• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 164
  • 94
  • 90
  • 16
  • 15
  • 15
  • 8
  • 6
  • 6
  • 6
  • 4
  • 4
  • 3
  • 3
  • 3
  • Tagged with
  • 462
  • 106
  • 95
  • 53
  • 52
  • 49
  • 47
  • 44
  • 43
  • 39
  • 38
  • 37
  • 34
  • 29
  • 29
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
341

Modélisation et simulation Eulériennes des écoulements diphasiques à phases séparées et dispersées : développement d’une modélisation unifiée et de méthodes numériques adaptées au calcul massivement parallèle / Eulerian modeling and simulations of separated and disperse two-phase flows : development of a unified modeling approach and associated numerical methods for highly parallel computations

Drui, Florence 07 July 2017 (has links)
Dans un contexte industriel, l’utilisation de modèles diphasiques d’ordre réduit est nécessaire pour pouvoir effectuer des simulations numériques prédictives d’injection de combustible liquide dans les chambres de combustion automobiles et aéronautiques, afin de concevoir des équipements plus performants et moins polluants. Le processus d’atomisation du combustible, depuis sa sortie de l’injecteur sous un régime de phases séparées, jusqu’au brouillard de gouttelettes dispersées, est l’un des facteurs clés d’une combustion de bonne qualité. Aujourd’hui cependant, la prise en compte de toutes les échelles physiques impliquées dans ce processus nécessite une avancée majeure en termes de modélisation, de méthodes numériques et de calcul haute performance (HPC). Ces trois aspects sont abordés dans cette thèse. Premièrement, des modèles de mélange, dérivés par le principe variationnel de Hamilton et le second principe de la thermodynamique sont étudiés. Ils sont alors enrichis afin de pouvoir décrire des pulsations des interfaces au niveau de la sous-échelle. Des comparaisons avec des données expérimentales dans un contexte de milieux à bulles permettent de vérifier la cohérence physique des modèles et de valider la méthodologie. Deuxièmement, une stratégie de discrétisation est développée, basée sur une séparation d’opérateur, permettant la résolution indépendante de la partie convective des systèmes à l’aide de solveurs de Riemann approchés standards et les termes sources à l’aide d’intégrateurs d’équations différentielles ordinaires. Ces différentes méthodes répondent aux particularités des systèmes diphasiques compressibles, ainsi qu’au choix de l’utilisation de maillages adaptatifs (AMR). Pour ces derniers, une stratégie spécifique est développée : il s’agit du choix de critères de raffinement et de la projection de la solution d’une grille à une autre (plus fine ou plus grossière). Enfin, l’utilisation de l’AMR dans un cadre HPC est rendue possible grâce à la bibliothèque AMR p4est, laquelle a montré une excellente scalabilité jusqu’à plusieurs milliers de coeurs de calcul. Un code applicatif, CanoP, a été développé et permet de simuler des écoulements fluides avec des méthodes de volumes finis sur des maillages AMR. CanoP pourra être utilisé pour des futures simulations d’atomisation liquide. / In an industrial context, reduced-order two-phase models are used in predictive simulations of the liquid fuel injection in combustion chambers and help designing more efficient and less polluting devices. The combustion quality strongly depends on the atomization process, starting from the separated phase flow at the exit of the nozzle down to the cloud of fuel droplets characterized by a disperse-phase flow. Today, simulating all the physical scales involved in this process requires a major breakthrough in terms of modeling, numerical methods and high performance computing (HPC). These three aspects are addressed in this thesis. First, we are interested in mixture models, derived through Hamilton’s variational principle and the second principle of thermodynamics. We enrich these models, so that they can describe sub-scale pulsations mechanisms. Comparisons with experimental data in a context of bubbly flows enables to assess the models and the methodology. Based on a geometrical study of the interface evolution, new tracks are then proposed for further enriching the mixture models using the same methodology. Second, we propose a numerical strategy based on finite volume methods composed of an operator splitting strategy, approximate Riemann solvers for the resolution of the convective part and specific ODE solvers for the source terms. These methods have been adapted so as to handle several difficulties related to two-phase flows, like the large acoustic impedance ratio, the stiffness of the source terms and low-Mach issues. Moreover, a cell-based Adaptive Mesh Refinement (AMR) strategy is considered. This involves to develop refinement criteria, the setting of the solution values on the new grids and to adapt the standard methods for regular structured grids to non-conforming grids. Finally, the scalability of this AMR tool relies on the p4est AMR library, that shows excellent scalability on several thousands cores. A code named CanoP has been developed and enables to solve fluid dynamics equations on AMR grids. We show that CanoP can be used for future simulations of the liquid atomization.
342

Asymptotics of the Fredholm determinant corresponding to the first bulk critical universality class in random matrix models

Bothner, Thomas Joachim 06 November 2013 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / We study the one-parameter family of determinants $det(I-\gamma K_{PII}),\gamma\in\mathbb{R}$ of an integrable Fredholm operator $K_{PII}$ acting on the interval $(-s,s)$ whose kernel is constructed out of the $\Psi$-function associated with the Hastings-McLeod solution of the second Painlev\'e equation. In case $\gamma=1$, this Fredholm determinant describes the critical behavior of the eigenvalue gap probabilities of a random Hermitian matrix chosen from the Unitary Ensemble in the bulk double scaling limit near a quadratic zero of the limiting mean eigenvalue density. Using the Riemann-Hilbert method, we evaluate the large $s$-asymptotics of $\det(I-\gamma K_)$ for all values of the real parameter $\gamma$.
343

On a novel soliton equation, its integrability properties, and its physical interpretation / En ny solitonekvation, dess integrabilitetsegenskaper, och dess fysikaliska tolkning

Fagerlund, Alexander January 2022 (has links)
In the present work, we introduce a never before studied soliton equation called the intermediate mixed Manakov (IMM) equation. Through a pole ansatz, we prove that the equation has N-soliton solutions with pole parameters governed by the hyperbolic Calogero-Moser system. We also show that there are spatially periodic N-soliton solutions with poles obeying elliptic Calogero-Moser dynamics. A Lax pair is given in the form of a Riemann-Hilbert problem on a cylinder. A similar Lax pair is shown to imply a novel spin generalization of the intermediate nonlinear Schrödinger equation. Some conservation laws for the IMM are proven. We demonstrate that the IMM can be written as a Hamiltonian system, with one of these conserved quantities as the Hamiltonian. Finally, a physical interpretation is given by showing that the IMM can be rewritten to describe a system of two nonlocally coupled fluids, with nonlinear self-interactions. / Vi presenterar en aldrig tidigare studerad solitonekvation som vi döper till ‘the intermediate mixed Manakov equation’ (ungefär ‘den mellanliggande kopplade Manakovekvationen’. Kortform: IMM). Genom en polansats bevisar vi att ekvationen har N-solitonlösningar där polparametrarna utgör ett hyperboliskt Calogero-Mosersystem. Vi visar också att det finns rumsligt periodiska N-solitonlösningar vars poler följer elliptisk Calogero-Moserdynamik. Ett Laxpar ges i form av ett Riemann-Hilbertproblem på en cylinder. Vi demonstrerar att ett liknande Laxpar leder till en ny spinngeneralisering av den s.k. INLS-ekvationen. Några bevarandelagar för IMM bevisas. Vi visar att IMM-ekvationen kan skrivas som ett Hamiltonskt system, där Hamiltonianen är en av våra tidigare bevarade storheter. Till sist ger vi en fysikalisk tolkning av vår ekvation genom att demonstrera hur den beskriver ett system av ickelokalt interagerande vätskor, med ickelinjära självinteraktioner.
344

Combinatorial divisor theory for graphs

Backman, Spencer Christopher Foster 22 May 2014 (has links)
Chip-firing is a deceptively simple game played on the vertices of a graph, which was independently discovered in probability theory, poset theory, graph theory, and statistical physics. In recent years, chip-firing has been employed in the development of a theory of divisors on graphs analogous to the classical theory for Riemann surfaces. In particular, Baker and Norin were able to use this set up to prove a combinatorial Riemann-Roch formula, whose classical counterpart is one of the cornerstones of modern algebraic geometry. It is now understood that the relationship between divisor theory for graphs and algebraic curves goes beyond pure analogy, and the primary operation for making this connection precise is tropicalization, a certain type of degeneration which allows us to treat graphs as “combinatorial shadows” of curves. The development of this tropical relationship between graphs and algebraic curves has allowed for beautiful applications of chip-firing to both algebraic geometry and number theory. In this thesis we continue the combinatorial development of divisor theory for graphs. In Chapter 1 we give an overview of the history of chip-firing and its connections to algebraic geometry. In Chapter 2 we describe a reinterpretation of chip-firing in the language of partial graph orientations and apply this setup to give a new proof of the Riemann-Roch formula. We introduce and investigate transfinite chip-firing, and chip-firing with respect to open covers in Chapters 3 and 4 respectively. Chapter 5 represents joint work with Arash Asadi, where we investigate Riemann-Roch theory for directed graphs and arithmetical graphs, the latter of which are a special class of balanced vertex weighted graphs arising naturally in arithmetic geometry.
345

Propagation of solitary waves and undular bores over variable topography

Tiong, Wei K. January 2012 (has links)
Description of the interaction of a shallow-water wave with variable topography is a classical and fundamental problem of fluid mechanics. The behaviour of linear waves and isolated solitary waves propagating over an uneven bottom is well understood. Much less is known about the propagation of nonlinear wavetrains over obstacles. For shallow-water waves, the nonlinear wavetrains are often generated in the form of undular bores, connecting two different basic flow states and having the structure of a slowly modulated periodic wave with a solitary wave at the leading edge. In this thesis, we examine the propagation of shallow-water undular bores over a nonuniform environment, and also subject to the effect of weak dissipation (turbulent bottom friction or volume viscosity). The study is performed in the framework of the variable-coefficient Korteweg-de Vries (vKdV) and variable-coefficient perturbed Korteweg-de Vries (vpKdV) equations. The behaviour of undular bores is compared with that of isolated solitary waves subject to the same external effects. We show that the interaction of the undular bore with variable topography can result in a number of adiabatic and non-adiabatic effects observed in different combinations depending on the specific bottom profile. The effects include: (i) the generation of a sequence of isolated solitons -- an expanding large-amplitude modulated solitary wavetrain propagating ahead of the bore; (ii) the generation of an extended weakly nonlinear wavetrain behind the bore; (iii) the formation of a transient multi-phase region inside the bore; (iv) a nonlocal variation of the leading solitary wave amplitude; (v) the change of the characteristics wavelength in the bore; and (vi) occurrence of a ``modulation phase shift" due to the interaction. The non-adiabatic effects (i) -- (iii) are new and to the best of our knowledge, have not been reported in previous studies. We use a combination of nonlinear modulation theory and numerical simulations to analyse these effects. In our work, we consider four prototypical variable topography profiles in our study: a slowly decreasing depth, a slowly increasing depth , a smooth bump and a smooth hole, which leads to qualitatively different undular bore deformation depending on the geometry of the slope. Also, we consider (numerically) a rapidly varying depth topography, a counterpart of the ``soliton fission" configuration. We show that all the effects mentioned above can also be observed when the undular bore propagates over a rapidly changing bottom . We then consider the modification of the variable topography effects on the undular bore by considering weak dissipation due to turbulent bottom friction or volume viscosity. The dissipation is modelled by appropriate right-hand side terms in the vKdV equation. The developed methods and results of our work can be extended to other problems involving the propagation of undular bores (dispersive shock waves in general) in variable media.
346

Sur les solutions invariantes et conditionnellement invariantes des équations de la magnétohydrodynamique

Picard, Philippe January 2003 (has links)
Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.
347

Subjecting the CHIMERA supernova code to two hydrodynamic test problems, (i) Riemann problem and (ii) Point blast explosion

Unknown Date (has links)
A Shock wave as represented by the Riemann problem and a Point-blast explosion are two key phenomena involved in a supernova explosion. Any hydrocode used to simulate supernovae should be subjected to tests consisting of the Riemann problem and the Point-blast explosion. L. I. Sedov's solution of Point-blast explosion and Gary A. Sod's solution of a Riemann problem have been re-derived here from one dimensional fluid dynamics equations . Both these problems have been solved by using the idea of Self-similarity and Dimensional analysis. The main focus of my research was to subject the CHIMERA supernova code to these two hydrodynamic tests. Results of CHIMERA code for both the blast wave and Riemann problem have then been tested by comparing with the results of the analytic solution. / by Abu Salah M. Ahsan. / Thesis (M.S.)--Florida Atlantic University, 2008. / Includes bibliography. / Electronic reproduction. Boca Raton, Fla., 2008. Mode of access: World Wide Web.
348

Sedenions Cayley-dickson e dilatação de funções k-quaseconformes /

Roque, Michele Regina Dornelas. January 2009 (has links)
Orientador: Manoel Ferreira Borges Neto / Banca: Masoyoshi Tsuchida / Banca: José Arnaldo Frutuoso Roveda / Resumo: Nesta dissertação, estuda-se estruturas matemáticas relacionadas à álgebra dos sedenions de Cayley-Dickson. O conceito de funções sedeniônicas do tipo f(z) = zn, z 2 S e n 2 N, é desenvolvido a partir da distância jf(y)¡f(x)j, com o objetivo de obter-se uma generalização. A este tipo de mapeamentos trata-se por funções quaseconformes, ou seja, mapeamentos que não preservam a magnitude dos ângulos. Em particular, através de métodos de resolução, apresenta-se e discute-se polinômios de 2n graus com coeficientes sedeniônicos com o intuito de enfatizar o valor da k-dilatação causada quando trabalha-se com o número sedeniônico em coordenadas esféricas. Por fim, ilustra-se geometricamente os cortes produzidos em hiperesferas B(x; r) quando submetidas às transformações do tipo z2 e z3. / Abstract: In this work, we propose to study the mathematical construction related with algebra of Cayley-Dickson sedenions. We will present the concept of sedenions functions of f(z) = zn type, z 2 S and n 2 N, developing jf(y) ¡ f(x)j distance, with the objective of creating a generalization. This type of mappings is known as quasiconformal functions, that is, mapping that don't preserve the magnitude of angles. Specially, by means of resolution methods, we will discuss polynomials of 2n degrees with sedenions coefficients focused on highlighting the value of the k-dilation caused when we work with the sedenion number in spherical coordinates. Finally, it is illustrated geometrically the cuts produced in hiperspheres B(x; r) when submitted to the transformations of the type z2 and z3. / Mestre
349

Shape morphometry using Riemannian geometry with applications in medical imaging. / CUHK electronic theses & dissertations collection

January 2013 (has links)
Tsang, Man Ho. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2013. / Includes bibliographical references (leaves 57-60). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Abstracts also in Chinese.
350

Un schéma aux volumes finis avec matrice signe pour les systèmes non homogènes

SAHMIM, Slah 15 June 2005 (has links) (PDF)
Cette thèse est consacrée à l'analyse, à l'application et à l'extension bidimensionnelle, d'un nouveau schéma aux volumes finis (SRNH) proposé récemment pour une classe de système non homogène. L'analyse de stabilité du schéma, d'abord dans le cas scalaire ensuite dans le cas de systèmes, mène à une nouvelle formulation où intervient le signe de la matrice Jacobienne du système de lois de bilan considéré. Pour le système de Saint Venant avec terme de pente, on montre formellement que le schéma SRNHS vérifie la C-propriété exacte introduite pour les schémas équilibres par Bermùdez et Vázquez. Les résultats numériques 1D et 2D, en particulier du cas de rupture de barage sur un fond en forme de marche, montrent le degrés d'efficacité du schéma. Pour le système diphasiques des zones de non hyperbolicité peuvent exister, avec apparition de valeurs propres complexes dans la Jacobienne du système. On montre que pour les configurations faiblement non hyperboliques, on peut calculer le signe de la Jacobienne par l'algorithme de Newton-Schultz. Pour les configurations plus raides, où la méthode précédente ne fonctionne plus, on a recours à la méthode de perturbation par densité. Dans les deux cas évoqués, les tests numériques montrent que l'on approche la solution exacte du problème de Ransom avec une grande précision, et que l'on conserve la stabilité des calculs même avec un maillage de finesse relativement élevée.

Page generated in 0.0652 seconds