Spelling suggestions: "subject:"riemann deproblem"" "subject:"riemann 3dproblem""
1 |
Modeling and simulation of multi-dimensional compressible flows of gaseous and heterogeneous reactive mixturesDeledicque, Vincent 11 December 2007 (has links)
The first part of this thesis deals with detonations in gaseous reactive mixtures. Various technological applications have been proposed involving detonations, particularly in the field of propulsion. However, it has been confirmed experimentally that detonations generally exhibit an unstable behaviour, leading to complicated flow structures. A thorough understanding of the evolution of detonation waves is needed before they can be used for propulsion purposes. Herein, we present the first detailed numerical study of three-dimensional structures in gaseous detonations. This study is based on a parallelized, unsplit, shock-capturing algorithm. We show that we can reproduce all types of detonations that have been observed experimentally.
The advancements in the field of gaseous compressible reactive flows paved the way for the study of the significantly more complex phenomena that occur in the flow of two-phase, heterogeneous compressible reactive mixtures. In the second part of this thesis, we develop a new shock-capturing algorithm for the study of these flows. We first present a new numerical procedure for solving exactly the Riemann problem of compressible two-phase flow models containing non-conservative products. We then examine the accuracy and robustness of three known methods for the integration of the non-conservative products. The issue of existence and uniqueness of solutions to the Riemann problem is also discussed.
Due to the ill-posedness of the Riemann problem of standard two-phase models, we present and analyze, in the third and last part of this work, a conservative approximation to reduced one-pressure one-velocity models for compressible two-phase flows that contain non-conservative products. Herein, we develop an exact Riemann solver for the proposed reduced model. Further, we investigate the structure of the steady two-phase detonation waves admitted by this model. Finally, we report on numerical simulations of the transmission of a purely gaseous detonation to heterogeneous mixtures. The effect of the solid particles on the structure of the resulting two-phase detonation is discussed in detail.
|
2 |
Multiphase Fluid-Material Interaction: Efficient Solution Algorithms and Shock-Dominated ApplicationsMa, Wentao 05 September 2023 (has links)
This dissertation focuses on the development and application of numerical algorithms for solving compressible multiphase fluid-material interaction problems. The first part of this dissertation is motivated by the extraordinary shock-resisting ability of elastomer coating materials (e.g., polyurea) under explosive loading conditions. Their performance, however, highly depends on their dynamic interaction with the substrate (e.g., metal) and ambient fluid (e.g., air or liquid); and the detailed interaction process is still unclear. Therefore, to certify the application of these materials, a fluid-structure coupled computational framework is needed. The first part of this dissertation developes such a framework. In particualr, the hyper-viscoelastic constitutive relation of polyurea is incorporated into a high-fidelity computational framework which couples a finite volume compressible multiphase fluid dynamics solver and a nonlinear finite element structural dynamics solver. Within this framework, the fluid-structure and liquid-gas interfaces are tracked using embedded boundary and level set methods. Then, the developed computational framework is applied to study the behavior a bilayer coating–substrate (i.e., polyurea-aluminum) system under various loading conditions. The observed two-way coupling between the structure and the bubble generated in a near-field underwater explosion motivates the next part of this dissertation.
The second part of this dissertation investigates the yielding and collapse of an underwater thin-walled aluminum cylinder in near-field explosions. As the explosion intensity varies by two orders of magnitude, three different modes of collapse are discovered, including one that appears counterintuitive (i.e., one lobe extending towards the explosive charge), yet has been observed in previous laboratory experiments. Because of the transition of modes, the time it takes for the structure to reach self-contact does not decrease monotonically as the explosion intensity increases. Detailed analysis of the bubble-structure interaction suggests that, in addition to the incident shock wave, the second pressure pulse resulting from the contraction of the explosion bubble also has a significant effect on the structure's collapse. The phase difference between the structural vibration and the bubble's expansion and contraction strongly influences the structure's mode of collapse.
The third part focuses on the development of efficient solution algorithms for compressible multi-material flow simulations. In these simulations, an unresolved challenge is the computation of advective fluxes across material interfaces that separate drastically different thermodynamic states and relations. A popular class of methods in this regard is to locally construct bimaterial Riemann problems, and to apply their exact solutions in flux computation, such as the one used in the preceding parts of the dissertation. For general equations of state, however, finding the exact solution of a Riemann problem is expensive as it requires nested loops. Multiplied by the large number of Riemann problems constructed during a simulation, the computational cost often becomes prohibitive. This dissertation accelerates the solution of bimaterial Riemann problems without introducing approximations or offline precomputation tasks. The basic idea is to exploit some special properties of the Riemann problem equations, and to recycle previous solutions as much as possible. Following this idea, four acceleration methods are developed. The performance of these acceleration methods is assessed using four example problems that exhibit strong shock waves, large interface deformation, contact of multiple (>2) interfaces, and interaction between gases and condensed matters. For all the problems, the solution of bimaterial Riemann problems is accelerated by 37 to 87 times. As a result, the total cost of advective flux computation, which includes the exact Riemann problem solution at material interfaces and the numerical flux calculation over the entire computational domain, is accelerated by 18 to 81 times. / Doctor of Philosophy / This dissertation focuses on the development and application of numerical methods for solving multiphase fluid-material interaction problems. The first part of this dissertation is motivated by the extraordinary shock-resisting ability of elastomer coating materials (e.g., polyurea) under explosive loading conditions. Their performance, however, highly depends on their dynamic interaction with the underlying structure and the ambient water or air; and the detailed interaction process is still unclear. Therefore, the first part of this dissertation developes a fluid-structure coupled computational framework to certify the application of these materials. In particular, the special material property of the coating material is incorparated into a state-of-the-art fluid-structure coupled computational framework that is able to model large deformation under extreme physical conditions. Then, the developed computational framework is applied to study how a thin-walled aluminum cylinder with polyurea coating responds to various loading conditions. The observed two-way coupling between the structure and the bubble generated in a near-field underwater explosion motivates the next part of this dissertation.
The second part of this dissertation investigates the failure (i.e., yielding and collapse) of an underwater thin-walled aluminum cylinder in near-field explosions. As the explosion intensity varies by two orders of magnitude, three different modes of collapse are discovered, including one that appears counterintuitive (i.e., one lobe extending towards the explosive charge), yet has been observed in previous laboratory experiments. Via a detailed analysis of the interaction between the explosion gas bubble, the aluminum cylinder, and the ambient liquid water, this dissertation elucidated the role of bubble dynamics in the structure's different failure behaviors and revealed the transition mechanism between these behaviors.
The third part of this dissertation presents efficient solution algorithms for the simulations of compressible multi-material flows. Many problems involving bubbles, droplets, phase transitions, and chemical reactions fall into this category. In these problems, discontinuities in fluid state variables (e.g., density) and material properties arise across the material interfaces, challenging numerical schemes' accuracy and robustness. In this regard, a promising class of methods that emerges in the recent decade is to resolve the exact wave structure at material interfaces, such as the one used in the preceding parts of the dissertation. However, the computational cost of these methods is prohibitive due to the nested loops invoked at every mesh edge along the material interface. To address this issue, the dissertation develops four efficient solution methods, following the idea of exploiting special properties of governing equations and recycling previous solutions. Then, the acceleration effect of these methods is assessed using various challenging multi-material flow problems. In different test cases, significant reduction in computational cost (acceleration of 18 to 81 times) is achieved, without sacrificing solver robustness and solution accuracy.
|
3 |
Stability Analysis of Artificial-Compressibility-type and Pressure-Based Formulations for Various Discretization Schemes for 1-D and 2-D Inviscid Flow, with Verification Using Riemann ProblemKonangi, Santosh January 2011 (has links)
No description available.
|
4 |
Modélisation et simulation de la dispersion de fluide en milieu fortement hétérogène. / Modeling and Numerical Simulation of Fluid Dispersion in Strongly Heterogeneous MediaHank, Sarah 16 November 2012 (has links)
Ces travaux portent sur la modélisation et la simulation numérique de la dispersion de matériaux nocifs (pulvérisations liquides ou gazeuses) en milieu urbain ou naturel (attentat ou explosion accidentelle survenant en zone peuplée, fuites de produits toxiques gazeux ou liquides, éclatement de réservoir..). Afin de prédire ces risques un outils de simulation tridimensionnel a été développé. Celui-ci est basé sur un modèle de milieu hétérogène afin de traiter des phénomènes dont la durée et les distances associées peuvent être très grandes. La topographie des milieux étudiées est prise en compte grâce à des données numériques d'´elévation ainsi que les conditions météo permettant l'utilisation de profils de température et de vent complexes. Les transferts de chaleur et de masse sont considérés, notamment au niveau des obstacles. Un schéma numérique d'ordre élevé en temps et en espace est utilisé pour calculer les concentrations massiques de polluants. Par ailleurs, un modèle d'écoulement gaz-particule a été développé et implémenté dans le code de calcul. L'instabilité d'une couche de fluide soumise à un important gradient de pression est également étudiée, ceci afin de mieux comprendre et de caractériser les conditions initiales à utiliser pour ce type d'écoulement, impliquant des couches de particules. / This work deals with the modeling and the numerical simulation of the dispersion of toxic cloud of dropplets or gas in uneven geometry such as urban environment, industrial plants and hilly environment. Examples of phenomena under study are the dispersion of chemical products from damaged vessels, gas diffusion in an urban environment under explosion conditions, shock wave propagation in urban environment etc. A 3D simulation code has been developed in this aim. To simplify the consideration of complex geometries, a heterogeneous discrete formulation has been developed. When dealing with large scale domains, such as hilly natural environment, the topography is reconstructed with the help of numerical elevation data. Meteorological conditions are also considered, concerning temperature and wind velocity profiles. Heat and mass transfers on subscale objects, such as buildings are studied. A high order numerical scheme in space and time is used to compute mass concentration of pollutant. A two-phase model for dilute gas-particles flow has been developed and implemented in the 3D simulation code. The instability of a fluid layer appearing under high pressure gradient is also studied. This analysis allows us a better understanding of initial conditions for similar problems involving particles layer.
|
5 |
Schémas d'ordre élevé pour la méthode SPH-ALE appliquée à des simulations sur machines hydrauliquesRenaut, Gilles-Alexis 17 December 2015 (has links)
Ce travail traite des méthodes de calcul numérique pour les simulations hydrodynamiques appliquées principalement sur des produits développés par ANDRITZ HYDRO. Il s’agit ici de mettre en place des schémas d’ordre élevé pour des simulations CFD en utilisant le code de calcul ASPHODEL développé et utilisé par ANDRITZ HYDRO. Les principales motivations sont l’augmentation de la fiabilité des résultats de calculs numériques avec un coût de calcul raisonnable. Cette fiabilité s’exprime à travers l’augmentation de la précision et de la robustesse des schémas numériques. Le code de calcul ASPHODEL est basé sur la méthode sans maillage SPH-ALE. Mélange entre les volumes finis et la méthode SPH (Smoothed Particle Hydrodynamics), la méthode SPH-ALE emploie un ensemble de points appelés particules servant à la discrétisation du domaine fluide. Elle permet en particulier de par son caractère sans maillage, un suivi des surfaces libres sans effort de calcul supplémentaire. Cet aspect est véritablement attrayant pour bon nombre d’applications industrielles notamment la simulation des écoulements à surface libre se produisant dans une turbine Pelton, mais également le remplissage d’une turbine Francis. Cependant, le bémol à cette méthode est son manque de précision spatiale. En effet les points de calcul étant mobiles, les opérateurs spatiaux doivent être en mesure de conserver leur précision et leur robustesse au cours du temps. La qualité des résultats en est du coup impactée, en particulier le champ de pression souvent excessivement bruité. La montée en ordre et l’amélioration de la consistance des opérateurs pour un vaste panel de configurations géométriques sont donc les enjeux de ce travail. En utilisant des outils inspirés par les volumes finis non-structurés, il est possible d’améliorer les opérateurs spatiaux. En effet, la montée en ordre ou p-raffinement peut notamment se faire avec des reconstructions d’ordres élevés pour évaluer les états aux interfaces des problèmes de Riemann. La sommation des flux numériques résolus par un solveur de Riemann est ensuite retravaillée pour obtenir un schéma numérique d’ordre global cohérent. Le même soucis de cohérence avec les schémas en temps doit d’ailleurs être pensé. Le gain de précision apporté par les schémas numériques d’ordre élevé est comparé avec un raffinement spatial, c’est à dire une augmentation du nombre des particules de taille plus petite, aussi appelé h-raffinement. La méthode SPH-ALE améliorée est ensuite testée sur des cas représentatifs des applications visées. En conclusion, les développements effectués dans cette étude ont été guidés par l’application en turbine Pelton principalement mais il va de soi qu’ils sont applicables à des écoulements sans surface libre dans les turbines Francis par exemple. Ce travail montre les possibilités d’une méthode sans maillage pour des cas d’écoulements complexes autour de géométrie tournantes. / This work deals with numerical methods for hydrodynamic testing applied mainly on products developed by ANDRITZ HYDRO. This is to put in place high order schemes for CFD simulations using the ASPHODEL calculation code developed and used by ANDRITZ HYDRO. The main reasons are the increased reliability of the results of numerical calculations with a reasonable computational cost. This reliability is expressed through increasing the accuracy and robustness of numerical schemes. The ASPHODEL computer code is based on the meshfree method SPH-ALE. Mix between finite volume method and SPH (Smoothed Particle Hydrodynamics), the SPH-ALE method uses a set of points called particles serving as the fluid domain discretization. It allows track free surfaces without additional computational effort. This is truly attractive for many industrial applications including the simulation of free surface flows occurring in a Pelton turbine, but also filling a Francis turbine. However, the downside of this method is its lack of spatial accuracy. Indeed calculation points are mobile, space operators must be able to keep their accuracy and robustness over time. The quality of results is impacted especially the pressure field is often excessively noisy. The rise in order and improving the consistency of the operators for a wide range of geometric configurations are the challenges of this work. Using tools inspired by the unstructured finite volume, it is possible to improve the spatial operators. Indeed, the increasing order or p-refinement particular can be done with reconstructions of high order to assess the conditions at the interfaces of Riemann problems. The summation of discret fluxes solved by Riemann solver is then reworked to obtain a coherent global order scheme. The same concern for consistency with temporal schemes should also be considered. The precision gain provided by numerical schemes of higher orders is compared with a spatial refinement ie an increase in the number of smaller particles ; also called h -refinement . Improved SPH -ALE method is then tested on representative cases of intended applications. In conclusion, the developments made in this study were guided in accordance mainly with the Pelton turbine but it goes without saying that they are applicable to non- free surface flows in Francis turbines for example. This work shows the possibilities of a free mesh method for cases of complex flow around rotating geometry.
|
6 |
Fluxo de solu??o salinizada com ?ons dissolvidos em um meio poroso unidimensionalCARVALHO, Maur?cio de 12 April 2016 (has links)
Submitted by Jorge Silva (jorgelmsilva@ufrrj.br) on 2017-10-17T16:30:00Z
No. of bitstreams: 1
2016 - Maur?cio de Carvalho.pdf: 8945176 bytes, checksum: 4b68e7d4395ffbaee8b4d17639d8a28e (MD5) / Made available in DSpace on 2017-10-17T16:30:00Z (GMT). No. of bitstreams: 1
2016 - Maur?cio de Carvalho.pdf: 8945176 bytes, checksum: 4b68e7d4395ffbaee8b4d17639d8a28e (MD5)
Previous issue date: 2016-04-12 / CAPES / In this work we consider the injection of water with dissolved ions into a linear horizontal porous rock cylinder with constant porosity and absolute permeability initially containing oil and water in several proportions. The water is assumed to have low salinity concentration, where some ions are dissolved. We disregard that there is in the rocks some possible minerals that can dissolve or precipitate in water phase. There are two chemical fluid components as well as two immiscible phases: water and oil, (w, o). The dissolved ions are: positive divalent ions: calcium ions, Ca2+ and magnesium ions, Mg2+; negative divalent ions: sulphate ions, SO42?; positive monovalent ions: sodium ions, Na+; negative monovalent ions: cloride ions, Cl?. The cations are modeled to be involved in fast ion exchange process with a surface negative X? which can absorb the positive ions, Ca2+, Mg2+ and Na+. We use simple mixing rules and we disregard any heat of precipitation/dissolution of substance reactions or ion desorption. Moreover we disregard any volume contraction efects resulting from mixing and reactions in any phase. We are going to solve in this work, the Riemann problem and we are going to discuss some features about the studied model. / Neste trabalho consideramos a inje??o de ?gua com ?ons dissolvidos em um meio po-roso linear horizontal cil?ndrico com porosidade e permeabilidade absoluta constantes, inicialmente, contendo ?leo e ?gua em v?rias propor??es. A ?gua ? assumida ter baixa concentra??o de sais, onde alguns ?ons est?o dissolvidos. Desconsideramos a exist?ncia de alguns poss?veis minerais na rocha que possam dissolver ou precipitar na fase da ?gua. Existem dois componentes qu?micos fluidos assim como duas imisc?veis fases: ?gua e ?leo,(w, o). Os ?ons dissolvidos s?o: ?ons divalentes positivos: ?ons c?lcio, Ca2+ e ?ons magn?sio, Mg2+; ?ons negativos divalentes: ?ons sulfato, SO42?; ?ons positivos monovalentes: ?ons s?dio, Na+; ?ons negativos monovalentes: ?ons cloro, Cl?. Os c?tions est?o envolvidos em um processo r?pido de troca de ?ons com a superf?cie do meio poroso carregada eletronega-tivamente X?, onde o meio absorver? os ?ons positivos Ca2+, Mg2+ e Na+. Usando regras simples de misturas e desconsiderando qualquer calor de precipita??o ou dissolu??o de rea??es de subst?ncias ou dessor??o de ?ons. Al?m disso, desconsideramos quaisquer efeitos de contra??o de volume resultante das misturas e rea??es em qualquer fase. Resolveremos neste trabalho, o Problema de Riemann e discutiremos algumas caracter?sticas do modelo estudado.
|
7 |
Uma nova descrição para a transferência de massa em meios porosos com transição saturado-insaturado. / A new description for mass tranfer in porous media with saturated-unsaturated transition.Luiz Guilherme Chagas Moraes Jardim 15 August 2014 (has links)
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / Esse texto trata do problema de um fluido contaminado escoando por um meio poroso, tratando os componentes na mistura como meios contínuos. Na primeira parte, desenvolvemos a teoria de misturas de meios contínuos e discutimos equações da continuidade, momento linear e momento angular. A seguir, descrevemos o problema em detalhe e fazemos hipóteses para simplificar o escoamento. Aplicamos as equações encontradas anteriormente para encontrarmos um sistema de equações diferenciais parciais. Desse ponto em diante, o problema se torna quase puramente matemático. Discutimos o caso insaturado, e depois a saturação do meio poroso. Finalmente, adicionamos um contaminante à mistura e, em seguida, N contaminantes. / This text treats the problem of a contaminated fluid flowing through a porous medium, treating the components in the mixture as continuum media. In the first part, we develop the continuum mixture theory and discuss equations for continuity, linear momentum and angular momentum. Next, we describe the problem in detail and make hypotheses to simplify the flow. We apply the equations found previously to a system of partial diferential equations. From then on, the problem becomes almost purely mathematical. We discuss the unsaturated case, then the saturation of the porous medium. Finally, we add a contaminant to the mixture and, then, N contaminants.
|
8 |
Uma nova descrição para a transferência de massa em meios porosos com transição saturado-insaturado. / A new description for mass tranfer in porous media with saturated-unsaturated transition.Luiz Guilherme Chagas Moraes Jardim 15 August 2014 (has links)
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / Esse texto trata do problema de um fluido contaminado escoando por um meio poroso, tratando os componentes na mistura como meios contínuos. Na primeira parte, desenvolvemos a teoria de misturas de meios contínuos e discutimos equações da continuidade, momento linear e momento angular. A seguir, descrevemos o problema em detalhe e fazemos hipóteses para simplificar o escoamento. Aplicamos as equações encontradas anteriormente para encontrarmos um sistema de equações diferenciais parciais. Desse ponto em diante, o problema se torna quase puramente matemático. Discutimos o caso insaturado, e depois a saturação do meio poroso. Finalmente, adicionamos um contaminante à mistura e, em seguida, N contaminantes. / This text treats the problem of a contaminated fluid flowing through a porous medium, treating the components in the mixture as continuum media. In the first part, we develop the continuum mixture theory and discuss equations for continuity, linear momentum and angular momentum. Next, we describe the problem in detail and make hypotheses to simplify the flow. We apply the equations found previously to a system of partial diferential equations. From then on, the problem becomes almost purely mathematical. We discuss the unsaturated case, then the saturation of the porous medium. Finally, we add a contaminant to the mixture and, then, N contaminants.
|
9 |
Analyse asymptotique du problème de Riemann pour les écoulements compositionnels polyphasiques en milieux poreux et applications aux réservoirs souterrains / Asymptotic analyse of Riemann problem for multiphase compositional flow in porous media with application to subterranean reservoirsAbadpour, Anahita 04 December 2008 (has links)
Dans la première partie de cette thèse nous traitons l’écoulement diphasique compositionnel, partiellement miscible et compressible en milieux poreux. Déplacement d'une phase par un autre est analysé. Nous examinons les mélanges non idéals, la pression est variable, et les concentrations de phase, la densité et la viscosité sont les fonctions de la pression. Le processus est décrit par le problème de Riemann qui admet des solutions discontinues. Nous avons développé une méthode numérique-analytique de solution pour déterminer les paramètres à tous les chocs avant résoudre les équations de flux. Cette méthode est basée sur la séparation de thermodynamique et hydrodynamique, proposée dans [Oladyshkin, Panfilov 2006] et qui était inapplicable à problème de Riemann, en raison de manque des conditions d’Hugoniot. Dans cette thèse, nous avons construit les conditions supplémentaires d'Hugoniot. Dans la deuxième partie, nous examinons l'écoulement diphasique lors que les zones monophasique apparaissent, dans cette zone, le fluide est sur/sous-saturés et les équations diphasique dégénèrent.Nous avons proposé de décrire les zones diphasique et sur/sous-saturés avec un système uniforme des équations diphasique classique en étendant le concept de saturation d'être négatif et supérieur à un. Physiquement, cela signifie que les états monophasiques sont considérés comme des états diphasiques consistant une phase imaginaire avec la saturation négative. Une telle extension de la saturation exige développement des conditions de consistance qui sont fait dans cette thèse.La dernière partie est consacrée ensuite à étendre le modèle HT-split pour le cas d’écoulement triphasique compositionnel. Nous avons obtenu le modèle asymptotique, dans lequel la thermodynamique et l'hydrodynamique sont séparées / In the first part of thesis we deal with two-phase multicomponent, partially miscible, compressible flow in porous media. Displacement of one phase by another is analyzed. We examine non ideal solutions, pressure is variable, and phase compositions, densities and viscosities are variable functions of pressure.The process is described by Riemann problem which admits discontinuous solutions.We developed a numerical-analytical method of solution to explicitly determine all shock parameters before solving the flow equations. This method is based on splitting thermodynamics and hydrodynamics, suggested in [Oladyshkin, Panfilov 2006]. Earlier this method was inapplicable to Riemann problem, due to the lack of Hugoniot conditions. In this thesis we have constructed additional Hugoniot conditions.In the second part we examine two-phase flow when the single-phase zones appear, in this zone the fluid is over/under-saturated and two-phase flow equations degenerate and they cannot be used. We proposed to describe two-phase and over/under-saturated single-phase zones by uniform system of classic two-phase equations while extending the concept of phase saturation to be negative and higher than one. Physically it means that the oversaturated single-phase states are considered as pseudo two-phase states consisting an imaginary phase with negative saturation. Such an extension of saturation requires developing some consistence conditions which have developed in this thesis.The last part then is devoted to extend the HT-split model to the case of three-phase compositional flow. We have obtained the general asymptotic model, in which the thermodynamics and hydrodynamics are split
|
10 |
Analýza spontánního kolapsu v elastických trubicích / Analysis of spontaneous collapse in elastic tubesNetušil, Marek January 2012 (has links)
Interaction of fluid with elastic tube is complicated issue studied by many scientific departments around the world. Object of this thesis is to analyze simplified one-dimensional model. At the beginning, used balance equations and basics of hyper-elasticity are presented. Then we review three most common materials used for the description of blood vessels and other soft tissues. For these materials we introduce a method which we use to derive a relation between tube deformation and transmural pressure (i.e. difference between inner and outer pressure). In mathematical section we give brief review of theory of nonlinear hyperbolic equations and some relatively new results in the field of existence and uniqueness of a solution of one-dimensional hyperbolic system. The "building stone" of these results is a solution of the so-called Riemann problem. We use a method for finding exact solutions to the Riemann problem to analyze studied model of fluid-tube interaction and study dependence of the qualitative behavior of the solution on the material properties of the tube wall.
|
Page generated in 0.1377 seconds