• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 13
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 16
  • 16
  • 6
  • 6
  • 6
  • 5
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Aplicações de cópulas em modelos de riscos múltiplos dependentes e em modelos de misturas de distribuições / Applications of copula to polyhazard models with dependence and mixture models

Tsai, Rodrigo, 1974- 30 November 2029 (has links)
Orientador: Luiz Koodi Hotta / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Cientifica / Made available in DSpace on 2018-08-21T13:55:30Z (GMT). No. of bitstreams: 1 Tsai_Rodrigo_D.pdf: 3859687 bytes, checksum: 1064b1fa05b98307d97763bb79e95de4 (MD5) Previous issue date: 2012 / Resumo: Nesse trabalho discutimos aplicações de cópulas a modelos de riscos múltiplos com dependência e modelos de misturas de distribuições. Numa primeira parte analisamos a inclusão de dependência entre os fatores de risco do modelo de riscos múltiplos. Os modelos de riscos múltiplos são uma família de modelos flexíveis para representar dados de tempos de vida. Suas maiores vantagens sobre os modelos de risco simples incluem a habilidade de representar funções de taxa de falha com formas não usuais e a facilidade de incluir covariáveis. O objetivo principal dessa parte é modelar a dependência existente entre as causas latentes de falha do modelo de riscos múltiplos por meio de funções de cópulas. A escolha da função de cópulas bem como das funções de distribuição dos tempos latentes de falha resultam numa classe flexível de distribuições de sobrevivência que é capaz de representar funções de taxa de falha de formas multimodais, forma de banheira e contendo efeitos locais dados pela concorrência dos riscos. A identificação e estimação do modelo proposto também são discutidas. Ao eliminar a restrição de suporte positivo para as variáveis latentes, o método pode ser utilizado para gerar uma família rica de distribuições univariadas contendo assimetrias e múltiplas modas. Na segunda parte propomos um modelo de mistura de distribuições generalizado utilizando cópulas. O parâmetro da cópula é útil para definir formas de assimetria e ponderar com maior ou menor peso determinadas regiões do suporte das distribuições componentes para compor a mistura. pesos das distribuições componentes variam no suporte da distribuição e não são restritos à soma unitária. A modelagem resultante acrescenta uma maior flexibilidade aos modelos de misturas na representação de dados com densidades de várias formas multimodais e assimétricas. O modelo tem como casos particulares o modelo de mistura tradicional, o modelo de riscos múltiplos e o modelo de fração de cura. Os modelos são aplicados a dados simulados e reais da literatura. Foram utilizados os métodos de estimação de máxima verossimilhança e os critérios de ajuste de Akaike e Bayesiano para a seleção dos modelos. Os modelos representaram bem os conjuntos de dados analisados em comparação com metodologias propostas na literatura / Abstract: In this work, we discuss the application of copula to polyhazard and mixture models. First we analyse the inclusion of dependence among failure causes in the polyhazard models. The polyhazard models constitute a family of flexible models to represent lifetime data. Their main advantages over single hazard models include the ability to represent hazard rate functions with unusual shapes and the ease of including covariates. The main purpose in this first part is to model the dependence that exists among the latent causes of failure in the polyhazard model by copula functions. The choice of the copula function as well as the latent failure distributions produces a flexible class of survival distributions that is able to model hazard functions with unusual shapes such as bathtub or multimodal curves, while also modelling local effects given by the competing risks. The model identification and estimation are also discussed. Dropping the restriction of positive support for the latent variables, the method can be used to generate a rich family of univariate distributions with asymmetries and multiple modes. In the second part a generalized mixture model using copula functions is proposed. To assemble the mixture model, the parameter of the copula function is used to define asymmetry shapes and to attribute more or less weight to chosen regions of the component distributions. The weights of the component distributions vary on the support of the distribution and are not restricted to the unitary sum. The resulting model increases the flexibility of the mixture models to represent data with densities with several multimodal and asymmetric shapes. Special cases of the model are the traditional mixture models, the polyhazard model, and the cure fraction model. Simulated and empirical data from the literature are analysed by the proposed models. The estimation was done by maximum likelihood methods and the selection of the models used the Akaike and Bayesian criteria. The proposed models exhibited very good fit to the data sets in comparison to other methodologies presented in the literature / Doutorado / Estatistica / Doutor em Estatística
12

Sobrevivência de mulheres com câncer de mama sob a perspectiva dos modelos de riscos competitivos / Survival of women with breast cancer in the perspective of competing risks models

Ferraz, Rosemeire de Olanda, 1973- 02 November 2015 (has links)
Orientador: Djalma de Carvalho Moreira Filho / Tese (doutorado) - Universidade Estadual de Campinas, Faculdade de Ciências Médicas / Made available in DSpace on 2018-08-26T22:55:22Z (GMT). No. of bitstreams: 1 Ferraz_RosemeiredeOlanda_D.pdf: 2711370 bytes, checksum: b4966f4c4ea3b88daffa54c0576bd307 (MD5) Previous issue date: 2015 / Resumo: O objetivo deste estudo é identificar os fatores associados ao tempo de sobrevida do câncer de mama, como idade, estadiamento e extensão do tumor, utilizando modelos de riscos proporcionais de Cox e de riscos competitivos de Fine-Gray. E também propor um modelo de regressão paramétrico para ajustar o tempo de sobrevida na presença dos riscos competitivos. É um estudo de coorte retrospectivo de base-populacional referente a 524 mulheres diagnosticadas com câncer de mama no período de 1993 a 1995, acompanhadas até 2011, residentes no município de Campinas/SP. Um ponto de corte para a variável contínua da idade foi escolhido utilizando-se modelos de Cox. Nos ajustes de modelos simples e múltiplo de Fine-Gray e de Cox, a idade não foi significativa quando o óbito por câncer de mama foi o evento de interesse. As curvas de sobrevivências estimadas por Kaplan-Meier evidenciaram diferenças expressivas nas probabilidades comparando-se os óbitos por câncer de mama e por riscos competitivos. As curvas de sobrevida por câncer de mama não apresentaram diferenças significativas quando comparadas as categorias de idades, segundo teste de log rank. Os modelos de Fine-Gray e Cox identificaram praticamente as mesmas covariáveis influenciando no tempo de sobrevida para ambos eventos de interesse, óbitos por câncer de mama e óbitos por riscos competitivos. Foram comparados os modelos exponencial, de Weibull e lognormal com o modelo gama generalizada e conclui-se que o modelo de regressão de Weibull foi o mais adequado para ajustar o tempo de sobrevida na presença dos riscos competitivos, conforme resultados dos testes de razões de verossimilhanças / Abstract: The aim of this study is to identify associated factors to time failure survival of breast cancer such as age, stage and extent of the tumor using Cox's proportional hazards and Fine-Gray competing risks models. It is a retrospective cohort study of population-based concerning to 524 women diagnosed with breast cancer in the period 1993-1995, followed until 2011, living in the city of Campinas, São Paulo State, Brazil. The cutoff age variable has been defined using Cox models. In the settings of simple and multiple models of Fine-Gray and Cox age was not significant when the death from breast cancer was the outcome of interest. The survival curves estimated by Kaplan-Meier showed significant differences in the odds comparing the deaths from breast cancer and competing risks. The survival curves for breast cancer showed no significant differences when comparing age groups, according to the logrank test. The Fine-Gray and Cox models identified the same covariates influencing the survival time for both events of interest: deaths from breast cancer and deaths from competing risks. The exponential, Weibull and lognormal regression models were compared with generalized gamma model and it is concluded that the Weibull regression model was the most appropriate to adjust the survival time in the presence of competing risks, according to results of the ratio likelihood tests / Doutorado / Epidemiologia / Doutora em Saúde Coletiva
13

Statistical inference for non-homogeneous Poisson process with competing risks: a repairable systems approach under power-law process / Inferência estatística para processo de Poisson não-homogêneo com riscos competitivos: uma abordagem de sistemas reparáveis sob processo de lei de potência

Almeida, Marco Pollo 30 August 2019 (has links)
In this thesis, the main objective is to study certain aspects of modeling failure time data of repairable systems under a competing risks framework. We consider two different models and propose more efficient Bayesian methods for estimating the parameters. In the first model, we discuss inferential procedures based on an objective Bayesian approach for analyzing failures from a single repairable system under independent competing risks. We examined the scenario where a minimal repair is performed at each failure, thereby resulting in that each failure mode appropriately follows a power-law intensity. Besides, it is proposed that the power-law intensity is reparametrized in terms of orthogonal parameters. Then, we derived two objective priors known as the Jeffreys prior and reference prior. Moreover, posterior distributions based on these priors will be obtained in order to find properties which may be optimal in the sense that, for some cases, we prove that these posterior distributions are proper and are also matching priors. In addition, in some cases, unbiased Bayesian estimators of simple closed-form expressions are derived. In the second model, we analyze data from multiple repairable systems under the presence of dependent competing risks. In order to model this dependence structure, we adopted the well-known shared frailty model. This model provides a suitable theoretical basis for generating dependence between the components failure times in the dependent competing risks model. It is known that the dependence effect in this scenario influences the estimates of the model parameters. Hence, under the assumption that the cause-specific intensities follow a PLP, we propose a frailty-induced dependence approach to incorporate the dependence among the cause-specific recurrent processes. Moreover, the misspecification of the frailty distribution may lead to errors when estimating the parameters of interest. Because of this, we considered a Bayesian nonparametric approach to model the frailty density in order to offer more flexibility and to provide consistent estimates for the PLP model, as well as insights about heterogeneity among the systems. Both simulation studies and real case studies are provided to illustrate the proposed approaches and demonstrate their validity. / Nesta tese, o objetivo principal é estudar certos aspectos da modelagem de dados de tempo de falha de sistemas reparáveis sob uma estrutura de riscos competitivos. Consideramos dois modelos diferentes e propomos métodos Bayesianos mais eficientes para estimar os parâmetros. No primeiro modelo, discutimos procedimentos inferenciais baseados em uma abordagem Bayesiana objetiva para analisar falhas de um único sistema reparável sob riscos competitivos independentes. Examinamos o cenário em que um reparo mínimo é realizado em cada falha, resultando em que cada modo de falha segue adequadamente uma intensidade de lei de potência. Além disso, propõe-se que a intensidade da lei de potência seja reparametrizada em termos de parâmetros ortogonais. Então, derivamos duas prioris objetivas conhecidas como priori de Jeffreys e priori de referência. Além disso, distribuições posteriores baseadas nessas prioris serão obtidas a fim de encontrar propriedades que podem ser ótimas no sentido de que, em alguns casos, provamos que essas distribuições posteriores são próprias e que também são matching priors. Além disso, em alguns casos, estimadores Bayesianos não-viesados de forma fechada são derivados. No segundo modelo, analisamos dados de múltiplos sistemas reparáveis sob a presença de riscos competitivos dependentes. Para modelar essa estrutura de dependência, adotamos o conhecido modelo de fragilidade compartilhada. Esse modelo fornece uma base teórica adequada para gerar dependência entre os tempos de falha dos componentes no modelo de riscos competitivos dependentes. Sabe-se que o efeito de dependência neste cenário influencia as estimativas dos parâmetros do modelo. Assim, sob o pressuposto de que as intensidades específicas de causa seguem um PLP, propomos uma abordagem de dependência induzida pela fragilidade para incorporar a dependência entre os processos recorrentes específicos da causa. Além disso, a especificação incorreta da distribuição de fragilidade pode levar a erros na estimativa dos parâmetros de interesse. Por isso, consideramos uma abordagem Bayesiana não paramétrica para modelar a densidade da fragilidade, a fim de oferecer mais flexibilidade e fornecer estimativas consistentes para o modelo PLP, bem como insights sobre a heterogeneidade entre os sistemas. São fornecidos estudos de simulação e estudos de casos reais para ilustrar as abordagens propostas e demonstrar sua validade.
14

Inferência bayesiana para testes acelerados "step-stress" com dados de falha sob censura e distribuição Gama / Bayesian inference for accelerated testing "step-stress" with fault data under censorship and Gamma

Chagas, Karlla Delalibera [UNESP] 16 April 2018 (has links)
Submitted by Karlla Delalibera Chagas null (karlladelalibera@gmail.com) on 2018-05-14T12:25:13Z No. of bitstreams: 1 dissertação - Karlla Delalibera.pdf: 2936984 bytes, checksum: 3d99ddd54b4c7d3230e5de9070915594 (MD5) / Approved for entry into archive by Claudia Adriana Spindola null (claudia@fct.unesp.br) on 2018-05-14T12:53:09Z (GMT) No. of bitstreams: 1 chagas_kd_me_prud.pdf: 2936984 bytes, checksum: 3d99ddd54b4c7d3230e5de9070915594 (MD5) / Made available in DSpace on 2018-05-14T12:53:09Z (GMT). No. of bitstreams: 1 chagas_kd_me_prud.pdf: 2936984 bytes, checksum: 3d99ddd54b4c7d3230e5de9070915594 (MD5) Previous issue date: 2018-04-16 / Pró-Reitoria de Pós-Graduação (PROPG UNESP) / Neste trabalho iremos realizar uma abordagem sobre a modelagem de dados que advém de um teste acelerado. Consideraremos o caso em que a carga de estresse aplicada foi do tipo "step-stress". Para a modelagem, utilizaremos os modelos step-stress simples e múltiplo sob censura tipo II e censura progressiva tipo II, e iremos supor que os tempos de vida dos itens em teste seguem uma distribuição Gama. Além disso, também será utilizado o modelo step-stress simples sob censura tipo II considerando a presença de riscos competitivos. Será realizada uma abordagem clássica, por meio do método de máxima verossimilhança e uma abordagem Bayesiana usando prioris não-informativas, para estimar os parâmetros dos modelos. Temos como objetivo realizar a comparação dessas duas abordagens por meio de simulações para diferentes tamanhos amostrais e utilizando diferentes funções de perda (Erro Quadrático, Linex, Entropia), e através de estatísticas verificaremos qual desses métodos se aproxima mais dos verdadeiros valores dos parâmetros. / In this work, we will perform an approach to data modeling that comes from an accelerated test. We will consider the case where the stress load applied was of the step-stress type. For the modeling, we will use the simple and multiple step-stress models under censorship type II and progressive censorship type II, and we will assume that the lifetimes of the items under test follow a Gamma distribution. In addition, the simple step-stress model under censorship type II will also be used considering the presence of competitive risks. A classical approach will be performed, using the maximum likelihood method and a Bayesian approach using non-informative prioris, to estimate the parameters of the models. We aim to compare these two approaches by simulations for different sample sizes and using different loss functions (Quadratic Error, Linex, Entropy), and through statistics, we will check which of these approaches is closer to the true values of the parameters.
15

Modelos de riscos aplicados à análise de sobrevivência / Hazard models on survival analysis

Perdona, Gleici da Silva Castro 25 August 2006 (has links)
Assumir suposições especiais sobre a função de risco tem sido a estratégia adotada por vários autores, com intuito de garantir modelos gerais e abrangentes, tanto para a análise de dados de sobrevivência quanto de conDabilidade. Neste estudo, modelos aplicados a dados da área de sobrevivência e conDabilidade são considerados. A Dnalidade deste estudo é propor modelos mais Pexíveis e/ou mais abrangentes de forma a generalizar modelos já existentes, bem como estudar suas propriedades e propor possíveis comparações entre os modelos via testes de hipóteses. Considera-se nesta tese, três classes de modelos baseados na função de risco (modelos de risco). A primeira classe apresenta-se como um caso particular do modelo de risco estendido (Louzada-Neto, 1999), formada por modelos que relacionam o parâmetro de escala a covariáveis, sendo que esse relacionamento pode ser considerado log-linear ou log-nãolinear. Considera-se um modelo particular onde a dependência do parâmetro de escala se dá de forma log-não-linear. Na segunda classe considera-se modelos que estão vinculados a dados de riscos competitivos, quando se tem ou não informação sobre qual tipo de risco foi responsável pela falha de um equipamento ou pelo óbito de um paciente. A terceira classe de modelos foi proposta, nesta tese, relacionando o contexto de modelos de longa duração. / Assuming special suppositions for the hazard function have been the strategy used for many authors in order to guarantee general and Pexible models for survival and reliability data. The present thesis considers two classes of hazard models, with the basic objective of proposing more Pexible models, studying their properties and proposing possible comparisons via hypothesis tests. We consider, three families of models where the struture was based in hazard function. The Drst class is a special case of the extented hazard model (Louzada, 1999). This class of models is composed by models with relationship between the scale parameter and the covariates could be log-linear or log-non-linear, we consider the log-non-linear. The second class is into the context of competing risk, where we do not known what kind of risk is responsable for the fail.or death. The third class, proposed in this work refers to a context of long term survivals. All the procedures were ilustrated in real datasets
16

Modelos de riscos aplicados à análise de sobrevivência / Hazard models on survival analysis

Gleici da Silva Castro Perdona 25 August 2006 (has links)
Assumir suposições especiais sobre a função de risco tem sido a estratégia adotada por vários autores, com intuito de garantir modelos gerais e abrangentes, tanto para a análise de dados de sobrevivência quanto de conDabilidade. Neste estudo, modelos aplicados a dados da área de sobrevivência e conDabilidade são considerados. A Dnalidade deste estudo é propor modelos mais Pexíveis e/ou mais abrangentes de forma a generalizar modelos já existentes, bem como estudar suas propriedades e propor possíveis comparações entre os modelos via testes de hipóteses. Considera-se nesta tese, três classes de modelos baseados na função de risco (modelos de risco). A primeira classe apresenta-se como um caso particular do modelo de risco estendido (Louzada-Neto, 1999), formada por modelos que relacionam o parâmetro de escala a covariáveis, sendo que esse relacionamento pode ser considerado log-linear ou log-nãolinear. Considera-se um modelo particular onde a dependência do parâmetro de escala se dá de forma log-não-linear. Na segunda classe considera-se modelos que estão vinculados a dados de riscos competitivos, quando se tem ou não informação sobre qual tipo de risco foi responsável pela falha de um equipamento ou pelo óbito de um paciente. A terceira classe de modelos foi proposta, nesta tese, relacionando o contexto de modelos de longa duração. / Assuming special suppositions for the hazard function have been the strategy used for many authors in order to guarantee general and Pexible models for survival and reliability data. The present thesis considers two classes of hazard models, with the basic objective of proposing more Pexible models, studying their properties and proposing possible comparisons via hypothesis tests. We consider, three families of models where the struture was based in hazard function. The Drst class is a special case of the extented hazard model (Louzada, 1999). This class of models is composed by models with relationship between the scale parameter and the covariates could be log-linear or log-non-linear, we consider the log-non-linear. The second class is into the context of competing risk, where we do not known what kind of risk is responsable for the fail.or death. The third class, proposed in this work refers to a context of long term survivals. All the procedures were ilustrated in real datasets

Page generated in 0.0379 seconds