• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 178
  • 37
  • 27
  • 16
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 4
  • 2
  • 2
  • 1
  • Tagged with
  • 341
  • 58
  • 50
  • 47
  • 42
  • 39
  • 38
  • 36
  • 36
  • 32
  • 31
  • 29
  • 29
  • 29
  • 27
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
201

Ultrafast, CMOS compatible, integrated all optical switching

Matres Abril, Joaquín 09 June 2014 (has links)
El proyecto consistirá en implementar funcionalidades fotónicas avanzadas sobre silicio tales como conmutación ultra rápida o la realización de puertas lógicas todo ópticas. Para ello se emplearán efectos no lineales del silicio basados en el efecto Kerr, producido por el coeficiente no lineal de tercer orden chi(3) .Los dispositivos deberán funcionar al menos a 40Gbps para que sean competitivos con los dispositivos actuales de última generación. También deberán ser compatibles con tecnología CMOS, lo cual es crucial para que la fabricación se pueda realizar a gran escala a precios competitivos. / Matres Abril, J. (2014). Ultrafast, CMOS compatible, integrated all optical switching [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/37984 / TESIS
202

Synthesis, Characterization, and Optimization of Superconductor-Dielectric Interfaces

January 2020 (has links)
abstract: The chemical, structural, and electrical properties of niobium-silicon, niobium-germanium, and YBCO-dielectric interfaces are characterized. Reduction in the concentration of interfacial defects in these structures can improve the performance of (i) many devices including low-loss coplanar, microstrip, and stripline microwave resonators used in next-generation cryogenic communication, sensor, and quantum information technologies and (ii) layers used in device isolation, inter-wiring dielectrics, and passivation in microwave and Josephson junction circuit fabrication. Methods were developed to synthesize amorphous-Ge (a-Ge) and homoepitaxial-Si dielectric thin-films with loss tangents of 1–2×10 -6 and 0.6–2×10 -5 at near single-photon powers and sub-Kelvin temperatures (≈40 mK), making them potentially a better choice over undoped silicon and sapphire substrates used in quantum devices. The Nb/Ge interface has 20 nm of chemical intermixing, which is reduced by a factor of four using 10 nm Ta diffusion layers. Niobium coplanar resonators using this structure exhibit reduced microwave losses. The nature and concentration of defects near Nb-Si interfaces prepared with commonly-used Si surface treatments were characterized. All samples have H, C, O, F, and Cl in the Si within 50 nm of the interface, and electrically active defects with activation energies of 0.147, 0.194, 0.247, 0.339, and 0.556 eV above the valence band maximum (E vbm ), with concentrations dominated by a hole trap at E vbm +0.556 eV (presumably Nb Si ). The optimum surface treatment is an HF etch followed by an in-situ 100 eV Ar ion mill. RCA etches, and higher energy ion milling processes increase the concentration of electrically active defects. A thin SrTiO 3 buffer layer used in YBa 2 Cu 3 O 7-δ superconductor/high-performance Ba(Zn 1/3 Ta 2/3 )O 3 and Ba(Cd 1/3 Ta 2/3 )O 3 microwave dielectric trilayers improves the structural quality of the layers and results in 90 K superconductor critical temperatures. This advance enables the production of more compact high-temperature superconductor capacitors, inductors, and microwave microstrip and stripline devices. / Dissertation/Thesis / Doctoral Dissertation Materials Science and Engineering 2020
203

Micromechanical Mass Correlation Spectroscopy for the Characterization of Nanoparticles and Biomolecular Complexes in Fluid

Modena, Mario Matteo 14 September 2015 (has links)
No description available.
204

Structures transverses en optique nonlinéaire

Tlidi, Mustapha 20 June 2020 (has links) (PDF)
Prédiction théorique des structures localisées à une et à deux dimensions dans des cavité passives soumis à une injection optique. / Doctorat en Sciences / info:eu-repo/semantics/nonPublished
205

Theoretical and Experimental Investigations of the Dynamics of Axially Loaded - Microstructures with Exploitation for MEMS Resonator-Based Logic Devices

Tella, Sherif Adekunle 05 1900 (has links)
In line with the rising demand for smarter solutions and embedded systems, Microelectromechanical systems (MEMS) have gained increasing importance for digital computing devices and Internet-of-Things (IoT) applications, most notably for mobile wearable devices. This achievement is driven by MEMS resonators' inherent properties such as simplicity, sensitivity, reliability, and low power consumption. Hence, they are being explored for ultra-low-power computing machines. Several fundamental digital logic gates, switching, and memory devices have been demonstrated based on MEMS microstructures' static and dynamic behavior. The interest of researchers in using MEMS resonators is due to seeking an alternative approach to circumvent the notable current leakage and power density problems of complementary metal-oxide-semiconductor (CMOS) technology. The continuous miniaturization of CMOS has increased the operating speed and reduces the size of the device. However, this has led to a relative increase in the leakage energy. This drawback in CMOS has renewed the interest of researchers in mechanical digital computations, which can be traced back to the work of Charles Babbage in 1822 on calculating engines. This dissertation presents axially-loaded and coupled-MEMS resonators investigations to demonstrate memory elements and different logic functions. The studies in this dissertation can be categorized majorly into three parts based on the implementation of logic functions using three techniques: electrothermal frequency tunability, electrostatic frequency modulations, and activation/deactivation of the resonant frequency. Firstly, the influence of the competing effects of initial curvature and axial loads on the mechanical behavior of MEMS resonator arches are investigated theoretically to predict the tunability of arches under axial loads. Then, the concept of electrothermal frequency tunability is used to demonstrate fundamental 2-bit logic gates. However, this concept consumes a considerable amount of energy due to the electrothermal technique. Next, the dynamic memory element and combinational logic functions are demonstrated using the concept of electrostatic frequency modulation. Though this approach is energy efficient compared to the electrothermal technique, it does not support the cascadability of MEMS resonator-based logic devices. Lastly, complex multifunctional logic gates are implemented based on selective modes activation and deactivation, resulting in significant improvement in energy efficiency and enabling cascadability of MEMS resonator-based logic devices.
206

Design, Modeling, and Experiment of a Piezoelectric Pressure Sensor based on a Thickness-Shear Mode Crystal Resonator

Pham, Thanh Tuong 05 1900 (has links)
This thesis presents the design, modeling, and experiment of a novel pressure sensor using a dual-mode AT-cut quartz crystal resonator with beat frequency analysis based temperature compensation technique. The proposed sensor can measure pressure and temperature simultaneously by a single AT-cut quartz resonator. Apart from AT-cut quartz crystal, a newly developed Langasite (LGS) crystal resonator is also considered in the proposed pressure sensor design, since LGS can operate in a higher temperature environment than AT-cut quartz crystal. The pressure sensor is designed using CAD (computer aided design) software and CAE software - COMSOL Multiphysics. Finite element analysis (FEA) of the pressure sensor is performed to analyze the stress- strain of the sensor's mechanical structure. A 3D printing prototype of the sensor is fabricated and the proposed sensing principle is verified using a force-frequency analysis apparatus. Next to the 3D printing model verification, the pressure sensor with stainless steel housing has been fabricated with inbuilt crystal oscillator circuit. The oscillator circuit is used to excite the piezo crystal resonator at its fundamental vibrational mode and give the frequency as an output signal. Based on the FEA and experimental results, it has been concluded that the maximum pressure that the sensor can measure is 45 (psi). The pressure test results performed on the stainless steel product shows a highly linear relationship between the input (pressure) and the output (frequency).
207

Micro-electromechanical Resonator-based Logic and Interface Circuits for Low Power Applications

Ahmed, Sally 11 1900 (has links)
The notion of mechanical computation has been revived in the past few years, with the advances of nanofabrication techniques. Although electromechanical devices are inherently slow, they offer zero or very low off-state current, which reduces the overall power consumption compared to the fast complementary-metal-oxide-semiconductor (CMOS) counterparts. This energy efficiency feature is the most crucial requirement for most of the stand-alone battery-operated gadgets, biomedical devices, and the internet of things (IoT) applications, which do not require the fast processing speeds offered by the mainstream CMOS technology. In particular, using Micro-Electro-Mechanical (MEM) resonators in mechanical computing has drawn the attention of the research community and the industry in the last decade as this technology offers low power consumption, reduced circuit complexity compared to conventional CMOS designs, run-time re- programmability and high reliability due to the contactless mode of operation compared to other MEM switches such as micro-relays. In this thesis, we introduce digital circuit design techniques tailored for clamped-clamped beam MEM resonators. The main operation mechanism of these circuit blocks is based on fine-tuning of the resonance frequency of the micro-resonator beam, and the logic function performed by the devices is mainly determined by factors such as input/output terminal arrangement, signal type, resonator operation regime (linear/non-linear), and the operation frequency. These proposed circuits include the major building blocks of any microprocessor such as logic gates, a full adder which is a key block in any arithmetic and logic operation units (ALU), and I/O interface units, including digital to analog (DAC) and analog to digital (ADC) data converters. All proposed designs were first simulated using a finite element software and then the results were experimentally verified. Important aspects such as energy per operation, speed, and circuit complexity are evaluated and compared to CMOS counterparts. In all applications, we show that by proper scaling of the resonator’s dimensions, MHz operation speeds and energy consumption in the range of femto-joules per logic operation are attainable. Finally, we discuss some of the challenges in using MEM resonators in digital circuit design at the device level and circuit level and propose solutions to tackle some of them.
208

Logic and memory devices of nonlinear microelectromechanical resonator / 非線形微小電気機械共振器を用いたロジック及びメモリデバイス

Yao, Atsushi 23 March 2015 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(工学) / 甲第18990号 / 工博第4032号 / 新制||工||1621(附属図書館) / 31941 / 京都大学大学院工学研究科電気工学専攻 / (主査)教授 引原 隆士, 教授 北野 正雄, 准教授 山田 啓文 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DFAM
209

RF compression of electron bunches applied to ultrafast electron diffraction

Chatelain, Robert P., 1982- January 2008 (has links)
No description available.
210

Cavity perturbation technique for measurement of dielectric properties of some agri-food materials.

Venkatesh, Meda S. January 1996 (has links)
No description available.

Page generated in 0.2579 seconds