• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 312
  • 91
  • Tagged with
  • 403
  • 388
  • 385
  • 87
  • 76
  • 73
  • 59
  • 51
  • 46
  • 37
  • 34
  • 33
  • 32
  • 29
  • 29
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
211

Neural network based fault detection on painted surface

Augustian, Midhumol January 2017 (has links)
Machine vision systems combined with classification algorithms are being increasingly used for different applications in the age of automation. One such application would be the quality control of the painted automobile parts. The fundamental elements of the machine vision system include camera, illumination, image acquisition software and computer vision algorithms. Traditional way of thinking puts too much importance on camera systems and ignores other elements while designing a machine vision system. In this thesis work, it is shown that selecting an appropriate illumination for illuminating the surface being examined is equally important in case of machine vision system for examining specular surface. Knowledge about the nature of the surface, type and properties of the defect to be detected and classified are important factors while choosing the illumination system for the machine vision system. The main illumination system tested were bright field, dark field and structured illumination and out of the three, dark field and structured illumination gave best results. This thesis work proposes a dark field illumination based machine vision system for fault detection on specular painted surface. A single layer Artificial Neural Network model is employed for the classification of defects in intensity images of painted surface acquired with this machine vision system. The results of this research work proved that the quality of the images and size of data set used for training the Neural Network model play a vital role in the performance of the classifier algorithm.
212

Computer Vision and Machine Learning for a Spoon-feeding Robot : A prototype solution based on ABB YuMi and an Intel RealSense camera

Loffreno, Michele January 2021 (has links)
A lot of people worldwide are affected by limitations and disabilities that make it hard to do even essential actions and everyday tasks, such as eating. The impact of robotics on the lives of elder people or people having any kind of inability, which makes it hard everyday actions as to eat, was considered. The aim of this thesis is to study the implementation of a robotic system in order to achieve an automatic feeding process. Different kinds of robots and solutions were taken into account, for instance, the Obi and the prototype realized by the Washington University. The system considered uses an RGBD camera, an Intel RealSense D400 series camera, to detect pieces of cutlery and food on a table and a robotic arm, an ABB-YuMi, to pick up the identified objects. The spoon detection is based on the pre-trained convolutional neural network AlexNet provided by MATLAB. Two detectors were implemented. The first one can detect up to four different objects (spoon, plate, fork and knife), the second one can detect only spoon and plate. Different algorithms based on morphology were tested in order to compute the pose of the objects detected. RobotStudio was used to establish a connection between MATLAB and the robot. The goal was to make the whole process as automated as possible. The neural network trained on two objects reached 100% of accuracy during the training test. The detector based on it was tested on the real system. It was possible to detect the spoon and the plate and to draw a good centered boundary box. The accuracy reached can be considered satisfying since it has been possible to grasp a spoon using the YuMi based on a picture of the table. It was noticed that the lighting condition is the key factor to get a satisfying result or to miss the detection of the spoon. The best result was archived when the light is uniform and there are no reflections and shadows on the objects. The pictures which get a better result for the detection were taken in an apartment. Despite the limitations of the interface between MATLAB and the controller of the YuMi, a good level of automation was reached. The influence of lighting conditions in this setting was discussed and some practical suggestions and considerations were made. / No
213

Synthetic Data for Training and Evaluation of Critical Traffic Scenarios

Collin, Sofie January 2021 (has links)
Modern camera-based vehicle safety systems heavily rely on machine learning and consequently require large amounts of training data to perform reliably. However, collecting and annotating the needed data is an extremely expensive and time-consuming process. In addition, it is exceptionally difficult to collect data that covers critical scenarios. This thesis investigates to what extent synthetic data can replace real-world data for these scenarios. Since only a limited amount of data consisting of such real-world scenarios is available, this thesis instead makes use of proxy scenarios, e.g. situations when pedestrians are located closely in front of the vehicle (for example at a crosswalk). The presented approach involves training a detector on real-world data where all samples of these proxy scenarios have been removed and compare it to other detectors trained on data where the removed samples have been replaced with various degrees of synthetic data. A method for generating and automatically and accurately annotating synthetic data, using features in the CARLA simulator, is presented. Also, the domain gap between the synthetic and real-world data is analyzed and methods in domain adaptation and data augmentation are reviewed. The presented experiments show that aligning statistical properties between the synthetic and real-world datasets distinctly mitigates the domain gap. There are also clear indications that synthetic data can help detect pedestrians in critical traffic situations / <p>Examensarbetet är utfört vid Institutionen för teknik och naturvetenskap (ITN) vid Tekniska fakulteten, Linköpings universitet</p>
214

Obstacle Detection and Avoidance for an Automated Guided Vehicle / Detektion av hinder och hur de kan undvikas för ett autonomt guidat fordon

Berlin, Filip, Granath, Sebastian January 2021 (has links)
The need for faster and more reliable logistics solutions is rapidly increasing. This is due to higher demands on the logistical services to improve quality,  quantity, speed and reduce the error tolerance. An arising solution to these increased demands is automated solutions in warehouses, i.e., automated material  handling. In order to provide a satisfactory solution, the vehicles need to be smart and able to solve unexpected situations without human interaction.  The purpose of this thesis was to investigate if obstacle detection and avoidance in a semi-unknown environment could be achieved based on the data from a 2D LIDAR-scanner. The work was done in cooperation with the development of a new load-handling vehicle at Toyota Material Handling. The vehicle is navigating from a map that is created when the vehicle is introduced to the environment it will be operational within. Therefore, it cannot successfully navigate around new unrepresented obstacles in the map, something that often occurs in a material handling warehouse. The work in this thesis resulted in the implementation of a modified occupancy grid map algorithm, that can create maps of previously unknown environments if the position and orientation of the AGV are known. The generated occupancy grid map could then be utilized in a lattice planner together with the A* planning algorithm to find the shortest path. The performance was tested in different scenarios at a testing facility at Toyota Material Handling.  The results showed that the occupancy grid provided an accurate description of the environment and that the lattice planning provided the shortest path, given constraints on movement and allowed closeness to obstacles. However, some performance enhancement can still be introduced to the system which is further discussed at the end of the report.  The main conclusions of the project are that the proposed solution met the requirements placed upon the application, but could benefit from a more efficient usage of the mapping algorithm combined with more extensive path planning. / <p>Digital framläggning</p>
215

Evaluation, Design &amp; Development of a Prototype 3-Link Mini Robot Manipulator

Ahmed, Rijon January 2022 (has links)
A 3-link robotic arm was designed, constructed, and tested as part of the thesis work. This prototype will assist students in applying their robotics and control system theory knowledge to real results. The kinematic equations are created to help with trajectory planning. Evaluation of different parameters was determined like (angles at which the servo motor operated, link length at which the servo can carry, spatial velocity, DH parameter, and Homogeneous transformation matrix). An Arduino-based closed-loop control system is built. Four Servo motors were used which are being controlled by Arduino UNO and Leonardo. The Arduino IDE is used to write proper codes. The main aim of the study was to apply the knowledge of robotics and control systems to develop a functional mini robot from scratch. Specifically, the thesis presents how to build a robotic arm that can move and lift objects. And, this task is done by using different controlling techniques where potentiometer, Bluetooth Module, and IR senor were used and compared which technique gives better results. The structural components had several issues. The project's linkages foundation and gripper are all 3-D printed pieces that are being designed using Autodesk Inventor Professional 2021 software. Although they did not cause any problems with strength, there were some difficulties with properly tightening the gears onto the shaft. To overcome these difficulties glue is being used so that all servo motors hold with the link properly. In a broad sense, the robot can position and orient the end-effector to pick and place the object accurately from a distance.
216

Maskininlärning och fallklassificering med MEMS-accelerometer : En studie i fallklassificering med artificiella neurala nätverk / En studie i fallklassificering med artificiella neurala nätverk : Maskininlärning och fallklassificering med MEMS-accelerometer

Theo, Sobczak January 2020 (has links)
Denna rapport har sin utgångspunkt på skapandet av en maskininlärningsalgoritm för att kunna klassificera ett fysiskt fall av en person. En DC Kapacitiv MEMS-accelerometer (BMA250) kombinerat med en Tinyduino Processor (Atmega328P) används för datainsamling. Programmering av processorn och maskininlärningsalgoritmen skrivs i C++ och ANN (Artificiell Neuralt Nätverk) används för att klassificera det fysiska fallet. ANN kan approximera ett värde som tyder på ett falskt fall efter 10 000 träningssekvenser inom 5% av ett teoretiskt värde som tyder på ett resultat med 100% säkerhet och 0,0005% felmarginal. Ett teoretiskt värde som tyder på ett faktiskt fall kan klassificeras efter 5000 träningssekvenser inom 5% av det eftersökta värdet med 100% säkerhet och 0,0045% felmarginal.
217

Kontrollsystem till Markberedare : Styrning till Invers-Markberedare

Ekman Svahn, Edvin Benjamin January 2020 (has links)
Syftet med detta examinationsarbete är att utveckla ett kontrollsystem för en inversmarkberedningsprototyp.En simuleringsmodell har skapats för att utveckla ett kontrollsystem med syftet att validera och verifiera prototypens effektivitet. Simuleringsuppställningen är skapad i Simulink, där en del av prototypen är importerad som en solidmodell vilken sammankopplas med en modell av ett hydraulsystem som styr solidmodellens rörelse. I Simuleringsmiljön utvecklades reglering samt styrlogik för prototypen. När regleringen var färdig att testas kontrollerades det att mjukvaran läsa av aktuella sensorer och att utsignaler från kontrollsystemet når hårdvaran, samt att den avsedda rörelsen utförs i verkligheten. Detta projekt har därmed resulterat i en simuleringsmodell, ett kontrollsystem, samt förutsättningar för att kunna verifiera resultaten i verkligheten. / This thesis treats the development of a control system for an inverse soil conditioner prototype. A simulation model was created to develop a control system with the purpose of validation and verification of the prototypes efficacy. The simulation model is created in Simulink, where a part of the soil conditioner is imported as a solid model, which then is coupled to a model of a hydraulic system. In the simulation a control system and regulator were implemented and tuned. when the software was test-ready the hardware-interface was tested to validate that the current software could receive inputs and send meaningful outputs, and then real movements were logged to validate the software function for the machine. The results of this project can then be summarized as a simulation model, a control system, and a solid basis for real world verification are completed.
218

Understanding usage of Volvo trucks

Dahl, Oskar, Johansson, Fredrik January 2019 (has links)
Trucks are designed, configured and marketed for various working environments. There lies a concern whether trucks are used as intended by the manufacturer, as usage may impact the longevity, efficiency and productivity of the trucks. In this thesis we propose a framework divided into two separate parts, that aims to extract costumers’ driving behaviours from Logged Vehicle Data (LVD) in order to a): evaluate whether they align with so-called Global Transport Application (GTA) parameters and b): evaluate the usage in terms of performance. Gaussian mixture model (GMM) is employed to cluster and classify various driving behaviors. Association rule mining was applied on the categorized clusters to validate that the usage follow GTA configuration. Furthermore, Correlation Coefficient (CC) was used to find linear relationships between usage and performance in terms of Fuel Consumption (FC). It is found that the vast majority of the trucks seemingly follow GTA parameters, thus used as marketed. Likewise, the fuel economy was found to be linearly dependent with drivers’ various performances. The LVD lacks detail, such as Global Positioning System (GPS) information, needed to capture the usage in such a way that more definitive conclusions can be drawn. / <p>This thesis was later conducted as a scientific paper and was submit- ted to the conference of ICIMP, 2020. The publication was accepted the 23th of September (2019), and will be presented in January, 2020.</p>
219

Sampling Based Motion Planning for Heavy Duty Autonomous Vehicles

Evestedt, Niclas January 2016 (has links)
The automotive industry is undergoing a revolution where the more traditional mechanical values are replaced by an ever increasing number of Advanced Driver Assistance Systems (ADAS) where advanced algorithms and software development are taking a bigger role. Increased safety, reduced emissions and the possibility of completely new business models are driving the development and most automotive companies have started projects that aim towards fully autonomous vehicles. For industrial applications that provide a closed environment, such as mining facilities, harbors, agriculture and airports, full implementation of the technology is already available with increased productivity, reliability and reduced wear on equipment as a result. However, it also gives the opportunity to create a safer working environment when human drivers can be removed from dangerous working conditions. Regardless of the application an important part of any mobile autonomous system is the motion planning layer. In this thesis sampling-based motion planning algorithms are used to solve several non-holonomic and kinodynamic planning problems for car-like robotic vehicles in different application areas that all present different challenges. First we present an extension to the probabilistic sampling-based Closed-Loop Rapidly exploring Random Tree (CL-RRT) framework that significantly increases the probability of drawing a valid sample for platforms with second order differential constraints. When a tree extension is found infeasible a new acceleration profile that tries to brings the vehicle to a full stop before the collision occurs is calculated. A resimulation of the tree extension with the new acceleration profile is then performed. The framework is tested on a heavy-duty Scania G480 mining truck in a simple constructed scenario. Furthermore, we present two different driver assistance systems for the complicated task of reversing with a truck with a dolly-steered trailer. The first is a manual system where the user can easily construct a kinematically feasible path through a graphical user interface. The second is a fully automatic planner, based on the CL-RRT algorithm where only a start and goal position need to be provided. For both approaches, the internal angles of the trailer configuration are stabilized using a Linear Quadratic (LQ) controller and path following is achieved through a pure-pursuit control law. The systems are demonstrated on a small-scale test vehicle with good results. Finally, we look at the planning problem for an autonomous vehicle in an urban setting with dense traffic for two different time-critical maneuvers, namely, intersection merging and highway merging. In these situations, a social interplay between drivers is often necessary in order to perform a safe merge. To model this interaction a prediction engine is developed and used to predict the future evolution of the complete traffic scene given our own intended trajectory. Real-time capabilities are demonstrated through a series of simulations with varying traffic densities. It is shown, in simulation, that the proposed method is capable of safe merging in much denser traffic compared to a base-line method where a constant velocity model is used for predictions.
220

Investigating Simultaneous Localization and Mapping for an Automated Guided Vehicle

Manhed, Joar January 2019 (has links)
The aim of the thesis is to apply simultaneous localization and mapping (SLAM) to automated guided vehicles (AGVs) in a Robot Operating System (ROS) environment. Different sensor setups are used and evaluated. The SLAM applications used is the open-source solution Cartographer as well as Intel's own commercial SLAM in their T265 tracking camera. The different sensor setups are evaluated based on how well the localization will give the exact pose of the AGV in comparison to another positioning system acting as ground truth.

Page generated in 0.0355 seconds