Spelling suggestions: "subject:"riemann, 7surfaces dde."" "subject:"riemann, 7surfaces dee.""
61 |
Trois problèmes géométriques d'hyperbolicité complexe et presque complexe / Three geometric problems of complex and almost complex hyperbolicitySaleur, Benoît 22 November 2011 (has links)
Cette thèse est consacrée à l'étude de trois problèmes d'hyperbolicité complexe et presque complexe. La première partie est dédiée à la recherche d'une conséquence quantitative de l'hyperbolicité au sens de Kobayashi, qui est une propriété qualitative. Le résultat obtenu prend la forme d'une inégalité isopérimétrique qui évoque l'inégalité d'Ahlfors relative aux recouvrements des surfaces de surfaces. Sa démonstration est purement riemannienne.La deuxième partie de la thèse est consacrée à la démonstration d'une version presque complexe du théorème de Borel, qui affirme que les courbes entières dans le plan projectif complexe évitant quatre droites en position générale sont linéairement dégénérées. Dans un plan projectif presque complexe, les J-droites substituent aux droites projectives et nous disposons d'un énoncé analogue pour les J-courbes entières. La démonstration de ce résultat repose sur l'utilisation de projections centrales et sur la théorie de recouvrement des surfaces d'Ahlfors.La dernière partie est consacrée à la démonstration d'une version presque complexe du théorème de Bloch, qui affirme qu'une suite non normale de disques holomorphes du plan projectif évitant quatre droites en position générale converge, en un certain sens, vers une réunion de trois droites. Notre résultat implique en particulier l'hyperbolicité du complémentaire dans le plan projectif presque complexe de quatre J-droites modulo trois J-droites. / This thesis is dedicated to the study of three problems of complex and almost complex hyperbolicity. Its first part is dedicated to the research of a quantitative consequence to Kobayashi hyperbolicity, which is a qualitative property. The result we obtain has the form of an isoperimetric inequality that suggests Ahlfors' inequality, the central result of the theory of covering surfaces. Its proof uses only riemannian tools.The second part of the thesis is dedicated to the proof of an almost complex version of Borel's theorem, which says that an entire curve in the compex preojective plane missing four lines in general position is degenerate. In an almost compex context, we can obtain a similar result for entire J-curves just by replacing projective lines by J-lines. The proof of this result uses central projections and Ahlfors' theory of covering surfaces.The last part is dedicated to the proof of an almost complex version of Bloch's theorem, which says that given a sequence of holomorphic discs in the projective plane, either it is normal, either it converges in some sens to a reunion of three lines. Our result will show in particular that the complementary set of four J-lines in general position is hyperbolic modulo three J-lines.
|
62 |
Teorema de Riemann-Roch e aplicaçõesArruda, Rafael Lucas de [UNESP] 25 February 2011 (has links) (PDF)
Made available in DSpace on 2014-06-11T19:22:18Z (GMT). No. of bitstreams: 0
Previous issue date: 2011-02-25Bitstream added on 2014-06-13T20:28:17Z : No. of bitstreams: 1
arruda_rl_me_sjrp.pdf: 624072 bytes, checksum: 23ddd00e27d1ad781e2d1cec2cb65dee (MD5) / Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) / O objetivo principal deste trabalho é estudar o Teorema de Riemann-Roch, um dos resultados fundamentais na teoria de curvas algébricas, e apresentar algumas de suas aplicações. Este teorema é uma importante ferramenta para a classificação das curvas algébricas, pois relaciona propriedades algébricas e topológicas. Daremos uma descrição das curvas algébricas de gênero g, 1≤ g ≤ 5, e faremos um breve estudo dos pontos de inflexão de um sistema linear sobre uma curva algébrica / The main purpose of this work is to discuss The Riemann-Roch Theorem, wich is one of the most important results of the theory algebraic curves, and to present some applications. This theorem is an important tool of the classification of algebraic curves, sinces relates algebraic and topological properties. We will describle the algebraic curves of genus g, 1≤ g ≤ 5, and also study inflection points of a linear system on an algebraic curve
|
63 |
Surfaces de Riemann compactes et formule de trace d'EichlerDe Benedictis, Sonia 01 1900 (has links)
Dans ce mémoire, nous étudierons quelques propriétés algébriques, géométriques et topologiques des surfaces de Riemann compactes.
Deux grand sujets seront traités.
Tout d'abord, en utilisant le fait que toute surface de Riemann compacte de genre g plus grand ou égal à 2 possède un nombre fini de points de Weierstrass, nous allons pouvoir conclure que ces surfaces possèdent un nombre fini d'automorphismes.
Ensuite, nous allons étudier de plus près la formule de trace d'Eichler. Ce théorème nous permet de trouver le caractère d'un automorphisme agissant sur l'espace des q-différentielles holomorphes.
Nous commencerons notre étude en utilisant la quartique de Klein. Nous effectuerons un exemple de calcul utilisant le théorème d'Eichler, ce qui nous permettra de nous familiariser avec l'énoncé du théorème.
Finalement, nous allons démontrer la formule de trace d'Eichler, en prenant soin de traiter le cas où l'automorphisme agit sans point fixe séparément du cas où l'automorphisme possède des points fixes. / In this thesis, we will study several algebraic, geometrical and topological properties of compact Riemann surfaces.
Two principal subjects will be treated.
First, using the fact that every compact Riemann surfaces of genus g greater or equal to 2 has a finite number of Weierstrass points, we will be able to prove that those surfaces have a finite number of automorphism.
Afterward, we will study the Eichler's trace formula. This formula allow us to find the character of an automorphism acting on the space of holomorphic q-differentials.
We will start our study using Klein's quartic curve. We will apply Eichler's formula in this case, which will allow us to familiarize ourselves with the statement of the theorem.
Finally, we will demonstrate the Eichler's trace formula, treating the case where the automorphism acts fixed point freely separately from the case where the automorphism has fixed points.
|
64 |
Algorithmic Construction of Fundamental Polygons for Certain Fuchsian GroupsLarsson, David January 2015 (has links)
The work of mathematical giants, such as Lobachevsky, Gauss, Riemann, Klein and Poincaré, to name a few, lies at the foundation of the study of the highly structured Riemann surfaces, which allow definition of holomorphic maps, corresponding to analytic maps in the theory of complex analysis. A topological result of Poincaré states that every path-connected Riemann surface can be realised by a construction of identifying congruent points in the complex plane, the Riemann sphere or the hyperbolic plane; just three simply connected surfaces that cover the underlying Riemann surface. This requires the discontinuous action of a discrete subgroup of the automorphisms of the corresponding space. In the hyperbolic plane, which is the richest source for Riemann surfaces, these groups are called Fuchsian, and there are several ways to study the action of such groups geometrically by computing fundamental domains. What is accomplished in this thesis is a combination of the methods found by Reidemeister & Schreier, Singerman and Voight, and thus provides a unified way of finding Dirichlet domains for subgroups of cofinite groups with a given index. Several examples are considered in-depth.
|
65 |
Semistable Graph Homology / Semistable Graph HomologyZúñiga, Javier 25 September 2017 (has links)
Using the orbicell decomposition of the Deligne-Mumford compactification of the moduli space of Riemann surfaces studied before by the author, a chain complex based on semistable ribbon graphs is constructed which is an extension of the Konsevich’s graph homology. / En este trabajo mediante la descomposicion orbicelular de la compacticacion de Deligne-Mumford del espacio de moduli de supercies de Riemann (estudiada antes por el autor) construimos un complejo basado en grafos de cinta semiestables, lo cual constituye una extension de la homologa de grafos de Kontsevich.
|
66 |
Grupos fuchsianos aritmeticos identificados em ordens dos quaternios para construção de constelações de sinais / Arithmetic fuchsian groups identified in quaternion orders for the construction of signal constellationsVieira, Vandenberg Lopes 23 February 2007 (has links)
Orientadores: Reginaldo Palazzo Jr., Mercio Botelho Faria / Tese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Eletrica e de Computação / Made available in DSpace on 2018-08-08T06:25:10Z (GMT). No. of bitstreams: 1
Vieira_VandenbergLopes_D.pdf: 990187 bytes, checksum: 2212b8074f5503f78aa813ce4422cc4b (MD5)
Previous issue date: 2007 / Resumo: Dentro do contexto de projetar sistema de comunicação digital em espaços homogêneos, em particular, em espaços hiperbólicos, é necessário estabelecer um procedimento sistemático para construção de reticulados O, como elemento base para construção de constelações de sinais geometricamente uniformes. E através desse procedimento que identificamos as estruturas algébrica e geométrica além de construir códigos geometricamente uniformes em espaços homogêneos. Propomos, a partir desses reticulados, a construção de grupos fuchsianos aritméticos Tp obtidos de tesselações hiperbólicas {p; q}, derivados de álgebras de divisão dos quaternios A sobre corpos de números K. Generalizamos o processo de identificação desses grupos em ordens dos quatérnios (reticulados hiperbólicos), associadas às constelações de sinais geometricamente uniformes, provenientes de grupos discretos. Esse procedimento permite rotular os sinais das constelações construídas por elementos de uma estrutura algébrica / Abstract: Within the context of digital communications system in homogeneous space in particular, in hyperbolic spaces, it is necessary to establish systematic procedure for the construction of lattices O ; as the basic entity for construction of eometrically uniforms signal constellations. By this procedure we identify the algebraic and geometric structures to construct geometrically uniforms codes in homogeneous spaces. We propose, from lattices, the construction of arithmetic fuchsian groups ¡p obtained by hyperbolic tessellations {p; q}, derived from division quaternion algebras A over numbers fields K. We generalize the process of identification of these groups in quaternion orders (hyperbolic lattices), which are associated with geometrically uniforms signal constellations, proceeding from discrete groups. This procedure allows us to realize the labelling of the signals belonging to such constellations by elements of an algebraic structure / Doutorado / Telecomunicações e Telemática / Doutor em Engenharia Elétrica
|
67 |
Compactness Theorems for The Spaces of Distance Measure Spaces and Riemann Surface LaminationsDivakaran, D January 2014 (has links) (PDF)
Gromov’s compactness theorem for metric spaces, a compactness theorem for the space of compact metric spaces equipped with the Gromov-Hausdorff distance, is a theorem with many applications. In this thesis, we give a generalisation of this landmark result, more precisely, we give a compactness theorem for the space of distance measure spaces equipped with the generalised Gromov-Hausdorff-Levi-Prokhorov distance. A distance measure space is a triple (X, d,µ), where (X, d) forms a distance space (a generalisation of a metric space where, we allow the distance between two points to be infinity) and µ is a finite Borel measure.
Using this result we prove that the Deligne-Mumford compactification is the completion of the moduli space of Riemann surfaces under the generalised Gromov-Hausdorff-Levi-Prokhorov distance. The Deligne-Mumford compactification, a compactification of the moduli space of Riemann surfaces with explicit description of the limit points, and the closely related Gromov compactness theorem for J-holomorphic curves in symplectic manifolds (in particular curves in an algebraic variety) are important results for many areas of mathematics.
While Gromov compactness theorem for J-holomorphic curves in symplectic manifolds, is an important tool in symplectic topology, its applicability is limited by the lack of general methods to construct pseudo-holomorphic curves. One hopes that considering a more general class of objects in place of pseudo-holomorphic curves will be useful. Generalising the domain of pseudo-holomorphic curves from Riemann surfaces to Riemann surface laminations is a natural choice. Theorems such as the uniformisation theorem for surface laminations by Alberto Candel (which is a partial generalisation of the uniformisation theorem for surfaces), generalisations of the Gauss-Bonnet theorem proved for some special cases, and topological classification of “almost all" leaves using harmonic measures reinforces the usefulness of this line on enquiry. Also, the success of essential laminations, as generalised incompressible surfaces, in the study of 3-manifolds suggests that a similar approach may be useful in symplectic topology. With this motivation, we prove a compactness theorem analogous to the Deligne-Mumford compactification for the space of Riemann surface laminations.
|
68 |
An Introduction to Minimal SurfacesRam Mohan, Devang S January 2014 (has links) (PDF)
In the first chapter of this report, our aim is to introduce harmonic maps between Riemann surfaces using the Energy integral of a map. Once we have the desired prerequisites, we move on to show how to continuously deform a given map to a harmonic map (i.e., find a harmonic map in its homotopy class). We follow J¨urgen Jost’s approach using classical potential theory techniques. Subsequently, we analyze the additional conditions needed to ensure a certain uniqueness property of harmonic maps within a given homotopy class. In conclusion, we look at a couple of applications of what we have shown thus far and we find a neat proof of a slightly weaker version of Hurwitz’s Automorphism Theorem.
In the second chapter, we introduce the concept of minimal surfaces. After exploring a few examples, we mathematically formulate Plateau’s problem regarding the existence of a soap film spanning each closed, simple wire frame and discuss a solution. In conclusion, a partial result (due to Rad´o) regarding the uniqueness of such a soap film is discussed.
|
69 |
The Riemann zeta functionReyes, Ernesto Oscar 01 January 2004 (has links)
The Riemann Zeta Function has a deep connection with the distribution of primes. This expository thesis will explain the techniques used in proving the properties of the Rieman Zeta Function, its analytic continuation to the complex plane, and the functional equation that the the Riemann Zeta Function satisfies.
|
70 |
Dinâmica de vórtices em superfícies com aplicações ao problema de dois vórtices no toro plano / Vortex dynamics on surfaces with applications to the problem of two vortices in a flat torusHumberto Henrique de Barros Viglioni 15 May 2013 (has links)
Este trabalho apresenta uma dedução das equações para a dinâmica de vórtices em superfícies utilizando argumentos físicos e balanço de momento, obtendo o resultado já conhecido devido a Boatto/Koiller e Hally. Na primeira parte, elaboramos uma releitura da contribuição de diversos pesquisadores incluindo, além dos já citados, o trabalho de Marchioro e Pulvirenti sobre a propriedade de localização para a equação de Euler e também a importante contribuição de Flucher e Gustafsson no que diz respeito à determinação da função de Green e função de Robin hidrodinâmicas em domínios do plano. Na segunda parte revisamos o problema da dinâmica de um traçador passivo induzida por um vórtice no disco unitário e estendemos para o caso com vorticidade de fundo constante. Por fim, analisamos a dinâmica de dois vórtices no toro plano, a qual reduz-se ao estudo da dinâmica do centro de vorticidade com hamiltoniana dada pela função de Green. É feita uma descrição das bifurcações das curvas de níveis desta hamiltoniana com respeito a variações do parâmetro modular. Mostramos que o campo hamiltoniano em questão é preservado por biholomorfismos e, portanto, o espaço dos parâmetros pode ser reduzido ao espaço de Moduli do toro plano. Mudanças dentro de uma mesma classe de equivalência por biholomorfismos podem alterar apenas a classe de homotopia das curvas de nível. / In this thesis the equations for the motion of vortices on Riemannian surfaces is studied. Using conservation of momentum and physical arguments, the classical equations of Hally and Boatto/Koiller are recovered. Then the localization result for the Euler\'s equation with flat metric (Marchioro and Pulvirenti) and the determination of the Green\'s and Robin\'s functions on plane domains are revisited in the context of Riemannian surfaces. On a second part of the thesis two examples are analyzed. At first the dynamics of a passive tracer in the unit disk on the flat plane with constant background vorticity. At second the dynamics of two vortices on flat tori. This last system is integrable. The dynamics is determined by the level sets of the Green\'s function which depends on the modular parameter of the torus. The full bifurcation diagram of the system as a function of the module parameter is determined.
|
Page generated in 0.0488 seconds