Spelling suggestions: "subject:"retinoic"" "subject:"retinoico""
101 |
Engineered Biomaterials for Human Neural Stem Cell ApplicationsMa, Weili January 2019 (has links)
Within the last decade, neurodegenerative diseases such as Alzheimer’s and Parkinson’s have emerged as one of the top 5 leading causes of death globally, and there is currently no cure. All neurodegenerative diseases lead to loss of the functional cells in the nervous system, the neurons. One therapeutic approach is to replace the damaged and lost neurons with new, healthy neurons. Unfortunately, this is a difficult endeavor since mature neurons are not capable of cell division. Instead, researchers are turning to neural stem cells, which are able to self-renew and be rapidly expanded before being differentiated into functional cell phenotypes, such as neurons, allowing for large numbers of cells to be generated in vitro. Controlled differentiation of human neural stem cells into new neurons has been of interest due to the immense potential for improving clinical outcomes. Adult neural stem cell behavior, however, is not well understood and the transplanted stem cells are at risk for tumorigenesis. The focus of this dissertation is the development of engineered biomaterials as tools to study human neural stem cell behavior and neurogenesis (differentiation). A novel cell penetrating peptide was developed to enhance intracellular delivery of retinoic acid, a bioactive lipid known to induce differentiation. A hydrogel platform fabricated from hyaluronic acid, a naturally-occurring polysaccharide found in brain extracellular space, was designed to serve as a biomimetic soft substrate with similar mechanical properties to the brain. The biological behavior of the stem cells was characterized in response to chemical and physical cues. / Bioengineering
|
102 |
DEVELOPMENT AND CHARACTERIZATION OF POLYMER-OIL NANOSTRUCTURED CARRIER (PONC) FOR CONTROLLED DELIVERY OF ALL-TRANS RETINOIC ACID (ATRA)Narvekar, Mayuri January 2014 (has links)
The commonly used PLGA-based delivery systems are often limited by their inadequate drug loading and release properties. This study reports the integration of oil into PLGA to form the prototype of a hybrid drug carrier PONC. Our primary goal is to confer the key strength of lipid-based drug carriers, i.e. efficient encapsulation of lipophilic compounds, to a PLGA system without taking away its various useful qualities. The PONC were formulated by emulsification solvent evaporation technique, which were then characterized for particle size, encapsulation efficiency, drug release and anticancer efficacy. The ATRA loaded PONC showed excellent encapsulation efficiency and release kinetics. Even after surface functionalization with PEG , controlled drug release kinetics was maintained, with 88.5% of the encapsulated ATRA released from the PEG-PONC in a uniform manner over 120 hours. It also showed favorable physicochemical properties and serum stability. PEG-PONC has demonstrated substantially superior activity over the free ATRA in ovarian cancer cells that are non-responsive to the standard chemotherapy. The newly developed PEG-PONC significantly reduced the IC50 values (p<0.05) in the chemoresistant cells in both MTT and colony formation assays. Hence, this new ATRA-nanoformulation may offer promising means for the delivery of lipophilic compounds like all-trans retinoic acid to treat highly resistant ovarian cancer. / Pharmaceutical Sciences
|
103 |
The role of p27 phosphorylation in mediating atRA sensitivity of ovarian carcinoma cellsRadu, Maria January 2008 (has links)
All trans retinoic acid (atRA) has been shown to inhibit the growth of CAOV3 ovarian carcinoma cells. This results from arrest of the cell cycle during the G1 phase. G1 checkpoint is regulated by a multitude of molecules, including the retinoblastoma family of proteins, cyclin dependent kinases (Cdks), and cyclin dependent kinase inhibitors. P27, a cyclin dependent kinase inhibitor regulating G1 checkpoint has been shown to have elevated levels in response to atRA treatment. In these studies we investigated the role of p27 phosphorylation in mediating atRA induced growth inhibition. Our results show that atRA treatment of atRA sensitive CAOV3 cells leads to an increase in the levels of S10 phosphorylation of p27 in both nuclear and cytoplasmic cell compartments. This increase was accompanied by a decrease in the levels of skp2 protein, protein that plays a critical role in the degradation of p27. Similar results were not observed in SKOV3 cells which are not growth inhibited by atRA treatment. Finally, we demonstrated that overexpression of a mutant of p27 that cannot be phosphorylated on S10 induces a dominant negative effect on the endogenous p27 activity. This dominant negative effect reverses the atRA effect on p27 binding to CDKs, on inhibition of CDK activity, on the expression of S phase genes and ultimately on the inhibition of growth of ovarian carcinoma cells. These results suggest that hypophosphorylation of the serine10 locus of p27 might be one of the mechanisms that lead to atRA resistance of ovarian carcinoma cell. It is possible that atRA resistant ovarian tumors constitute an environment that hinders S10 phosphorylation and that by modulating the activity of the kinase(s) responsible for this event the atRA resistance can be overcome. / Microbiology and Immunology
|
104 |
Signaling Cross-Talk Regulating the Expression of Arginase 1 in Murine MacrophagesSurace, Michael Joseph 23 April 2010 (has links)
Macrophages can be activated by a variety of extracellular signals to polarize to either the M1 (inflammatory and antimicrobial) or to the M2 (wound repair and inflammation resolution) phenotype. Expression of arginase 1 in macrophages is a key marker of the M2 phenotype. Arginase 1 expression is induced by interleukin 4 (IL-4), a cytokine secreted by Th2 helper cells. All-trans retinoic acid (ATRA) is a product of metabolism of dietary retinol (vitamin A). In a manner analogous to hormones, ATRA binds to nuclear receptors in cells and influences gene expression and cell physiology. ATRA is important in the resolution of inflammation systemically and on the cellular level, however it has not been linked to M2 activation or arginase 1 expression. Testing the hypothesis that ATRA can induce arginase 1 in macrophages either directly or indirectly, it was found that ATRA alone cannot cause murine bone marrow-derived macrophages (BMDM) to activate in the M2 phenotype (as indicated by arginase 1 expression), however it can dramatically potentiate induction of arginase 1 expression and activity by IL-4. This is the first observation positively linking ATRA to arginase 1.
Lipopolysaccharide (LPS), is a conserved structural component of the outer membrane of Gram negative bacteria, and a potent pyrogen. In metabolic endotoxemia, LPS concentration in the blood is slightly elevated, and over the long term this contributes to diverse inflammatory diseases such as atherosclerosis, obesity, and diabetes. LPS promotes the M1 phenotype and suppresses the M2 phenotype, but its contribution at low doses such as those found in metabolic endotoxemia are not well studied. In order to investigate mechanisms of LPS suppression at low doses, mice deficient in IRAK1 and tollip, key mediators or proinflammatory LPS signaling, were used to study IL-4, ATRA, and LPS crosstalk. LPS suppression of arginase 1 was found to be dependent on IRAK1 and tollip, but only at low doses of LPS. / Ph. D.
|
105 |
The Role of IRAK-1 in the Regulation of Free Radicals and Oxidative Stress during EndotoxemiaSingh, Neeraj 30 July 2010 (has links)
Oxidative stress plays a vital role in the pathogenesis of many chronic and acute inflammatory diseases. Reactive oxygen species (ROS) and reactive nitrogen species (RNS) are two key mediators that are known to induce cellular and tissue oxidative stress. The generation of ROS and RNS is mediated by innate immune signaling processes. Lipopolysaccharide (LPS), a major inflammatory signal, is known to be a potent inducer of ROS/RNS. Thus, strategies that may block LPS-mediated generation of free radicals may hold promise in treating various inflammatory disease processes. However, the molecular mechanisms underlying LPS-mediated ROS/RNS production are not fully defined. Interleukin-1 Receptor associated kinase (IRAK-1), an intracellular kinase downstream of Toll-like Receptor 4 (TLR4) has been shown to contribute to the inflammatory cascade associated with LPS-TLR4 signaling pathway. However, its role in ROS production has not been defined. Therefore, we tested the hypothesis that IRAK-1 plays an important role in regulating ROS/RNS production. Both in vitro and in vivo studies were conducted to investigate the role of IRAK-1 in modulating free radicals as well as oxidative stress. In vitro studies demonstrate that IRAK-1 is a critical molecule involved in the induction of ROS/RNS. IRAK-1 deletion ablated free radical production following LPS challenge in a variety of cell types including macrophages, fibroblasts and microglia. Mechanistically, we observed that IRAK-1 is required for optimal expression and activity of NADPH oxidase subunits and iNOS. IRAK-1 deletion reduced LPS-triggered p47phox membrane translocation, suppressed NOX-1 expression and protein levels as well as hampered Rac1 activation. On the other hand, IRAK-1 deletion sustained antioxidative enzyme activity and levels in IRAK-1-/- macrophages and fibroblasts. In terms of the in vivo physiological consequences, IRAK-1-/- mice exhibited attenuated lipid peroxidation in vital organs, attenuated histopathological lesions in liver and kidney, and reduced endotoxemia-associated mortality. Taken together, IRAK-1 may, at least in part, serve as an important therapeutic target in the treatment of various inflammatory disease processes. / Ph. D.
|
106 |
Treatment of Systemic Lupus Erythematosus by Nutrition and Dendritic Cell TargetingLiao, Xiaofeng 10 August 2017 (has links)
Systemic lupus erythematosus (SLE) is an autoimmune disease involving the inflammatory damages of multiple organs. Lupus nephritis (LN) as the manifestation in the kidney occurs in more than 50% of SLE patients and is a major cause of morbidity and mortality. Current treatments consist of immunosuppressants that always lead to compromised immune responses with increased risks of infections as the major side effect. To minimize this side effect, it is crucial to develop new treatments that are more natural and specific.
Vitamin A, particularly in the form of its functional metabolite, retinoic acid, has shown some beneficial effects against LN in both lupus-prone mouse models and clinical cases. However, a more systemic evaluation of vitamin A treatment in lupus had not been investigated. In our study, we found paradoxical effects of all-trans-retinoic acid (tRA) on lupus-like disease in MRL/lpr lupus-prone mice. Starting at 6 weeks old when the inflammatory environment had been established in MRL/lpr mice, tRA administration reduced immune cell numbers in the secondary lymphoid organs and improved glomerulonephritis. However, circulating autoantibodies and inflammation in renal tubulointerstitium and other organs were increased. The detrimental effects of tRA were not present in MRL control mice, which didn't have an established inflammatory environment at 6 weeks old as shown in MRL/lpr mice, suggesting that the pro-inflammatory effects of tRA are dependent on the pre-existing inflammatory environment. Therefore, to successfully apply vitamin A-based treatment, it is important to avoid the detrimental effects of tRA on lupus by identifying and then specifically eliminating the critical pro-inflammatory immune cell types in lupus. As treatments usually start after the onset of apparent symptoms in patients at the effector stage of autoimmune responses, targeting the inflammatory contributors at this stage appears to be more practical and critical.
Among different types of leukocytes, we chose to focus on dendritic cells (DCs), because they are highly diverse and critical in the immune responses as a bridge between the innate and adaptive immune systems. Plasmacytoid DCs (pDCs) as a candidate target have been demonstrated to be crucial for the initiation of lupus development by producing IFNα. However, we demonstrated that although pDCs produced a large amount of IFNα during disease initiation, those from late-stage lupus mice were found to be defective in producing IFNα, suggesting that pDC-targeted treatments should be performed at the initiation stage. This will depend on the progress in early diagnosis in the future. Besides pDCs, we identified a CD11c+ cell population absent at the early-stage but gradually accumulating at the late-stage in the kidneys of lupus mice. These cells have a phenotype of mature monocyte-derived DCs, with particularly high CX3CR1 expression on the surface. Consistent with their pathogenic cytokine profile, in vivo administration of anti-CX3CR1-saporin conjugates to dysfunction these cells in MRL/lpr mice significantly reduced proteinuria scores. Ex vivo activation of renal-infiltrating CD4+ T cells showed increased survival rate, proliferation and IFN-γ production of activated CD4+ T cells when they were cultured with these renal-infiltrating CD11c+ cells. These results suggest that the renal-infiltrating CD11c+ cells are pathogenic and promote inflammation in the kidney at the later effector stage of lupus by interacting with renal-infiltrating CD4+ T cells.
In conclusion, although vitamin A showed anti-inflammatory effects on reducing glomerulonephritis, its use in lupus treatment should be guarded due to the other potential pro-inflammatory effects induced by the pre-existing inflammatory environment. IFNα-producing pDCs and CX3CR1highCD11c+ monocyte-derived DCs could be specific therapeutic targets to reduce the established inflammation at the early stage and late stage of LN, respectively. Therefore, it is worthwhile to further investigate the comprehensive effects of combination therapy on lupus, with vitamin A administration and pDCs-specific depletion at the early stage, and CX3CR1highCD11c+ monocyte-derived DCs-specific depletion at the late stage. / Ph. D. / Systemic lupus erythematosus (SLE) is an autoimmune disease involving the inflammatory damages of multiple organs. Lupus nephritis (LN) as the manifestation in the kidney occurs in more than 50% of SLE patients and is a major cause of morbidity and mortality in this disease. Current treatments consist of immunosuppressants that always lead to compromised immune responses with increased risks of infections as the major side effect. To minimize this side effect, it is crucial to develop new treatments that are more natural and specific. My first project was to determine whether vitamin A as a supplement could ameliorate SLE. It turned out to be effective at attenuating LN, but at the same time the nutrient caused massive inflammation in other peripheral organs such as the brain and lungs. This suggests that we need to be cautious when recommending vitamin A supplementation to lupus patients. In order to identify more specific targets in the treatment of SLE, my second and third projects focused on dendritic cells (DCs) that are essential for lupus pathogenesis. I found that plasmacytoid DCs (pDCs), known to be pathogenic in SLE, were in fact defective at promoting inflammation at the late stage of disease, suggesting that pDCs might not be a good target of intervention. In contrast, monocyte-derived conventional DCs turned out to be highly pathogenic especially for the development of LN and could be a potential therapeutic target. Altogether, my investigations have increased our understanding of the pathogenesis of SLE.
|
107 |
Thyroid hormone activation of retinoic acid synthesis in hypothalamic tanycytesStoney, P.N., Helfer, Gisela, Rodrigues, D., Morgan, P.J., McCaffery, P.J. 03 November 2015 (has links)
Yes / Thyroid hormone (TH) is essential for adult brain function and its actions include several key roles in the hypothalamus.
Although TH controls gene expression via specific TH receptors of the nuclear receptor class, surprisingly few genes have
been demonstrated to be directly regulated by TH in the hypothalamus, or the adult brain as a whole. This study explored
the rapid induction by TH of retinaldehyde dehydrogenase 1 (Raldh1), encoding a retinoic acid (RA)-synthesizing enzyme, as a
gene specifically expressed in hypothalamic tanycytes, cells that mediate a number of actions of TH in the hypothalamus. The
resulting increase in RA may then regulate gene expression via the RA receptors, also of the nuclear receptor class. In vivo
exposure of the rat to TH led to a significant and rapid increase in hypothalamic Raldh1 within 4 hours. That this may lead to
an in vivo increase in RA is suggested by the later induction by TH of the RA-responsive gene Cyp26b1. To explore the
actions of RA in the hypothalamus as a potential mediator of TH control of gene regulation, an ex vivo hypothalamic rat slice
culture method was developed in which the Raldh1-expressing tanycytes were maintained. These slice cultures confirmed that
TH did not act on genes regulating energy balance but could induce Raldh1. RA has the potential to upregulate expression
of genes involved in growth and appetite, Ghrh and Agrp. This regulation is acutely sensitive to epigenetic changes, as has
been shown for TH action in vivo. These results indicate that sequential triggering of two nuclear receptor signalling systems
has the capability to mediate some of the functions of TH in the hypothalamus.
|
108 |
A unifying hypothesis for control of body weight and reproduction in seasonally breeding mammalsHelfer, Gisela, Barrett, P., Morgan, P.J. 26 December 2018 (has links)
Yes / Animals have evolved diverse seasonal variations in physiology and reproduction to accommodate yearly changes in environmental and climatic conditions. These changes in physiology are initiated by changes in photoperiod (daylength) and are mediated through melatonin, which relays photoperiodic information to the pars tuberalis of the pituitary gland. Melatonin drives thyroid‐stimulating hormone transcription and synthesis in the pars tuberalis, which, in turn, regulates thyroid hormone and retinoic acid synthesis in the tanycytes lining the third ventricle of the hypothalamus. Seasonal variation in central thyroid hormone signalling is conserved among photoperiodic animals. Despite this, different species adopt divergent phenotypes to cope with the same seasonal changes. A common response amongst different species is increased hypothalamic cell proliferation/neurogenesis in short photoperiod. That cell proliferation/neurogenesis may be important for seasonal timing is based on (i) the neurogenic potential of tanycytes; (ii) the fact that they are the locus of striking seasonal morphological changes; and (iii) the similarities to mechanisms involved in de novo neurogenesis of energy balance neurones. We propose that a decrease in hypothalamic thyroid hormone and retinoic acid signalling initiates localised neurodegeneration and apoptosis, which leads to a reduction in appetite and body weight. Neurodegeneration induces compensatory cell proliferation from the neurogenic niche in tanycytes and new cells are born under short photoperiod. Because these cells have the potential to differentiate into a number of different neuronal phenotypes, this could provide a mechanistic basis to explain the seasonal regulation of energy balance, as well as reproduction. This cycle can be achieved without changes in thyroid hormone/retinoic acid and explains recent data obtained from seasonal animals held in natural conditions. However, thyroid/retinoic acid signalling is required to synchronise the cycles of apoptosis, proliferation and differentiation. Thus, hypothalamic neurogenesis provides a framework to explain diverse photoperiodic responses. / MRC. Grant Number: MR/P012205/1 - Scottish Government - BBSRC. Grant Number: BB/K001043/1 - Physiological Society
|
109 |
Dérégulation du phosphoprotéome dans les cancers : conséquences sur l'activité transcriptionnelle et la dégradation des récepteurs de l'acide rétinoïque (RAR) / Phosphoproteome dysregulation in cancers : consequences on the transcriptional activity and the degradation of retinoic acid receptors (RAR)Carrier, Marilyn 20 June 2015 (has links)
L’acide rétinoïque (AR) agit via des récepteurs nucléaires (RAR) qui sont des facteurs de transcription inductibles par le ligand. Il active aussi des cascades de kinases qui ciblent les RAR et modulent leur activité transcriptionnelle. Cependant, l’ensemble des protéines phosphorylées en réponse à l’AR de même que les conséquences des dérégulations du « kinome » sur les effets l’AR et le fonctionnement des RAR demeurent mal connus. J’ai comparé les effets de l’AR sur le phosphoprotéome de deux lignées de cellules de cancer du sein : MCF7, qui est sensible à l’AR, et BT474, qui surexprime le récepteur a activité tyrosine kinase erbB-2 et est résistante à l’AR. De nombreuses différences ont été observées avec des répercussions sur l’expression des gènes de même que sur la phosphorylation, le recrutement aux promoteurs des gènes cibles et la dégradation de RAR alpha par le protéasome. J’ai aussi montré que la dégradation de RAR alpha met en jeu TRIM24 qui contrôle sa déubiquitination. / Retinoic acid (RA) acts by binding to specific nuclear receptors (RARs), which are ligand-dependant transcription factors. RA also has non-genomic effects and activates kinase cascades that target RARs and modulate their transcriptional activity. However, the proteins that are phosphorylated in response to RA remain to be identified. The consequences of dysregulations of the "kinome" on the non-genomic effects of RA and on RAR function also require further investigation. I compared the effect of RA on the phosphoproteome of two breast cancer cell lines: MCF7, which is RA-sensitive, and BT474, a RA-resistant cell line that overexpresses the receptor tyrosine kinase erbB-2. Multiple differences were observed with consequences on gene expression as well as on phosphorylation, recruitment on target genes promoters and RARalpha degradation by the proteasome. In the context or RARalpha degradation, I showed the involvement of TRIM24 which controls RARα deubiquitination.
|
110 |
Régulation de la myogenèse par l'acide rétinoïque / Regulation of myogenesis by retinoic acidSchwartz, Marie-Elise 05 April 2012 (has links)
L'acide rétinoïque (AR) régule la myogénèse embryonnaire. Dans le cadre de ce projet de thèse, nous avons d'une part utilisé l'AR pour moduler la myogénèse embryonnaire, dans la perspective d'étudier les conséquences de cette modulation sur le potentiel ultérieur de croissance et identifier les mécanismes moléculaires mobilisés.D'autre part, nous avons étudié la fonction de deux gènes régulés par l'AR et susceptibles de participer au contrôle de la myogénèse embryonnaire.La première partie du travail a été réalisée sur les modèles truite et poisson-zèbre. Nous avons montré que chez la truite comme chez le poisson zèbre, une incubation dans l'AR entrainait une activation de l'expression de Fgf8et de la différenciation des fibres musculaires rapides. Toutefois, chez la truite, nous n'avons pas pu mettre en évidence de régulation des MRF, indiquant qu'une autre voie est utilisée pour activer la myogénèse chez cette espèce.Dans la seconde partie de ce travail, la fonction de deux gènes régulés par l'AR et exprimés dans le mésoderme a été étudiée chez le poisson-zèbre. Le gène vertnin est exprimé essentiellement dans le tailbud. Quand il est inactivé par injection d'un oligo nucléotide morpholino antisens, on observe une altération de la formation des somites (mais pas de modification apparente du processus de segmentation) et une altération de l'intégrité des fibres lentes. Les fibres lentes sont en effet irrégulièrement espacées et les espaces au niveau des myoseptes verticaux peuvent être anormalement larges et les jonctions myotendineuses mal formées. Le gène arrestine β2aest exprimé dans les somites néo-formés puis également dans le mésoderme présomitique et le tailbud. Son inactivation par injection d'OM antisens entraine l'apparition du phénotype U-type et une altération de la morphologie des fibres lentes avec des fibres qui se détachent des jonctions myotendineuses. / Retinoic acid (RA) regulates embryonic myogenesis. During this thesis project, we first used RA to modulate embryonic myogenesis in order to study consequences of this modulation on the future potential for growth and to identify the underlying molecular mechanisms. Second part deals with the characterisation of the function of two genes regulated by the RA which may be involved in the control of embryonic myogenesis.The first part of the work was performed on the trout and zebrafish models. We have shown that in trout as in zebrafish, incubation in RA produced an activation of Fgf8 expression and differentiation of fast muscle fibers.However in trout, we did not observed regulation of MRF expression indicating that an alternative pathway isused to activate myogenesis in this species.In the second part of this work, the function of two genes regulated by the RA and expressed in the mesodermwas studied in zebrafish. The vertnin gene is expressed primarily in the tailbud. When it is inactivated by injection of antisense morpholino oligonucleotide, there is an alteration in the somites morphogenesis (but no apparent change in the process of segmentation) and impairment of the integrity of the slow muscle fibers. Slowfibers are indeed irregularly spaced and the vertical myosepta can be abnormally large. In addition myotendinous junctions display some abnormal branches. The arrestin β 2a gene is expressed in last formed somites and then also in the presomitic mesoderm and the tailbud. Its inactivation by injection of antisense MO leads to the appearance of the U-type phenotype and alteration of the slow muscle fibers morphology which detach frommyotendinous junctions
|
Page generated in 0.0709 seconds