Spelling suggestions: "subject:"riemannian manifold."" "subject:"hiemannian manifold.""
51 |
Heat equations on Lie groups, symmetric spaces and Riemannian mainfolds /Kim, Jinman. January 2005 (has links)
Thesis (Ph.D.)--York University, 2005. Graduate Programme in Mathematics and Statistics. / Typescript. Includes bibliographical references (leaves 78-83). Also available on the Internet. MODE OF ACCESS via web browser by entering the following URL: http://wwwlib.umi.com/cr/yorku/fullcit?pNR11588
|
52 |
Estimativas extrÃnsecas de autovalores de operadores elÃpticos em hipersuperfÃcies / Extrinsic estimatives of eigenvalues of elliptic operators on hypersurfacesFilipe MendonÃa de Lima 30 July 2010 (has links)
CoordenaÃÃo de AperfeiÃoamento de Pessoal de NÃvel Superior / O objetivo desse trabalho à mostrar estimativas superiores para o menor autovalor nÃo-nulo lambda1 do operador de Laplace-Beltrami delta. Os resultados que se seguem foram encontrados por R. Reilly [1] e a dupla A. El Soufi e S. Ilias [2]. A estimativa de Reilly à feita para variedades imersas
no espaÃo euclidiano Rn, e a de Soufi-Ilias para variedades conformemente imersas na esfera Sn.
A partir daà concluiremos o resultado, tambÃm de Soufi-Ilias [2], para subvariedades do espaÃo hiperbÃlico Hn. / The aim of this works is to show superior estimatives to the least non-zero eingenvalue lambda1
of the Laplace-Beltrami operator delta. The forthcoming results were discovered by Reilly [1] and the duo A. El Soufi and S. Ilias [2]. Reillyâs Estimative was calculated for immersed manifolds in the Euclidian Space Rn, and Soufi-Ilias for conformally immersed manifolds in the sphere Sn.Then, we conclude the result, again by Soufi-Ilias [2], for submanifolds of the hyperbolic space Hn.
|
53 |
Estimativas de autovalores para subvariedades de curvatura mÃdia localmente limitadas em N X R / Eigenvalue estimates for submanifolds with locally bounded mean curvature in N X RLeon Denis da Silva 23 July 2010 (has links)
CoordenaÃÃo de AperfeiÃoamento de Pessoal de NÃvel Superior / Obtemos limites inferiores para o tom fundamental de conjuntos abertos em subvariedades com curvatura mÃdia localmente limitada no espaÃo produto N x R, onde N à uma variedade Riemanniana completa n-dimensional com curvatura seccional K à menor ou igual que a curvatura do espaÃo forma. Quando a imersÃo à mÃnima nossas estimativas sÃo Ãtimas. / We give lower bounds for the fundamental of open sets in submanifolds with locally bounded mean curvature in N X R, where N is an n-dimensional complete Riemannian manifold with radial sectional curvature KN is less than or equal to the curvature of space form. When the immersion is minimal our estimates are sharp.
|
54 |
Uma extensÃo do teorema de Barta e aplicaÃÃes geomÃtricas / An extension of Barta's theorem and geometric aplicationsJosà Deibsom da Silva 22 July 2010 (has links)
CoordenaÃÃo de AperfeiÃoamento de Pessoal de NÃvel Superior / Apresentamos uma extensÃo do Teorema de Barta devido a G. P. Bessa and J. F. Montenegro e fazemos algumas aplicaÃÃes geomÃtricas do resultado obtido. A primeira aplicaÃÃo geomÃtrica da extensÃo do Teorema de Barta à uma extensÃo do Teorema de Cheng sobre estimativas inferiores de autovalores do Laplaciano em bolas geodÃsicas normais. A segunda aplicaÃÃo geomÃtrica à uma generalizaÃÃo do Teorema de Cheng-Li-Yau de estimativas de autovalores para uma subvariedade mÃnima do espaÃo forma. / We present an extension to Barta's Theorem due to G. P. Bessa and J. F. Montenegro and we show some geometric applications of the obtained result. As first
application, we extend Chang's lower eigenvalue estimates of the Laplacian in normal geodesic balls. As second application, we generalize Cheng-Li-Yau's eigenvalue
estimates to a minimal submanifold of the space forms.
|
55 |
Invariant gauge fields over non-reductive spaces and contact geometry of hyperbolic equations of generic typeThe, Dennis. January 2008 (has links)
No description available.
|
56 |
Local imbedding of hypersurfaces in an affine space.De Arazoza, Hector January 1972 (has links)
No description available.
|
57 |
Representação de Weierstrass em variedades Riemannianas e Lorentzianas / Weierstrass representation in Riemannian and Lorentzian manifoldsFreire, Emanoel Mateus dos Santos 12 April 2018 (has links)
O Teorema de Representação de Weierstrass clássico, que faz uso da análise complexa para descrever uma superfície mínima imersa no espaço Euclidiano em termos de dados holomorfos, tem sido extremamente útil seja para construir novos exemplos de superfícies mínimas, seja para o estudo das propriedades destas superfícies. Em [24], usando a equação harmônica, os autores determinam uma fórmula de representação para superfícies mínimas, simplesmente conexas, imersas em uma variedade Riemanniana qualquer. Neste caso, a condição de holomorficidade dos dados de Weierstrass consiste em um sistema de equações diferenciais parciais com coeficientes não constantes. Logo, em geral, é complicado determinar soluções explícitas. No entanto, escolhendo adequadamente o espaço ambiente, tais equações se simplificam e a fórmula pode ser usada para produzir novos exemplos de imersões mínimas conformes. No espaço de Lorentz-Minkowski tridimensional uma fórmula de representação tipo-Weierstrass foi provada por Kobayashi, para o caso das imersões mínimas de tipo espaço (ver [18]), e por Konderak no caso das imersões mínimas de tipo tempo (ver [20]). Na demonstração destas fórmulas se utilizam as ferramentas da análise complexa e paracomplexa, respectivamente. Recentemente, em [22] os resultados de Kobayashi e Konderak foram generalizados para o caso de superfícies mínimas (de tipo espaço e de tipo tempo) imersas em 3-variedades Lorentzianas. Nesta dissertação estudaremos as fórmulas de representação de Weierstrass para superfícies mínimas imersas em variedades Riemannianas e Lorentzianas, que foram obtidas nos artigos [18], [20], [22] e [24]. / The classic Weierstrass Representation Theorem, which makes use of complex analysis to describe a minimal surface immersed in the Euclidean space in terms of holomorphic data, has been extremely useful either to construct new examples of minimal surfaces, rather than to study structural properties of these surfaces. In [24], using the standard harmonic equation, the authors determine a representation formula for simply connected immersed minimal surfaces in a Riemannian manifold. In this case, the holomorphicity condition of the Weierstrass data is a system of partial differential equations with nonconstant coefficients. Therefore, in geral, it is very difficult to determine explicit solutions. However, for particular ambient spaces, these equations become simpler and the formula can be used to produce new examples of conformal minimal immersions. In the three-dimensional Lorentz-Minkowski space a Weierstrass-type representation formula was proved by Kobayashi for spacelike minimal immersions (see [18]), and by Konderak for the case of timelike minimal immersions (see [20]). In the demonstration of these formulas are used the tools of complex and paracomplex analysis, respectively. Recently, in [22] the results of Kobayashi and Konderak were generalized to the case of (spacelike and timelike) minimal surfaces immersed in 3-Lorentzian manifolds. In this dissertation, we will study the Weierstrass representation formula for immersed minimal surfaces in Riemannian and Lorentzian manifolds, that was obtained in the articles [18], [20], [22] and [24].
|
58 |
Representação de Weierstrass em variedades Riemannianas e Lorentzianas / Weierstrass representation in Riemannian and Lorentzian manifoldsEmanoel Mateus dos Santos Freire 12 April 2018 (has links)
O Teorema de Representação de Weierstrass clássico, que faz uso da análise complexa para descrever uma superfície mínima imersa no espaço Euclidiano em termos de dados holomorfos, tem sido extremamente útil seja para construir novos exemplos de superfícies mínimas, seja para o estudo das propriedades destas superfícies. Em [24], usando a equação harmônica, os autores determinam uma fórmula de representação para superfícies mínimas, simplesmente conexas, imersas em uma variedade Riemanniana qualquer. Neste caso, a condição de holomorficidade dos dados de Weierstrass consiste em um sistema de equações diferenciais parciais com coeficientes não constantes. Logo, em geral, é complicado determinar soluções explícitas. No entanto, escolhendo adequadamente o espaço ambiente, tais equações se simplificam e a fórmula pode ser usada para produzir novos exemplos de imersões mínimas conformes. No espaço de Lorentz-Minkowski tridimensional uma fórmula de representação tipo-Weierstrass foi provada por Kobayashi, para o caso das imersões mínimas de tipo espaço (ver [18]), e por Konderak no caso das imersões mínimas de tipo tempo (ver [20]). Na demonstração destas fórmulas se utilizam as ferramentas da análise complexa e paracomplexa, respectivamente. Recentemente, em [22] os resultados de Kobayashi e Konderak foram generalizados para o caso de superfícies mínimas (de tipo espaço e de tipo tempo) imersas em 3-variedades Lorentzianas. Nesta dissertação estudaremos as fórmulas de representação de Weierstrass para superfícies mínimas imersas em variedades Riemannianas e Lorentzianas, que foram obtidas nos artigos [18], [20], [22] e [24]. / The classic Weierstrass Representation Theorem, which makes use of complex analysis to describe a minimal surface immersed in the Euclidean space in terms of holomorphic data, has been extremely useful either to construct new examples of minimal surfaces, rather than to study structural properties of these surfaces. In [24], using the standard harmonic equation, the authors determine a representation formula for simply connected immersed minimal surfaces in a Riemannian manifold. In this case, the holomorphicity condition of the Weierstrass data is a system of partial differential equations with nonconstant coefficients. Therefore, in geral, it is very difficult to determine explicit solutions. However, for particular ambient spaces, these equations become simpler and the formula can be used to produce new examples of conformal minimal immersions. In the three-dimensional Lorentz-Minkowski space a Weierstrass-type representation formula was proved by Kobayashi for spacelike minimal immersions (see [18]), and by Konderak for the case of timelike minimal immersions (see [20]). In the demonstration of these formulas are used the tools of complex and paracomplex analysis, respectively. Recently, in [22] the results of Kobayashi and Konderak were generalized to the case of (spacelike and timelike) minimal surfaces immersed in 3-Lorentzian manifolds. In this dissertation, we will study the Weierstrass representation formula for immersed minimal surfaces in Riemannian and Lorentzian manifolds, that was obtained in the articles [18], [20], [22] and [24].
|
59 |
Non-smooth differential geometry of pseudo-Riemannian manifolds: Boundary and geodesic structure of gravitational wave space-times in mathematical relativityFama, Christopher J., - January 1998 (has links)
[No abstract supplied with this thesis - The first page (of three) of the Introduction follows]
¶
This thesis is largely concerned with the changing representations of 'boundary' or 'ideal' points of a
pseudo-Riemannian manifold -- and our primary interest is in the space-times of general relativity. In particular, we are interested in the following question: What assumptions about the 'nature' of 'portions' of a certain 'ideal boundary' construction (essentially the 'abstract boundary' of Scott and Szekeres (1994)) allow us to define precisely the topological type of these 'portions', i.e., to show that different representations of this ideal boundary, corresponding to different embeddings of the manifold into others, have corresponding 'portions' that are homeomorphic?
¶
Certain topological properties of these 'portions' are preserved, even allowing for quite unpleasant properties of the metric (Fama and Scott 1995). These results are given in Appendix D, since they are not used elsewhere and, as well as representing the main portion of work undertaken under the supervision of Scott, which deserves recognition, may serve as an interesting example of the relative ease with which certain simple results about the abstract boundary can be obtained.
¶
An answer to a more precisely formulated version of this question appears very diffcult in general. However, we can give a rather complete answer in certain cases, where we dictate certain 'generalised regularity' requirements for our embeddings, but make no demands on the precise functional form of our metrics apart from these. For example, we get a complete answer to our question for abstract boundary sets which do not 'wiggle about' too much -- i.e., they satisfy a certain Lipschitz condition -- and through which the metric can be extended in a manner which is not required to be differentiable (C[superscript1]), but is continuous and non--degenerate. We allow similar freedoms on the interior of the manifold, thereby bringing gravitational wave space-times within our sphere of discussion. In fact, in the course of developing these results in progressively greater generality, we get, almost 'free', certain abilities to begin looking at geodesic structure on quite general pseudo-Riemannian manifolds.
¶
It is possible to delineate most of this work cleanly into two major parts. Firstly, there are results which use classical geometric constructs and can be given for the original abstract boundary construction, which requires differentiability of both manifolds and metrics, and which we summarise below. The second -- and significantly longer -- part involves extensions of those constructs and results to more general metrics.
|
60 |
Διαρμονικές υποπολλαπλότητες της σφαίρας S3 / Biharmonic submanifolds of sphere S3Σερεμετάκη, Στέλλα 30 August 2007 (has links)
Αντικείμενο της εργασίας αυτής είναι η αναζήτηση των διαρμονικών υποπολλαπλοτήτων της σφαίρας S3. Η μέθοδος που εφαρμόζεται συνδέεται με την αρχή του λογισμού των μεταβολών.
Γίνεται σύντομη ανάλυση της μεθοδολογίας του λογισμού των μεταβολών και εφαρμογή αυτής σε γνωστές θεωρίες μεταξύ των οποίων είναι οι αρμονικές και διαρμονικές απεικονίσεις. Ορίζουμε τις έννοιες των αρμονικών και διαρμονικών απεικονίσεων μεταξύ δύο πολλαπλοτήτων Riemann και δίνουμαι παραδείγματα τέτοιων απεικονίσεων. Τέλος, προσδιορίζουμαι τις διαρμονικές καμπύλες και τις διαρμονικές επιφάνειες της σφαίρας S3.
Οι κεντρικές μας αναφορές είναι οι εργασίες :
(1) Biharmonic submanifolds in spheres, Israel.J.Math.,130(2002), 109-123, των R.Caddeo, S. Montaldo και C .Oniciuic.
(2) A report on harmonic maps, Bull. London Math. Soc. 10(1978), 1-68 των J. Eells και L.Lemaire. / The object of this project is the investigation of the biharmonic submanifolds of sphere S3. The method we apply is the variational method. We shortly analyse the method of variations and we describe some theorys as they derived by this method.
Between those theorys are the harmonic and biharmonic maps. We define the notions of harmonic and biharmonic maps between two Riemannian manifolds and we introduce some examples. Finally, we allocate the biharmonic curves and surfaces of sphere S3. The central references are:
(1) Biharmonic submanifolds in spheres, Israel.J.Math.,130(2002), 109-123, των R.Caddeo, S. Montaldo και C .Oniciuic.
(2) A report on harmonic maps, Bull. London Math. Soc. 10(1978), 1-68 των J. Eells και L.Lemaire.
|
Page generated in 0.077 seconds