Spelling suggestions: "subject:"coesponsive materials"" "subject:"irresponsive materials""
11 |
Synthèse et contrôle de l'auto-assemblage de nouveaux copolymères à gradient à base de styrène et d'acide acrylique / Synthesis and pH and salinity-controlled Self-assembly of Novel Amphiphilic Block-Gradient Copolymers of Styrene and Acrylic AcidBorisova, Olga 21 September 2012 (has links)
L'objectif principal de ce travail de thèse est la synthèse et l'étude des propriétés en solution de nouveaux copolymères amphiphiles di- et triblocks à gradient de styrène et d'acide acrylique qui sont capables d'association réversible en milieu aqueux. Nous avons étudié la cinétique et le mécanisme de la polymérisation radicalaire contrôlée par l’intermédiaire d’un nitroxyde (NMP), afin de déterminer les caractéristiques quantitatives des réactions de terminaison réversible lors de ce processus. Puis la NMP a été utilisée pour la synthèse de deux architectures différentes de copolymère à gradient: copolymères di- et triblocs. L'auto-assemblage des copolymères à gradient dans l'eau a été étudiée par DLS, SANS et TEM. Les changements réversibles du nombre d'agrégation au cours des cycles de pH ont été observés. De plus, nous avons étudié l'effet du pH et de la force ionique sur les propriétés rhéologiques en solution de copolymères triblocs à gradient. Nous nous sommes également intéressés à synthétiser des brosses de polymère sur surface d'or et étudié leur propriétés pH et électro-sensibles en milieu aqueux. / The main goal of our work was the synthesis and the study of solution properties of novel amphiphilic di- and triblock-gradient copolymers based on styrene and acrylic acid which are capable of reversible association in aqueous solution. We studied the kinetics and the mechanism of nitroxide-mediated radical polymerization (NMP) in order to determine the quantitative characteristics of the reversible termination reaction in this process. Then NMP was employed to the synthesis of two different block-gradient copolymer architectures: di- and triblock-gradient copolymers. The self-assembly of the block-gradient copolymers in water was studied by DLS, SANS and TEM. The reversible changes of aggregation numbers in cycles of pH were observed. We also investigated the effect of pH and ionic strength on rheological properties of triblock-gradient copolymer solution. Then, we synthesized polymer brushes on the gold-coated surface and studied their pH- and electro-responsive properties in aqueous media.
|
12 |
Synthesis at different interfaces of bio-inspired films from mussels' byssus : influence of the oxidant nature at the solid/liquid interface and the addition of polymer at the air/water interface / Synthèse à différentes interfaces de films bio-inspirés du byssus de la moule : Influence de la nature de l'oxydant à l'interface solide-liquide et d'ajout de polymères à l'interface air-eauPonzio, Florian 23 September 2016 (has links)
Les matériaux à base de polydopamine (PDA) s’inspirent de la forte adhésion du byssus de la moule sous l’eau. L’oligomérisation de la dopamine dans un milieu basique permet la formation de revêtement de PDA sur n’importe quel matériau. En plus de la simplicité du procédé celui-ci est vert et versatile. La PDA a des propriétés similaires aux mélanines, d’où son utilisation dans le domaine des phénomènes de conversion d’énergie, de l’environnement et du biomédical. Cependant la structure de la PDA étant inconnue, l’élaboration de matériaux basés sur la relation structure propriétés est difficile. L’un des buts de cette thèse a été de comprendre cette relation pour élaborer de nouveaux matériaux de PDA. En choisissant l’oxydant adéquat nous avons déposé un film épais, superhydrophile et biocompatible sur n’importe quels substrats. De plus nous avons découverts la possibilité de former des films de PDA à l’interface air/eau. L’étude de ce phénomène a permis de former des membranes autosupportées et stimuli responsives. / Polydopamine (PDA) materials are inspired from mussels’ byssus strong adhesion underwater. The oligomerization of dopamine in a basic medium allows forming a PDA coating on virtually any materials. In addition to the simplicity, ecofriendly and versatility of the deposition method, PDA has properties similar to those of melanin pigments and displays many outstanding properties. Thus PDAis widely used in energy, environmental and biomedical sciences. However design of PDA based new materials with tailored properties is a challenge since its structure is still unknown. In that sense one of the aims of this thesis is to gain knowledge in PDA structure-property relationship in order to design PDA materials with new properties. By choosing the appropriate oxidant we deposited thick and superhydrophylic films on any materials for the elaboration of low fouling and biocompatible surfaces. Additionally we discovered the possibility to form PDA films at the air/water interface. The investigation of this phenomenon led to the formation of stimuli responsive free standing membranes.
|
13 |
The Influence of Light on a Three-Arm Azobenzene Star: A Computational StudyKoch, Markus 03 May 2022 (has links)
Light is one of the most advantageous stimuli to manipulate functional materials because it can be applied contactless and with high precision. A common strategy to prepare light-responsive physical systems is the embedding of photoswitchable groups such as the dye molecule azobenzene (azo). Upon irradiation with UV light, azobenzene undergoes photoisomerization from the trans to the cis isomer, whereas blue light triggers the inverse conversion. The two isomers differ with respect to their shape, solubility, and light absorption. Up to now, comparatively little research has been focusing on compounds that unite several photoswitchable groups. Such so-called multiphotochromes are promising multi-state molecular systems that can be controlled by light. In this thesis, the object of study is a star-shaped multiphotochromic molecule denoted TrisAzo. It is composed of three azo groups, which are centrally linked by a light-inert BTA group. The molecule has four photoisomers, ranging from the all-trans to the all-cis isomer. Furthermore, TrisAzo is the elementary building block of light-responsive supramolecular aggregates in solution. Previous experimental works report severe morphological changes of the aggregates under UV–Vis light but the underlying molecular mechanisms are still debated. The objective of this thesis is to elucidate the effects of light on TrisAzo – first, concerning its molecular properties and second, regarding the structure and stability of its supramolecular aggregates. In the presented work, the photoisomers of an azobenzene star with a BTA core are studied for the first time via computational methods, particularly using density functional theory and fully atomistic molecular dynamics (MD) simulations. The solvational and optical properties of TrisAzo are quantified as a function of its isomerization state. The solubility of TrisAzo in polar solvents improves with an increasing fraction of the cis-azo arms due to a redistribution of electron density. The absorption spectra of the TrisAzo isomers are nearly linear superpositions of the individual azo arm spectra but with slight deviations. These deviations indicate weak electronic coupling effects between the connected azo groups. Supramolecular aggregates of TrisAzo molecules in water are modeled using fully atomistic MD simulations for extensive investigations on the molecular scale. In equilibrium conditions, it is verified that randomly distributed TrisAzo molecules self-assemble into column-shaped stacks. Simulations of pre-assembled TrisAzo stacks provide detailed insights into their intermolecular interactions. The binding energies are dominated by π-π interactions between conjugated parts of the stacked molecules, especially the azo groups, while hydrogen bonds between the BTA cores play a subordinate but stabilizing role. To implement the effects of light into the simulations, a stochastic model of the repeated photoisomerization of azobenzene is developed. This model reproduces the photoisomerization kinetics of TrisAzo in good agreement with theory and previous experimental results. Based on this approach, light of various intensities and wavelengths is applied on an equilibrated TrisAzo stack. In contrast to prior assumptions, the simulations indicate that a stacked TrisAzo aggregate irradiated by light does not break or disassemble into separate fragments. The stack instead develops defects in the form of molecular shifts and reorientations. As a result, the aggregate eventually loses its columnar shape. The mechanism and driving forces behind these structural changes are clarified based on the simulation results. Thus, this work provides a new interpretation of the experimentally observed morphological changes. The obtained insights on the molecular scale may facilitate the design of light-responsive gels and supramolecular polymers.:Abstract v
Kurzfassung vii
1 Introduction 1
2 Properties of Azobenzene and Azobenzene-Containing Materials 5
2.1 Azobenzene 5
2.1.1 Isomers and Photoisomerization 6
2.1.2 The Photostationary State 10
2.2 Multiphotochromic Molecules Based on Azobenzene 10
2.2.1 Azobenzene Stars 11
2.2.2 The Benzene-1,3,5-Tricarboxamide Linker Unit 11
3 Computational Methods and Models 15
3.1 Density Functional Theory 15
3.1.1 Functional and Basis Set 16
3.1.2 Implicit Solvation Models 17
3.1.3 Time-Dependent Density Functional Theory 17
3.2 Molecular Dynamics Simulations 18
3.2.1 All-Atom MD Simulations 18
3.2.2 Force Fields 19
4 Simulation Techniques 23
4.1 Thermodynamic Integration 23
4.1.1 Implementation in Atomistic Simulations 24
4.2 Modeling Photoisomerization in MD Simulations 27
4.2.1 Implementation of the Rotation Pathway 28
4.3 Modeling Light-Irradiated Azo-Materials in MD Simulations 30
4.3.1 The Cyclic Photoisomerization Model 31
5 Photoisomers of an Azobenzene Star 35
5.1 Object of Study: The Molecule TrisAzo 35
5.1.1 Isomers and Conformers 35
5.2 Ground State Properties in the Gas Phase and in Solvents 36
5.2.1 Energies and Standard Enthalpies of Formation 37
5.2.2 Geometry and Shape Properties 38
5.2.3 Dipole Moments 42
5.2.4 Molecular Properties Upon Hydration in Explicit Water 44
5.3 Solubility 47
5.3.1 Influence of Solvent Polarity 48
5.3.2 Influence of Isomerization State 48
5.3.3 Hydration Free Energy 49
5.4 Absorption Spectra and Intramolecular Coupling 51
5.4.1 Influence of the Number of Azo Groups and Their Isomerization State 52
5.4.2 Effect of the Solvent Polarity 54
5.5 Summary 56
6 Equilibrium Properties of TrisAzo Clusters 59
6.1 Supramolecules of Azobenzene Stars in the Experiment 60
6.1.1 Light-Induced Morphological Transition 60
6.2 Self-Assembly Starting from a Random Distribution 62
6.2.1 Radial Distribution Function 63
6.2.2 Cluster Analysis 65
6.3 Intermolecular Energy of a TrisAzo Dimer 69
6.3.1 Total Intermolecular Energy 70
6.3.2 Energy Decomposition 71
6.4 Structural Properties of Columnar TrisAzo Clusters 75
6.4.1 Considered Cluster Arrangements (Cluster Types) 75
6.4.2 Inner Structure of the Clusters 79
6.4.3 Effect of Cluster Size 79
6.5 Intermolecular Energy of Columnar TrisAzo Clusters 82
6.5.1 Total Intermolecular Energy 82
6.5.2 Energy Decomposition 83
6.5.3 The Role of Hydrogen Bonding 88
6.5.4 Rationalizing the Structural Differences of the Considered Cluster Types 91
6.6 Summary 93
7 Columnar TrisAzo Clusters Under UV–Vis Light 97
7.1 TrisAzo Stacks in the Full Photoisomerization Model 97
7.1.1 Cluster Structure Before and After Irradiation 98
7.1.2 Intermolecular Energy 101
7.2 TrisAzo Stacks in the Cyclic Photosomerization Model 104
7.2.1 Photoisomerization Kinetics 104
7.2.2 Cluster Structure Under Irradiation 108
7.2.3 Intermolecular Energy of TrisAzo Stacks Under Irradiation 112
7.2.4 Mechanism of Defect Formation 116
7.2.5 Comparison with Simulations of Comparable Systems 118
7.3 Summary 118
8 Summary and Outlook 121
8.1 Summary 121
8.2 Outlook 123
A Functional Form of the Force Fields 125
A.1 DREIDING Force Field 125
A.2 Polymer Consistent Force Field (PCFF) 129
B Additional Details about Thermodynamic Integration 133
B.1 Derivation of the Formalism 133
B.2 Avoiding Singularities and Instabilities 134
C Details of the Computational Models 137
C.1 DFT and TD-DFT Calculations 137
C.1.1 DFT Calculations 137
C.1.2 TD-DFT Calculations 138
C.2 MD Simulations of TrisAzo Molecules in PCFF 138
C.2.1 Parametrization 139
C.2.2 Preparation of Initial Configurations 139
C.2.3 Simulation Settings 140
C.3 MD Simulations of TrisAzo Molecules in DREIDING 140
C.3.1 Parametrization 141
C.3.2 Preparation of Initial Configurations 141
C.3.3 Simulation Settings 141
C.4 Intermolecular Energy Calculations of TrisAzo Dimers in PCFF and DREIDING 142
C.5 Visualization of Molecular Structures 142
D Equilibrium Properties of TrisAzo Clusters: Additional Material 143
D.1 From Experiments to Simulations 143
D.2 Cluster Analysis for TrisAzo Self-Assembly: Additional Material 144
D.3 Intermolecular Energy of a TrisAzo Dimer: PCFF Results 145
D.3.1 Total Intermolecular Energy 145
D.3.2 Energy Decomposition 145
D.3.3 Estimated Total Intermolecular Energy of TrisAzo-H 148
D.4 Structural Properties of Columnar TrisAzo Clusters: Additional Material 149
D.5 Intermolecular Energy of Columnar TrisAzo Clusters: Additional Material 150
D.5.1 Defect Detection Algorithm 151
D.6 The Role of Hydrogen Bonds: Additional Material 152
E Columnar TrisAzo Clusters Under UV–Vis Light: Additional Material 155
E.1 TrisAzo Stacks in the Full Photoisomerization Model: Additional Material 155
E.2 TrisAzo Stacks in the Cyclic Photosomerization Model: Additional Material 156
F Code Availability 161
Bibliography 163
List of Publications 183
Copyright of Published Articles 187
Acknowledgements / Danksagung 189
List of Abbreviations 191
List of Symbols 193
List of Physical Constants and Unit Conversions 195
Eidesstattliche Erklärung 197 / Licht ist einer der vorteilhaftesten Stimuli für die Manipulation responsiver Funktionsmaterialien, da es berührungslos und mit hoher Präzision angewendet werden kann. Ein weit verbreiteter Ansatz zur Herstellung lichtresponsiver physikalische Systeme ist der Einbau lichtschaltbarer Gruppen wie das Farbstoffmolekül Azobenzol (Azo). Unter UV-Licht vollzieht Azobenzol eine Photoisomerisation vom trans- zum cis-Isomer, während blaues Licht die umgekehrte Umwandlung auslöst. Die beiden Isomere unterscheiden sich vor allem durch ihre räumliche Gestalt, Löslichkeit und Lichtabsorption. Noch unzureichend erforscht sind Moleküle, die mehrere lichtschaltbare Gruppen in sich vereinen. Solche sogenannten Multiphotochrome sind vielversprechende molekulare Mehrzustandssysteme, die durch Licht geschaltet werden können. Untersuchungsobjekt dieser Arbeit ist ein sternförmiges multiphotochromes Molekül namens TrisAzo. Es besteht aus drei Azogruppen, die zentral über eine gegenüber Licht inerte BTA-Gruppe verknüpft sind. Dementsprechend existieren vier Photoisomere dieses Moleküls, vom all-trans- bis zum all-cis-Isomer. Des Weiteren ist TrisAzo der elementare Baustein lichtempfindlicher supramolekularer Aggregate in Lösung. Frühere experimentelle Arbeiten berichten starke morphologische Strukturänderungen der Aggregate unter Lichteinfluss, jedoch sind die zugrundeliegenden molekularen Mechanismen bisher ungeklärt. Ziel dieser Arbeit ist es, die Auswirkungen von Licht auf TrisAzo aufzuklären, erstens in Bezug auf dessen molekulare Eigenschaften und zweitens hinsichtlich der Struktur und Stabilität der supramolekularen Aggregate. In der vorgestellten Arbeit werden erstmals die Photoisomere eines Azosterns mit BTA-Kern auf Basis computerbasierter Methoden untersucht. Eingesetzt werden dabei Dichtefunktionaltheorie und atomistische Molekulardynamiksimulationen (MD). Insbesondere wird die Löslichkeit und das Lichtabsorptionsverhalten von TrisAzo in Abhängigkeit seines Isomerisationszustands analysiert. Die Löslichkeit von TrisAzo verbessert sich mit steigendem Anteil der cis-Azogruppen aufgrund einer damit einhergehenden Umverteilung der Elektronendichte. Die Absorptionsspektren der TrisAzo-Isomere sind in erster Näherung lineare Superpositionen der Einzelspektren jedes Molekülarms, jedoch mit geringen Abweichungen. Diese Abweichungen deuten auf schwache elektronische Kopplungseffekte zwischen den Azogruppen hin. Supramolekularen Aggregate von TrisAzo-Molekülen in Wasser werden für umfangreiche Untersuchungen auf molekularer Ebene in atomistischen MD-Simulationen modelliert. Im thermodynamischen Gleichgewicht bestätigt sich, dass sich zufällig verteilte TrisAzo-Moleküle in säulenförmig gestapelten Aggregaten zusammenfinden. Weitere Simulationen vorgestapelter TrisAzo-Aggregate liefern detaillierte Rückschlüsse auf deren intermolekulare Wechselwirkungen. Die Bindungsenergien werden von π-π-Wechselwirkungen zwischen den konjugierten Bereichen der aufeinanderliegenden Moleküle dominiert. Wasserstoffbrücken zwischen den BTA-Gruppen haben eine untergeordnete, aber stabilisierende Rolle. Um den Effekt von Licht in die Simulationen einzubauen, ist ein stochastisches Modell für die wiederholte Photoisomerisation der Azogruppen entwickelt worden. Dieses Modell reproduziert die Photoisomerisationskinetik von TrisAzo in guter Übereinstimmung mit Theorie und vorigen Experimenten. Basierend auf diesem Ansatz wird Licht verschiedener Intensitäten und Wellenlängen auf die gestapelten TrisAzo-Aggregate angewandt. Entgegen früherer Annahmen zerfallen die Aggregate daraufhin nicht in Einzelfragmente. Stattdessen entwickeln sie Defekte in Form von Molekülumordnungen sowie -reorientierungen und verlieren dadurch ihre säulenartige Form. Der Mechanismus und die Ursachen dieser Strukturänderungen werden anhand der Simulationen aufgeklärt. Damit liefert diese Arbeit eine neue Interpretation der experimentell beobachteten morphologischen Veränderungen. Die gewonnenen Erkenntnisse können die Entwicklung lichtresponsiver Gele und supramolekularer Polymere unterstützen.:Abstract v
Kurzfassung vii
1 Introduction 1
2 Properties of Azobenzene and Azobenzene-Containing Materials 5
2.1 Azobenzene 5
2.1.1 Isomers and Photoisomerization 6
2.1.2 The Photostationary State 10
2.2 Multiphotochromic Molecules Based on Azobenzene 10
2.2.1 Azobenzene Stars 11
2.2.2 The Benzene-1,3,5-Tricarboxamide Linker Unit 11
3 Computational Methods and Models 15
3.1 Density Functional Theory 15
3.1.1 Functional and Basis Set 16
3.1.2 Implicit Solvation Models 17
3.1.3 Time-Dependent Density Functional Theory 17
3.2 Molecular Dynamics Simulations 18
3.2.1 All-Atom MD Simulations 18
3.2.2 Force Fields 19
4 Simulation Techniques 23
4.1 Thermodynamic Integration 23
4.1.1 Implementation in Atomistic Simulations 24
4.2 Modeling Photoisomerization in MD Simulations 27
4.2.1 Implementation of the Rotation Pathway 28
4.3 Modeling Light-Irradiated Azo-Materials in MD Simulations 30
4.3.1 The Cyclic Photoisomerization Model 31
5 Photoisomers of an Azobenzene Star 35
5.1 Object of Study: The Molecule TrisAzo 35
5.1.1 Isomers and Conformers 35
5.2 Ground State Properties in the Gas Phase and in Solvents 36
5.2.1 Energies and Standard Enthalpies of Formation 37
5.2.2 Geometry and Shape Properties 38
5.2.3 Dipole Moments 42
5.2.4 Molecular Properties Upon Hydration in Explicit Water 44
5.3 Solubility 47
5.3.1 Influence of Solvent Polarity 48
5.3.2 Influence of Isomerization State 48
5.3.3 Hydration Free Energy 49
5.4 Absorption Spectra and Intramolecular Coupling 51
5.4.1 Influence of the Number of Azo Groups and Their Isomerization State 52
5.4.2 Effect of the Solvent Polarity 54
5.5 Summary 56
6 Equilibrium Properties of TrisAzo Clusters 59
6.1 Supramolecules of Azobenzene Stars in the Experiment 60
6.1.1 Light-Induced Morphological Transition 60
6.2 Self-Assembly Starting from a Random Distribution 62
6.2.1 Radial Distribution Function 63
6.2.2 Cluster Analysis 65
6.3 Intermolecular Energy of a TrisAzo Dimer 69
6.3.1 Total Intermolecular Energy 70
6.3.2 Energy Decomposition 71
6.4 Structural Properties of Columnar TrisAzo Clusters 75
6.4.1 Considered Cluster Arrangements (Cluster Types) 75
6.4.2 Inner Structure of the Clusters 79
6.4.3 Effect of Cluster Size 79
6.5 Intermolecular Energy of Columnar TrisAzo Clusters 82
6.5.1 Total Intermolecular Energy 82
6.5.2 Energy Decomposition 83
6.5.3 The Role of Hydrogen Bonding 88
6.5.4 Rationalizing the Structural Differences of the Considered Cluster Types 91
6.6 Summary 93
7 Columnar TrisAzo Clusters Under UV–Vis Light 97
7.1 TrisAzo Stacks in the Full Photoisomerization Model 97
7.1.1 Cluster Structure Before and After Irradiation 98
7.1.2 Intermolecular Energy 101
7.2 TrisAzo Stacks in the Cyclic Photosomerization Model 104
7.2.1 Photoisomerization Kinetics 104
7.2.2 Cluster Structure Under Irradiation 108
7.2.3 Intermolecular Energy of TrisAzo Stacks Under Irradiation 112
7.2.4 Mechanism of Defect Formation 116
7.2.5 Comparison with Simulations of Comparable Systems 118
7.3 Summary 118
8 Summary and Outlook 121
8.1 Summary 121
8.2 Outlook 123
A Functional Form of the Force Fields 125
A.1 DREIDING Force Field 125
A.2 Polymer Consistent Force Field (PCFF) 129
B Additional Details about Thermodynamic Integration 133
B.1 Derivation of the Formalism 133
B.2 Avoiding Singularities and Instabilities 134
C Details of the Computational Models 137
C.1 DFT and TD-DFT Calculations 137
C.1.1 DFT Calculations 137
C.1.2 TD-DFT Calculations 138
C.2 MD Simulations of TrisAzo Molecules in PCFF 138
C.2.1 Parametrization 139
C.2.2 Preparation of Initial Configurations 139
C.2.3 Simulation Settings 140
C.3 MD Simulations of TrisAzo Molecules in DREIDING 140
C.3.1 Parametrization 141
C.3.2 Preparation of Initial Configurations 141
C.3.3 Simulation Settings 141
C.4 Intermolecular Energy Calculations of TrisAzo Dimers in PCFF and DREIDING 142
C.5 Visualization of Molecular Structures 142
D Equilibrium Properties of TrisAzo Clusters: Additional Material 143
D.1 From Experiments to Simulations 143
D.2 Cluster Analysis for TrisAzo Self-Assembly: Additional Material 144
D.3 Intermolecular Energy of a TrisAzo Dimer: PCFF Results 145
D.3.1 Total Intermolecular Energy 145
D.3.2 Energy Decomposition 145
D.3.3 Estimated Total Intermolecular Energy of TrisAzo-H 148
D.4 Structural Properties of Columnar TrisAzo Clusters: Additional Material 149
D.5 Intermolecular Energy of Columnar TrisAzo Clusters: Additional Material 150
D.5.1 Defect Detection Algorithm 151
D.6 The Role of Hydrogen Bonds: Additional Material 152
E Columnar TrisAzo Clusters Under UV–Vis Light: Additional Material 155
E.1 TrisAzo Stacks in the Full Photoisomerization Model: Additional Material 155
E.2 TrisAzo Stacks in the Cyclic Photosomerization Model: Additional Material 156
F Code Availability 161
Bibliography 163
List of Publications 183
Copyright of Published Articles 187
Acknowledgements / Danksagung 189
List of Abbreviations 191
List of Symbols 193
List of Physical Constants and Unit Conversions 195
Eidesstattliche Erklärung 197
|
14 |
Skin Health Monitoring Sensor on Textiles : Incorporation of pH Responsive Dyes on Polyethylene and Polypropylene NonwovensBiswas, Tuser January 2016 (has links)
Incontinence diapers or disposable absorbent pads provide essential help to people having such a physical difficulty. However, during prolonged used of these products in daily life, the skin inside pad area may get fragile and damaged which are difficult to recover in old ages. Therefore a skin friendly sensor can be added to the inner layer of pad that would monitor the skin condition and signal any abnormalities to the wearer. Smart materials which can change color upon variation of skin pH were incorporated with synthetic nonwoven layers of the pad. Among various incorporation methods of these materials, ‘sol-gel’ coating technique was found to be successfulfor applications on optical sensor and on fewother fabric types. Thus ‘sol-gel’ method with modified recipe for different dye and chemical combinations were experimented in this project.Several developed samples showed color change (e.g. yellow to red) that can be easily detected by wearers’ eyes.Additionally, the methods and materials involved showed no adverse effect on health and environment. Thus this study succeeds to provide with a mean for skin health monitor based on nonwoven textiles by incorporation of color changing materials.
|
15 |
Design and engineering of light-driven dynamic films for bioelectronic interfacing / Design och konstruktion av ljusdrivna dynamiska filmer för bioelektroniska gränssnittTerenzi, Luca January 2023 (has links)
In the realm of neuroelectronics, the challenge lies in achieving finer observations of physiological processes to comprehend neuronal interactions and computations. This necessitates the development of more compliant and biomimetic interfaces for improved integration with biological tissues, enabling finer physiological process observations. Commonly used flat and static electrode interfaces contrast sharply with the dynamic, complex, and three dimensional (3D) extracellular matrix (ECM) in which cells reside. Introducing 3D patterns on electrode surfaces enhances cell-chip coupling, improving the signal recording. Moreover, inorganic electrodes are stiff and rigid, creating mechanical mismatches with softer biological tissues, and they fail to fully capture ionic conduction.This thesis addresses these challenges by focusing on designing and engineering a multi-layer dynamic and stimuli-responsive bioelectronic interface. The system combines light-responsive, deformable polymers like Poly(Disperse Red 1-methacrylate) (pDR1m) with conductive polymers such as Poly(3,4-ethylenedioxythiophene): poly(stirensulfonate) (PEDOT:PSS). pDR1m responds to light, exhibiting 3D surface topography deformation, while PEDOT:PSS facilitates electrical recording and stimulation of cells, offering mixed electronic and ionic conduction as well as good mechanical properties. The potential use of an intermediate Polydimethylsiloxane (PDMS) film to improve layer adhesion is also explored. The individual and multi-layer samples were first optimized for spin coating manufacturing, and then thoroughly characterized to investigate their thickness, morphology, optical and electrochemical properties. Patterning of pDR1m-based samples was carried out using laser scanning confocal microscopy and a Lloyd’s mirror interferometer.The pDR1m\PEDOT:PSS sample demonstrates promising morphological and conductive properties, and the presence of PEDOT:PSS does not alter the absorption spectra of pDR1m. The multi-layer approach also supports efficient inscription of 3D surface reliefs without damaging the conductive layer. In conclusion, this work successfully designs conductive and dynamic light-driven films, which showcase good potential for bioelectronics and neuroelectronic interfaces. These interfaces could lead to enhanced investigations into combined electromechanical stimulation on cells and provide a more biomimetic coupling with biological tissues. / Inom neuroelektronikens område ligger utmaningen i att uppnå finare observationer av fysiologiska processer för att förstå neuronala interaktioner och beräkningar. Detta kräver utveckling av mer följsamma och biomimetiska gränssnitt för förbättrad integration med biologiska vävnader, vilket möjliggör finare fysiologiska processobservationer. Vanligt använda platta och statiska elektrodgränssnitt står i skarp kontrast till den dynamiska, komplexa och tredimensionella (3D) extracellulära matrisen (ECM) i vilken celler finns. Att introducera 3D-mönster på elektrodytor förbättrar cell-chip-kopplingen, vilket förbättrar signalinspelningen. Dessutom är oorganiska elektroder styva och stela, vilket skapar mekaniska felmatchningar med mjukare biologiska vävnader, och de lyckas inte helt fånga jonledning.Den här avhandlingen tar upp dessa utmaningar genom att fokusera på att designa och konstruera ett flerlagers dynamiskt och stimuli-responsivt bioelektroniskt gränssnitt. Systemet kombinerar ljuskänsliga, deformerbara polymerer som Poly(Disperse Red 1-methacrylate) (pDR1m) med ledande polymerer som Poly(3,4-etylendioxitiofen): poly(stirensulfonat) (PEDOT:PSS). pDR1m reagerar på ljus och uppvisar 3D-yttopografideformation, medan PEDOT:PSS underlättar elektrisk inspelning och stimulering av celler, erbjuder blandad elektronisk och jonledning samt goda mekaniska egenskaper. Den potentiella användningen av en mellanliggande polydimetylsiloxan (PDMS) film för att förbättra skiktvidhäftningen undersöks också. De individuella och flerskiktiga proverna optimerades först för spinnbeläggningstillverkning och karakteriserades sedan grundligt för att undersöka deras tjocklek, morfologi, optiska och elektrokemiska egenskaper. Mönster av pDR1m-baserade prover utfördes med laserskanning konfokalmikroskopi och en Lloyds spegelinterferometer.pDR1m\PEDOT:PSS-provet visar lovande morfologiska och ledande egenskaper, och närvaron av PEDOT:PSS förändrar inte absorptionsspektra för pDR1m. Flerskiktsmetoden stöder också effektiv inskription av 3D-ytreliefer utan att skada det ledande lagret. Sammanfattningsvis designar detta arbete framgångsrikt ledande och dynamiska ljusdrivna filmer, som visar upp god potential för bioelektronik och neuroelektroniska gränssnitt. Dessa gränssnitt kan leda till förbättrade undersökningar av kombinerad elektromekanisk stimulering på celler och ge en mer biomimetisk koppling med biologiska vävnader.
|
16 |
Stimuli-responsive Materials From Thiol-based NetworksBrenn, William Alexander 01 June 2017 (has links)
No description available.
|
17 |
Enzyme-functionalized hybrid mesoporous nanodevices for sensing, controlled release and molecular communicationLlopis Lorente, Antoni 04 March 2019 (has links)
Tesis por compendio / [ES] La presente tesis doctoral titulada "Nanodispositivos mesoporosos híbridos funcionalizados con enzimas para detección, liberación controlada y comunicación molecular" se centra en el diseño, preparación, caracterización y evaluación de distintos nanodispositivos híbridos orgánico-inorgánicos utilizando como soporte nanopartículas tipo Janus de oro y sílice mesoporosa, que se equipan con enzimas, especies fluorescentes y puertas moleculares.
Como conclusión general, los estudios realizados muestran que la incorporación de enzimas sobre nanopartículas permite introducir funciones de reconocimiento con alta especificidad y diseñar nanodispositivos avanzados para distintas finalidades. La combinación de nanopartículas híbridas con grupos orgánicos como puertas moleculares, efectores enzimáticos y especies cromo- fluorogénicas o fármacos puede resultar muy versátil; y se espera que los resultados obtenidos puedan inspirar el desarrollo de nuevos materiales inteligentes con aplicación en distintas áreas como la nanomedicina y la detección de moléculas de interés. / [CA] La present tesi doctoral titulada "Nanodispositius mesoporosos híbrids funcionalitzats amb enzims per a detecció, alliberació controlada i comunicació molecular" es centra en el disseny, preparació, caracterització i avaluació de distints nanodispositius híbrids orgànic-inorgànics utilitzant com a suport nanopartícules tipus Janus d'or i sílice mesoporosa, que s'equipen amb enzims, espècies fluorescents i portes moleculars.
Com a conclusió general, els estudis realitzats mostren que la incorporació d'enzims sobre nanopartícules permeten introduir funcions de reconeixement amb alta especificitat i dissenyar nanodispositius avançats per a distintes finalitats. La combinació de nanopartícules híbrides amb grups orgànics com portes moleculars, efectors enzimàtics i espècies cromo-fluorogèniques o fàrmacs pot resultar molt versàtil; i s'espera que els resultats obsessos inspiren el desenvolupament de nous materials intel·ligents amb aplicació en distintes àrees com la nanomedicina i la detecció de molècules d'interés. / [EN] This PhD thesis entitled "Enzyme-functionalized hybrid mesoporous nanodevices for sensing, controlled release and molecular communication" is focused on the design, synthesis, characterization and evaluation of several hybrid organic-inorganic nanodevices using Janus gold-mesoporous silica nanoparticles as scaffolds, equipped with enzymes, fluorescent species and molecular gates.
In conclusion, these studies show that the incorporation of enzymes on nanoparticles allows to introduce recognition capabilities with high specificity and to design advanced nanodevices for different purposes. The combination of hybrid nanoparticles with organic groups such as molecular gates, enzymatic effectors and chromo-fluorogenic species or drugs can be very versatile; and we hope that the obtained results inspire the development of new smart materials with application in different areas such as nanomedice and sensing. / Llopis Lorente, A. (2019). Enzyme-functionalized hybrid mesoporous nanodevices for sensing, controlled release and molecular communication [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/117612 / Compendio
|
18 |
DEVELOPMENT OF NOVEL MULTI-RESPONSIVE MATERIALS CHARACTERIZED BY POTENTIAL CONTROLLED RELEASE PROPERTIESChikh Alard, Ibaa 05 December 2018 (has links) (PDF)
With the emergence of novel and more effective drug therapies, increased importance is being placed upon the methods by which these drugs are being delivered to the body. In conventional drug delivery systems, there is very little control over the release of drug. The effective concentration at the target site can be achieved by intermittent administration of grossly excessive doses, which, often results in constantly, unpredictable variations in plasma concentrations, with the risk of reaching levels below or above the therapeutic range leading to marked side effects. A plethora of formulation strategies mainly based on polymeric/lipid nanoparticles, are described in literature. Even though these systems are therapeutically advantageous in comparison to conventional systems, they remain insensitive to the changing metabolic states of the body although the symptoms of most metabolic diseases follow a rhythmic pattern.A more appropriate and effective approach of managing some of these conditions lies in the chronotherapy. This approach allows for pulsed or self-regulated drug delivery which is adjusted to the staging of biological rhythms, since the onset of certain diseases exhibits strong circadian temporal dependence. In order to reach the objective of mimicking the biophysical and biochemical processes of pathological states, many innovations in material design for drug delivery systems (DDS) that are able to release the therapeutic payload-on-demand were done to release the therapeutic agent only when it is required, according to the physiological need. The development of multidisciplinary research teams has brought huge advantages in the design, fabrication and utilization of such smart systems, especially in the pharmaceutical field. Interestingly, numerous smart polymeric materials exhibit a response to a specific stimulus. A step further, the elaboration of purpose-built monomers can give rise to compounds with tunable sensitivities or multi-stimuli responsiveness. These smart polymers demonstrate an active responsiveness to environmental (or external) signals and change their physicochemical properties as designed (e.g. conformation, solubility, shape, charge or size). As far as the stimuli are concerned, they consist of physical (e.g. temperature, ultrasound, light, electricity, magnetic or mechanical stress), chemical (e.g. pH, ionic strength) and biological signals (e.g. enzymes, biomolecules). Due to the intrapersonal variabilities which may make internal stimuli hazardous, externally controlled systems rely on externally applied stimuli that are produced by stimuli-generating devices, which results in pulsed drug delivery. This type of delivery may be rapid and allows a transient release of a determined amount of drug within a short period of time immediately after a pre-determined off-release period. A novel strategy for the formation of multi-stimuli responsive materials endowed with pH, magnetic and light sensitivity was achieved. The approach relied on the incorporation of magnetic tetrahalogenoferrate(III) anions along a polymeric backbone based on poly(2-(N,N-dimethylamino) ethyl meth-acrylate) (PDMAEMA). Starting from the same PDMAEMA, quaternized pending amine groups with various halide derivatives gave rise to magnetic materials after anion metathesis. Measuring the magnetic susceptibility of these materials exhibited that the magnetic susceptibility increased as the substituted group size decreased (become smaller) which was apparently related to the steric hindrance around the ionic pendants. Additionally, a good correlation between the magnetic susceptibility and ferric content was found. Additional experimental and theoretical Raman analyses allowed the determination of the nature of the magnetic species constituting the materials. This strategy further offers the opportunity to tailor the magnetic response through partial ammonium salt formation. In order to merge the magnetic properties of ferric-based materials with another stimuli-responsive functionality, random copolymers containing DMAEMA (D) with diazobenzene (A) unit were prepared. So, three copolymers PDA were synthesized (with targeted D/A ratios 4/6 (PDA4), 6/4 (PDA6) and 8/2 (PDA8)). Meanwhile, different degrees of amine quaternization (10, 50 and 100 %) were applied, which led to the following polymeric salts PDAX/Y where X = 4, 6, 8 (referring to the percentage of the DMAEMA unit) and Y = 10, 50 and 100 (referring to the percentage of quaternized amine groups). Finally, the aforementioned materials were converted into magnetic polymers by anion exchange. As a result, magnetic responses correlated well with amount of iron oxide in these compounds and the amount of ionic pending groups along the backbone. Moreover, the remaining tertiary amines conferred pH sensitivity to the polymers whereas the diazobenzene units ensured light responsiveness through the well-established trans-to-cis isomerization.In order to functionalize these materials in the pharmaceutical field, an intelligent delivery system was prepared. Firstly, an attempt to formulate riboflavin-5’-phosphate sodium (RPS) loaded on PDA8 microspheres was made using double emulsion evaporation method. Meanwhile, prednisolone (PRD) microspheres were prepared using s/o/w emulsion technique. Subsequently, coating systems of cochineal red tablets were developed. These tablets were coated with polymer solution (using each of three types of copolymers: PDA8, PDA6, and PDA4) until the desired percentage of the coating was achieved (10, 15, and 20 % w/w). The cumulative release profiles of cochineal red tablets coated with PDA8, PDA6, and PDA4 showed a pH-sensitive release behavior. The release in the neutral media (pH ≈ 7.0) was very slow (less than 3 % after one hour). Then, after changing the pH to 1.2, an increase in the release of cochineal was observed. Furthermore, the cumulative release of cochineal red was at the highest value for the PDA8 and the lowest for PDA4 depending on the percentage of PDMAEMA moieties. Moreover, by increasing the percentage of the coating from (10, 15 to 20 % w/w), the cumulative release of cochineal decreased. Therefore, the copolymer PDAX can be used for controlling the release of drug by changing the pH value.Finally, the cochineal tablets coated with PDA6 (10 %) showed features of light sensitivity. The release of cochineal red from coated tablets was only due to the switching in the conformational trans/cis isomerization of azobenzene moieties upon irradiation, which was confirmed by comparing the release of coated tablets with uncoated tablets upon irradiation. / Doctorat en Sciences biomédicales et pharmaceutiques (Pharmacie) / info:eu-repo/semantics/nonPublished
|
19 |
Photochemistry of Fe(III)-carboxylates in polysaccharide-based materials with tunable mechanical propertiesGiammanco, Giuseppe E. 22 November 2016 (has links)
No description available.
|
20 |
Spatiotemporal Design of the Metal–Organic Framework DUT-8(M)Miura, Hiroki, Bon, Volodymyr, Senkovska, Irena, Ehrling, Sebastian, Bönisch, Nadine, Mäder, Gerrit, Grünzner, Stefan, Khadiev, Azat, Novikov, Dmitri, Maity, Kartik, Richter, Andreas, Kaskel, Stefan 22 May 2024 (has links)
Switchable metal–organic frameworks (MOFs) change their structure in time and selectively open their pores adsorbing guest molecules, leading to highly selective separation, pressure amplification, sensing, and actuation applications. The 3D engineering of MOFs has reached a high level of maturity, but spatiotemporal evolution opens a new perspective toward engineering materials in the 4th dimension (time) by t-axis design, in essence exploiting the deliberate tuning of activation barriers. This work demonstrates the first example in which an explicit temporal engineering of a switchable MOF (DUT-8, [M1M2(2,6-ndc)2dabco]n, 2,6-ndc = 2,6-naphthalene dicarboxylate, dabco = 1,4diazabicyclo[2.2.2]octane, M1 = Ni, M2 = Co) is presented. The temporal response is deliberately tuned by variations in cobalt content. A spectrum of advanced analytical methods is presented for analyzing the switching kinetics stimulated by vapor adsorption using in situ time-resolved techniques ranging from ensemble adsorption and advanced synchrotron X-ray diffraction experiments to individual crystal analysis. A novel analysis technique based on microscopic observation of individual crystals in a microfluidic channel reveals the lowest limit for adsorption switching reported so far. Differences in the spatiotemporal response of crystal ensembles originate from an induction time that varies statistically and widens characteristically with increasing cobalt content reflecting increasing activation barriers.
|
Page generated in 0.0857 seconds