resonators. When nonlinear resonators are strongly driven, they exhibit sum and difference frequency generation, in which a large carrier signal can be mixed with a much smaller modulation to produce signals at sum and difference frequencies of the two signals. These sum and difference signals are used to detect information encoded in the modulation signal using optical radiation pressure and acoustic pressure waves. Finally, in my experiments, I probe the nonlinear nature of the piezoelectric material rather than take advantage of the nonlinear resonator behavior. The relative sizes of the linear and nonlinear portions of the piezoelectric constant can be determined because the force applied to the resonator by a transducer is independent of the dielectric constant. This method allowed me to quantify the nonlinear constants.
158

Desenvolvimento de um laser DPSSL polarizado com mais de 100 W de potência e parâmetro de qualidade próximo de um / Development of a polarized DPSSL laser with over 100 W of power with beam parameter near one

Bereczki, Allan 18 April 2016 (has links)
A operação dinamicamente estável com zonas conjuntas foi obtida para um ressonador laser contendo dois bastões de Nd:YAG com módulos laser comerciais. O ressonador não polarizado gerou 115 W de potência no modo transversal fundamental TEM00. Quando polarizado por lâmina de Brewster atingiu 100,5W de potência de saída com 91% de polarização. Quando o ressonador foi polarizado com um polarizador de filme fino, obteve-se melhora na qualidade de feixe e um aumento na polarização, com o valor de M2 sendo 1,56 e 1,84 nas direções x e y respectivamente com 95,4% de polarização. A potência de saída foi, ao nosso conhecimento, a mais alta obtida para lasers polarizados operando no modo fundamental e usando módulos lasers comerciais de Nd:YAG bombeados lateralmente por diodos sem nenhuma preparação especial. / Dynamically stable operation with joined stability zones of a linearly polarized resonator is shown for a laser containing two diode side-pumped Nd:YAG rods with commercial laser modules. The unpolarised resonator provided 115 W of TEM00 output. When polarized by a Brewster plate, it reached 100.5 W of output power with 91% polarization. When the resonator was polarized by a thin film polarizer, an increase in beam quality was obtained with M2 values of 1.56 and 1.84 in the x and y directions, respectively with 95.4% polarization. The output power achieved is, to our knowledge, the highest reported for polarized, fundamental-mode lasers using commercial, diode side-pumped Nd:YAG modules without any special preparation.
159

Síntese e projeto de filtros reconfiguráveis de microondas utilizando ressoadores tipo patch. / Synthesis and design of tunable microwave bandpass filters using planar patch resonators.

Ariana Maria da Conceição Lacorte Caniato Serrano 02 May 2011 (has links)
O objetivo desta tese é o projeto e a síntese de filtros passa-faixa sintonizáveis em frequências de micro-ondas utilizando ressoadores planares tipo patch. As características dos filtros projetados, tais como frequência central, largura de banda e/ou seletividade, são eletronicamente ajustadas por uma tensão de controle DC. Uma metodologia para a concepção e síntese de filtros sintonizáveis patch é desenvolvida e aplicada a dois filtros com topologias triangular e circular. A metodologia fornece técnicas para extrair o esquema de acoplamento que modela o comportamento do filtro e as equações necessárias para calcular a matriz de acoplamento. Então, a resposta teórica do filtro resultante da análise dos coeficientes da matriz de acoplamento é comparada com os resultados das simulações completas. As simulações completas combinam os resultados da simulação eletromagnética 3D do layout do filtro com os resultados da simulação elétrica dos dispositivos de ajuste, representados por seu modelo elétrico equivalente de elementos discretos. Isso permite o correto modelamento das características do ajuste e a definição de seus limites. A fim de validar a metodologia, os filtros patch sintonizáveis são fabricados usando tecnologia de micro-ondas de circuito Integrado (MIC) sobre substratos flexíveis. As dimensões mínimas são maiores do que 0,5 mm, garantindo um processo de fabricação de baixo custo. O primeiro filtro é um filtro patch dual-mode sintonizável que utiliza um ressonador triangular com duas fendas perpendiculares. A frequência central e a largura de banda do filtro podem ser ajustadas individualmente por um controle independente de cada modo fundamental degenerado. O controle dos modos é feito através de diodos varactor montados nas fendas do ressoador patch. O filtro apresenta variação de 20 % de frequência central de 2,9 GHz a 3,5 GHz. A banda relativa de 3 dB varia de 4 % a 12 %. Duas tensões de polarização DC diferentes variando de 2,5 V a 22 V são usadas para ajustar este filtro. O segundo filtro é um filtro patch triple-mode sintonizável que utiliza um ressoador circular com quatro fendas radiais, nas quais são conectados os diodos varactor. A frequência central e a largura de banda deste filtro variam simultaneamente. O filtro apresenta 27 % de variação da frequência central de 1,8 GHz a 2,35 GHz com variação concomitante da largura de banda relativa de 8,5 % para 26 %. Apenas uma única tensão de polarização DC variando de 0,5 V a 20 V é usada para sintonizar este filtro. Ambos os filtros são capazes de lidar com níveis de potência de no mínimo +14,5 dBm (filtro com ressoador triangular) e +12,9 dBm (filtro com ressoador circular). / The objective of this thesis is the design and synthesis of tunable bandpass filters at microwave frequencies using planar patch resonators. The characteristics of the designed filters, such as center frequency, bandwidth, and/or selectivity, are electronically adjusted by a DC voltage control. A methodology for the design and synthesis of tunable patch filters is developed and applied to two filters with triangular and circular topologies. The methodology provides techniques to extract the coupling scheme that models the filter behavior and the necessary equations for calculating the corresponding coupling matrix. Then, the theoretical filter response resulting from the analysis of the coupling matrix coefficients is compared to the results of complete simulations. The complete simulations combine the results of the 3D electromagnetic (EM) simulation of the filter layout with the results of the electrical simulation of the tuning devices, represented by their lumped elements equivalent model. This allows the correct model of the tuning effect and the definition of the tuning possibilities and limits. In order to validate the methodology, the tunable patch filters are fabricated using Microwave Integrated Circuit (MIC) technology on flexible substrates. The minimum dimensions are greater than 0.5 mm, ensuring a low cost fabrication process. The first filter is a tunable dual-mode patch filter using a triangular resonator with two perpendicular slots. The central frequency and the bandwidth of the filter are individually tuned by independently controlling each degenerate fundamental mode. The topology with uncoupled modes allows the control of each resonant mode frequency by varactor diodes mounted across the slots of the patch resonator. This filter presents a center frequency tuning range of 20 %, varying from 2.9 GHz to 3.5 GHz. The FBW 3dB can be varied from 4 % to 12 %. Two different DC bias voltages ranging from 2.5 V to 22 V are used to tune this filter. The second filter is a tunable triple-mode patch filter using a circular resonator with four slots, across which the varactor diodes are connected. The center frequency and bandwidth of this filter vary simultaneously. This filter presents a center frequency tuning range of 27 %, varying from 1.8 GHz to 2.35 GHz, changing concomitantly with the bandwidth from 8.5 % to 26 %. Only a single DC bias voltage ranging from 0.5 V to 20 V is used to tune the filter. Both filters are able to handle power levels as high as +14.5 dBm (triangular patch filter) and +12.9 dBm (circular patch filter).
160

Monolithically Integrated Acoustic Resonators on CMOS for Radio-Frequency Circuit Applications

Edrees, Hassan January 2016 (has links)
Wireless communication circuits rely on the use of high-quality passive elements (inductor-capacitor resonant tanks) for the implementation of selective filters and high-purity frequency references (oscillators). Typically available CMOS, on-chip passives suffer from high losses, primarily inductors, and consume large areas that cannot be populated by transistors leading to a significant area penalty. Mechanical resonators exhibit significantly lower losses than their electrical counterparts due to the reduced parasitic loss mechanisms in the mechanical domain. Efficient transduction schemes such as the piezoelectric effect allow for simple electrical actuation and read-out of such mechanical resonators. Piezoelectric thin-film bulk acoustic resonators (FBARs) are currently among the most promising and widely used mechanical resonator structures. However, FBARs are currently only available as off-chip components, which must be connected to CMOS circuitry through wire-bonding and flip-chip schemes. The use of off-chip interfaces introduces considerable parasitics and significant limitations on integration density. Monolithic integration with CMOS substrates alleviates interconnect parasitics, increases integration density and allows for area sharing whereby FBARs reside atop active CMOS circuitry. Close integration of FBARs and CMOS transistors can also enable new circuit paradigms, which simultaneously leverage the strengths of both components. Described here, is a body of work conducted to integrate FBAR resonators with active CMOS substrates (180nm and 65nm processes). A monolithic fabrication method is described which allows for FBAR devices to be constructed atop the backend small CMOS dies through low thermal-budget (< 300°C) post-processing. Stand-alone fabricated devices are characterized and the extracted electrical model is used to design two oscillator chips. The chips comprise amplifier circuitry that functions along with the integrated FBARs to achieve oscillation in the 0.8-2 GHz range. The chips also include test structures to assess the performance of the underlying CMOS transistors before and after the resonator post-processing. A successful FBAR-CMOS oscillator is demonstrated in 65nm CMOS along with characterization of FBARs built on CMOS. The approach presented here can be used for experimenting with more complex circuits leveraging the co-integration of piezoelectric resonators and CMOS transistors.

Page generated in 0.0685 seconds