• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 196
  • 73
  • 26
  • 16
  • 9
  • 6
  • 5
  • 5
  • 4
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 415
  • 102
  • 98
  • 88
  • 75
  • 72
  • 67
  • 64
  • 63
  • 43
  • 38
  • 37
  • 36
  • 32
  • 31
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
131

The Role of SmpB in Licensing tmRNA Entry into Stalled Ribosomes

Miller, Mickey R. 03 July 2013 (has links) (PDF)
Ribosomes translate the genetic information contained in mRNAs into protein by linking together amino acids with the help of aminoacyl-tRNAs. In bacteria, protein synthesis stalls when the ribosome reaches the 3'-end of truncated mRNA transcripts lacking a stop codon. Trans-translation is a conserved bacterial quality control process that rescues stalled ribosomes. Transfer-messenger RNA (tmRNA) and its protein partner SmpB mimic a tRNA by entering the A site of the ribosome and accepting the growing peptide chain. The ribosome releases the truncated mRNA and resumes translation on the tmRNA template. The open reading frame found on tmRNA encodes a peptide tag that marks the defective nascent peptide for proteolysis. A stop codon at the end of the open reading frame allows the ribosome to be recycled and engage in future rounds of translation.The entry of tmRNA into stalled ribosomes presents a challenge to our understanding of ribosome function because during the canonical decoding process, the ribosome specifically recognizes the codon-anticodon duplex formed between tRNA and mRNA in the A site. Recognition of proper base-pairing leads to conformational changes that accelerate GTP hydrolysis by EF-Tu and rapid accommodation of the tRNA into the ribosome for peptidyl transfer. The puzzle is that tmRNA enters stalled ribosomes and reacts with the nascent peptide in the absence of a codon-anticodon interaction. Instead, SmpB binding in the decoding center begins the rescue process, but it has been unclear how SmpB licenses tmRNA entry into stalled ribosomes. We analyzed a series of SmpB and ribosomal RNA mutants using pre-steady-state kinetic assays for EF-Tu activation and peptidyl transfer. Although the conserved 16S nucleotides A1492 and A1493 play an essential role in canonical decoding, they play little or no role in EF-Tu activation or peptidyl transfer to tmRNA. In contrast, a third nucleotide, G530, stacks with the side chain of SmpB residue His136, inducing conformational changes that lead to GTP hydrolysis by EF-Tu. A portion of the C-terminal tail forms a helix within the mRNA channel, monitoring the length of mRNA bound in the ribosome to avoid aborting productive protein synthesis. Helix formation in the mRNA channel is essential for accommodation and peptidyl transfer, but not for GTP hydrolysis. We show that conserved residues in the tail are essential for EF-Tu activation, accommodation, or translocation to the P site. Our findings lead to a clearer model of how the tmRNA-SmpB complex enters stalled ribosomes.
132

Dynamical Properties of Biomolecules, Ions and Glass-Forming Liquids: A Theoretical and Computational Study

Wang, Ailun January 2021 (has links)
Thesis advisor: Udayan Mohanty / The conformational dynamics plays a significant role in a wide range of biological systems, from small RNA molecules to the large-scale ribonucleoprotein assemblies, in which ions are found critical and have notable structural and functional impacts. In the glass-forming liquids, the structural dynamics also calls for further investigations and deeper understandings. To this end, using four distinct chapters, this dissertation discusses the ion-related conformational dynamics in various scales of biomolecular systems, as well as the fluctuation effects in the glass-forming liquids. In chapter 1, we investigate the dynamics of ions and water molecules in the outer solvation sphere of a widely studied 58-nucleotide rRNA fragment. Molecular dynamics (MD) simulations with explicit solvent molecules and atomic details are performed for the RNA fragment in ionic solution. We determine all of the association sites and spatial distributions of residence times for Mg2+, K+, and water molecules in those sites. In accordance to the analysis of the dynamics of the RNA fragment, we provide insights into how the dynamics of ions and water molecules are intricately linked with the kinetics of the RNA fragment. In addition, the long-lived sites for Mg2+ ions identified from the simulation agree with the metal ion locations determined in the X-ray structure. The excess ion atmosphere around the RNA fragment is calculated and compared with the experimental measures. The results from this study indicate that the 58-mer rRNA fragment in ionic solution forms a complex polymer that is encased by a fluctuating network of ions and water. In chapter 2, the conformational dynamics of a large-scale ribonucleoprotein assembly, ribosome, is studied with molecular dynamics simulations with a newly developed model that accounts for electrostatic and ionic effects on the biomolecules. In this study, an all-atom structure based model is constructed with explicit representations of non-hydrogen atoms from biomolecules and diffuse ions. Implicit treatment is applied to the solvent molecules with the solvation effect associated with diffuse ions described by effective potentials. Parameters in this model are refined against explicit solvent simulations and experimental measures. This model with refined parameters is able to capture the excess Mg2+ ions for prototypical RNA systems and their dependence on the Mg2+ concentrations. Motivated by this, we apply the model to a bacterial ribosome and find that the position of the extended L1 stalk region can be controlled by the diffuse ions. This simulation also indicated ion-induced long-range interactions between L1 stalk and tRNA, which provides insights into the impact of ions on the functional rearrangements of ribosome. In chapter 3, we focus on the dynamics of the glass-forming liquids. In this study, we generalized the Adam-Gibbs model of relaxation in glass-forming liquids and take into account the fluctuations in the number of molecules inside the cooperative rearranging region. We obtain the expressions of configurational fractions at the glass-transition temperature with and without the fluctuation effect in Adam-Gibbs model, and determine the configurational fraction for several glass-forming liquids at glass-transition temperature in the absence of fluctuation effects. A connection between the β Kohlrausch-Williams-Watts parameters and the configurational fraction at the glass-transition temperature is also reported in this study. In chapter 4, we apply the model developed in chapter 2 to a ribosome structure to investigate the effects of diffuse ions on the aminoacyl-tRNA (aa-tRNA) accommodation process. The aa-tRNA accommodation is a critical step in the tRNA selection process which serves the purpose of protein synthesis in the ribosome. Experimental and computational efforts were made to reveal the mechanism and the energetic properties of the accommodation process, while the effects from diffuse ions on this process remain elusive. To this end, we design and perform MD simulations of ribosome structure with different treatment of electrostatics and diffuse ions in the system. Simulations with various ionic concentrations are also performed to study the concentration effects. The simulation trajectories indicate that diffuse ions can facilitate the aa-tRNA accommodation process and stabilize the accommodated configurations. In addition, we observe that Mg2+ ions play critical roles in stabilizing the accommodated configurations and a few millimolar change of Mg2+ concentration can alter the tendency of the tRNA configurational change during the accommodation process. This result shed light on the investigations of suitable ionic environment for the tRNA selection in the ribosome. It will be fruitful to extend this strategy into the investigations of other conformational rearrangements in the ribosome, such as tRNA translocation and subunit rotation, which will provide us with deeper understanding about the functional mechanism of the ribosome. / Thesis (PhD) — Boston College, 2021. / Submitted to: Boston College. Graduate School of Arts and Sciences. / Discipline: Chemistry.
133

Creation and Use of Software for Analysis of Kinetic Proteomic Experiments

Naylor, Bradley C 01 April 2018 (has links)
In this dissertation, I will review the history and general strategies for performing kinetic proteomics. I will then demonstrate that I have published an open source, user-friendly program for other scientists to use to perform kinetic proteomics data analysis, as well as publishing a novel discovery of key ribosomal subunits being replaced within the lifetime of the ribosome, which was discovered through use of kinetic proteomics. Finally, I will discuss work that is ongoing to improve my software tool for use in human subjects, and work being done to combine kinetic proteomics with other global analysis methods to make novel biological discoveries. Proteins are constantly synthesized and destroyed to ensure sufficient functioning proteins to meet cellular needs, a process called protein turnover. Synthesis and degradation are carefully balanced over time to ensure that average protein concentrations do not change drastically. The status quo of the cell, or protein homeostasis, is required for the health of the organism. If protein homeostasis breaks down, serious diseases, such as Alzheimers, can result when proteins aggregate instead of being degraded properly. Because protein turnover is the means to maintain protein homeostasis while keeping sufficient functioning proteins, measuring protein turnover is critical to understanding biological processes and disease states. Measuring protein turnover rates on a broad scale is possible using a method called kinetic proteomics, and the improvement of kinetic proteomics is where I have focused the work for this dissertation.
134

Translational reprogramming promotes survival to hypertonic stress

Jobava, Raul 21 June 2021 (has links)
No description available.
135

Isolation of Streptomyces lividans ribosomes and initiation factors and their characterization using in vitro mRNA binding assays

Day, James M. 03 May 2004 (has links)
No description available.
136

Insights Into the Decoding Mechanism from Studies of Mutant Ribosomes

McClory, Sean P. January 2013 (has links)
No description available.
137

Biochemical and MALDI-MS Methods for Characterization of Ribosomal Proteins

Hamburg, Daisy-Malloy 22 April 2008 (has links)
No description available.
138

Inheritance and gene regulation in a ribosomal protein gene family of arabidopsis thaliana

Tilley, Michael R. January 2003 (has links)
No description available.
139

The role of ribosome biogenesis in proneural-to-mesenchymal transition in glioblastoma multiforme

Fahim, Dipita January 2021 (has links)
No description available.
140

Mise en évidence de gènes cibles directs communs à FLI-1 et à SPI-1/PU.1 dans les érythroleucémies de Friend / FLI-1 and SPI-1/PU.1 ETS transcription factors share common direct target genes in Friend erythroleukemia

Giraud, Guillaume 15 December 2010 (has links)
Les facteurs de transcription FLI-1 et SPI-1/PU.1 appartiennent à la famille ETS et reconnaissent le même motif sur l’ADN GGAA. Leur activation est observée de manière récurrente dans les érythroleucémies murines induites par le virus de Friend. Ces observations suggèrent un rôle crucial de ces deux facteurs dans la transformation de la lignée érythrocytaire potentiellement par la dérégulation de gènes cibles communs. Mon travail de thèse a consisté à tester la contribution de ces deux facteurs au phénotype des cellules érythroleucémiques et à rechercher les gènes cibles directs communs.Nous avons pu montrer que FLI-1 et SPI-1/PU.1 ont des contributions additives au phénotype des cellules érythroleucémiques surexprimant les deux facteurs. Par une approche transcriptomique, nous avons identifié une grande proportion de gènes cibles directs communs à FLI-1 et à SPI-1/PU.1 impliqués dans différentes étapes de la biogenèse des ribosomes. La déplétion de ces facteurs induit une réduction de la biogenèse des ribosomes qui n’induit pas de stress ribosomique stabilisant p53. Néanmoins, nous avons mis en évidence une contribution spécifique de RPL11, un médiateur essentiel du stress ribosomique, à la différenciation des cellules érythroleucémiques induites par l’absence de ces facteurs.Nous avons mené en parallèle l’inventaire par ChIP-Seq des sites de recrutement de FLI-1 et de SPI-1/PU.1 sur le génome entier de 3 lignées érythroleucémiques indépendantes. Cette stratégie nous a permis de montrer que les régions de recrutement communes sont la conséquence de la proximité de consensus spécifiques et distincts et du recrutement de FLI-1 et de SPI-1/PU.1 sur leur propre consensus. / The transcription factors FLI-1 and SPI-1/PU.1 belong to the ETS family and recognize the same DNA motif GGAA. Their activation is recurrently observed in murine erythroleukemia induced by Friend virus. These observations suggest a crucial role of these two factors in erythroid lineage transformation potentielly by deregulating common target genes. My thesis work consisted of testing both factors contribution to the phenotype of erythroleukemia cells and of searching for common direct target genes.We showed that FLI-1 and SPI-1/PU.1 have additive contributions to the phenotype of erythroleukemia cells overexpressing both factors. By a transcriptomic approach, we identified a high proportion of common direct target genes of FLI-1 and SPI-1/PU.1 involved in ribosome biogenesis at different levels. The déplétion of these factors induced a decrease of ribosome number which doesn’t induce a ribosomal stress leading to the p53 stabilization. However, we highlighted a specific contribution of RPL11, an essential ribosomal stress médiator, in erythroleukemia cell differentiation induced by depletion of both factors. In parallel, we mapped at whole génome scale by ChIP-Seq the recruitment site of FLI-1 and SPI-1/PU.1 in 3 independent erythroleukemia cell lines. This strategy allowed us to show that the common recruitment régions are the conséquence of a very close association of clearly distinct and specific consensus binding sites for FLI-1 and SPI-1/PU.1 and that each of those factor sis recruited to its own consensus.

Page generated in 0.0531 seconds