• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 4
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 25
  • 25
  • 11
  • 6
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Cota de inundação e recorrência para a enseada do Itapocorói e praia de Morro dos Conventos, Santa Catarina

Silva, Guilherme Vieira da January 2012 (has links)
Este trabalho apresenta o cálculo da cota de inundação para a Enseada do Itapocorói e para a praia de Morro dos Conventos, litoral do Estado de Santa Catarina. Para atingir os objetivos desse trabalho, a cota de inundação foi calculada através da soma das marés meteorológica e astronômica e do wave run-up. Foi utilizada uma base de 60 anos (horária) de dados de marés e ondas, além de dados de batimetria e topografia das praias. Com o intuito de se obter dados mais realistas do wave run-up, os parâmetros ondulatórios da base de dados foram transferidos de águas profundas para próximo da costa com a utilização do modelo SWAN (Simulating Waves Nearshore). A Enseada do Itapocorói foi dividida em quatro setores (exposto, semiexposto, semiprotegido e protegido) em função dos diferentes graus de exposição à ação de ondas, sendo as equações calibradas para cada setor. A partir dos resultados para Enseada do Itapocorói, notou-se que quanto mais exposta a praia, melhor as equações existentes representavam o wave run-up, assim, para a praia de Morro dos Conventos foi utilizada a equação mais aceita na literatura sem calibração. A cota de inundação instantânea foi calculada para cada hora da série de 60 anos somando-se o wave run-up às marés astronômicas e meteorológicas. Sobre a série de cota de inundação instantânea, para ambas as áreas, foi calculada a cota atingida durante 50% do tempo e por eventos extremos com recorrência de 50, 100 e 200 anos. A estas foi adicionada a previsão de elevação do nível do mar de longo prazo para o mesmo período. A cota atingida durante 50% do tempo na Enseada do Itapocorói foi de 1,35 m no setor exposto, enquanto nos setores semiexposto, semiprotegido e protegido foi de 1 m, 0,9 m e 0,7 m respectivamente. Também, o setor exposto foi o que apresentou as maiores cotas atingidas, sendo 3,45 m, 3,85 m e 4,45 m com tempo de recorrência de 50,100 e 200 anos respectivamente. No setor semiexposto, os valores calculados foram de 2,85 m (50 anos), 3,25 m (100 anos) e 3,9 m (200 anos). No setor semiprotegido, as cotas com tempo de recorrência de 50, 100 e 200 anos foram de 2,65 m, 3,05 m, 3,75 m respectivamente. Já o setor protegido apresentou as menores cotas entre os setores, 2,4 m, 2,85 m e 3,5 m para 50, 100 e 200 anos de tempo de recorrência. Considerando a extensão da área costeira que possui um levantamento de topografia do terreno, 2,4 % da área é inundada durante 50% do tempo, subindo para 26%, 29% e 33% nos casos de recorrência com 50, 100 e 200 anos. A cota atingida na praia de Morro dos Conventos durante 50% do tempo é de 1,1 m, já as cotas calculadas para os tempos de recorrência de 50, 100 e 200 anos foram de 4,2 m, 4,6 m e 5,35 m respectivamente. E, da mesma forma, a área costeira com levantamento topográfico teve 15% de superfície é inundada em 50% do tempo, passando para 85%, 91% e 96% da área total analisada com 50, 100 e 200 anos de tempo de recorrência. A metodologia proposta neste trabalho contribui para o planejamento de zonas costeiras, à medida que indica áreas afetadas por inundação aos eventos extremos. A apresentação de cartas contendo esse tipo de informação em ambiente de SIG facilita a tomada de decisão e o entendimento da área por determinado evento extremo. / The goal of this study is to determine the inundation levels at Ensenada do Itapocorói and Morro dos Conventos beaches, located in Santa Catarina State. This was accomplished through the calculation of the inundation level as the sum of astronomical and meteorological tides and wave run-up. The database for this study included -60 years of hourly waves and tides, bathymetric and topographic data. The instantaneous sea level has been defined for each hour of the data series through the summation of astronomical and meteorological tides. To determine more realistic wave run-up data, the wave parameters have been propagated to shallower water using the SWAN (Simulating WAves Nearshore) model. Published equations were used and results were compared with measured data at a headland bay beach (Enseada do Itapocorói); furthermore, the equations have been calibrated for four sectors of the bay (exposed, semi-exposed, semi-protected and protected). Morro dos Conventos is an exposed beach, comparable to those for which the equations have been developed, so the raw, un-calibrated equations were applied for this site. The inundation level was calculated for each hour of the 60 year-long series by summing the run-up values to obtain the instantaneous level. Over the series of inundation levels, the area inundated during 50% of the time, and the return period for this inundation, have been calculated for 50, 100 and 200 years. The sea-level rise prediction for each calculated period has also been incorporated in order estimate the area likely to be inundated by future events. For Enseada do Itapocorói, the inundation level reached 50% of the time was 1,35 m in the exposed sector, 1 m in the semi-exposed sector, 0,9 m in the semi-protected sector and 0,7 in the protected sector. The exposed sector demonstrated the highest values of inundation, 3,45, 3,85 and 4,5 m for 50, 100 and 200 years of return period respectively. At the semi-exposed sector, the values calculated were 2,85 (50 years), 3,25 (100 years) and 3,9 (200 years) m. At semi-protected sector, inundation levels for the 50-, 100- and 200-year return period intervals were 2,65, 3,05 and 3,75 m, respectively. At the protected sector the lowest levels were reached: 2,4, 2,85 and 3,5 m for 50-, 100- and 200-year return period intervals. 2,4% of the total area for which topographic data is available would be inundated during 50% of the time, increasing to 26%, 29% and 33% for 50-, 100- and 200-year return periods. At Morro dos Conventos, the level of inundation reaches 1,1 m 50% of the time;, for 50,100 and 200 years the level rises to 4,2, 4,6 and 5,36 m respectively. Approximately 15% of the area for which topographic data is available would be area is inundated during 50% of the time, 85% with a 50 year return period, 91% with a 100-year period and 96% with a 200 year period.
12

Cota de inundação e recorrência para a enseada do Itapocorói e praia de Morro dos Conventos, Santa Catarina

Silva, Guilherme Vieira da January 2012 (has links)
Este trabalho apresenta o cálculo da cota de inundação para a Enseada do Itapocorói e para a praia de Morro dos Conventos, litoral do Estado de Santa Catarina. Para atingir os objetivos desse trabalho, a cota de inundação foi calculada através da soma das marés meteorológica e astronômica e do wave run-up. Foi utilizada uma base de 60 anos (horária) de dados de marés e ondas, além de dados de batimetria e topografia das praias. Com o intuito de se obter dados mais realistas do wave run-up, os parâmetros ondulatórios da base de dados foram transferidos de águas profundas para próximo da costa com a utilização do modelo SWAN (Simulating Waves Nearshore). A Enseada do Itapocorói foi dividida em quatro setores (exposto, semiexposto, semiprotegido e protegido) em função dos diferentes graus de exposição à ação de ondas, sendo as equações calibradas para cada setor. A partir dos resultados para Enseada do Itapocorói, notou-se que quanto mais exposta a praia, melhor as equações existentes representavam o wave run-up, assim, para a praia de Morro dos Conventos foi utilizada a equação mais aceita na literatura sem calibração. A cota de inundação instantânea foi calculada para cada hora da série de 60 anos somando-se o wave run-up às marés astronômicas e meteorológicas. Sobre a série de cota de inundação instantânea, para ambas as áreas, foi calculada a cota atingida durante 50% do tempo e por eventos extremos com recorrência de 50, 100 e 200 anos. A estas foi adicionada a previsão de elevação do nível do mar de longo prazo para o mesmo período. A cota atingida durante 50% do tempo na Enseada do Itapocorói foi de 1,35 m no setor exposto, enquanto nos setores semiexposto, semiprotegido e protegido foi de 1 m, 0,9 m e 0,7 m respectivamente. Também, o setor exposto foi o que apresentou as maiores cotas atingidas, sendo 3,45 m, 3,85 m e 4,45 m com tempo de recorrência de 50,100 e 200 anos respectivamente. No setor semiexposto, os valores calculados foram de 2,85 m (50 anos), 3,25 m (100 anos) e 3,9 m (200 anos). No setor semiprotegido, as cotas com tempo de recorrência de 50, 100 e 200 anos foram de 2,65 m, 3,05 m, 3,75 m respectivamente. Já o setor protegido apresentou as menores cotas entre os setores, 2,4 m, 2,85 m e 3,5 m para 50, 100 e 200 anos de tempo de recorrência. Considerando a extensão da área costeira que possui um levantamento de topografia do terreno, 2,4 % da área é inundada durante 50% do tempo, subindo para 26%, 29% e 33% nos casos de recorrência com 50, 100 e 200 anos. A cota atingida na praia de Morro dos Conventos durante 50% do tempo é de 1,1 m, já as cotas calculadas para os tempos de recorrência de 50, 100 e 200 anos foram de 4,2 m, 4,6 m e 5,35 m respectivamente. E, da mesma forma, a área costeira com levantamento topográfico teve 15% de superfície é inundada em 50% do tempo, passando para 85%, 91% e 96% da área total analisada com 50, 100 e 200 anos de tempo de recorrência. A metodologia proposta neste trabalho contribui para o planejamento de zonas costeiras, à medida que indica áreas afetadas por inundação aos eventos extremos. A apresentação de cartas contendo esse tipo de informação em ambiente de SIG facilita a tomada de decisão e o entendimento da área por determinado evento extremo. / The goal of this study is to determine the inundation levels at Ensenada do Itapocorói and Morro dos Conventos beaches, located in Santa Catarina State. This was accomplished through the calculation of the inundation level as the sum of astronomical and meteorological tides and wave run-up. The database for this study included -60 years of hourly waves and tides, bathymetric and topographic data. The instantaneous sea level has been defined for each hour of the data series through the summation of astronomical and meteorological tides. To determine more realistic wave run-up data, the wave parameters have been propagated to shallower water using the SWAN (Simulating WAves Nearshore) model. Published equations were used and results were compared with measured data at a headland bay beach (Enseada do Itapocorói); furthermore, the equations have been calibrated for four sectors of the bay (exposed, semi-exposed, semi-protected and protected). Morro dos Conventos is an exposed beach, comparable to those for which the equations have been developed, so the raw, un-calibrated equations were applied for this site. The inundation level was calculated for each hour of the 60 year-long series by summing the run-up values to obtain the instantaneous level. Over the series of inundation levels, the area inundated during 50% of the time, and the return period for this inundation, have been calculated for 50, 100 and 200 years. The sea-level rise prediction for each calculated period has also been incorporated in order estimate the area likely to be inundated by future events. For Enseada do Itapocorói, the inundation level reached 50% of the time was 1,35 m in the exposed sector, 1 m in the semi-exposed sector, 0,9 m in the semi-protected sector and 0,7 in the protected sector. The exposed sector demonstrated the highest values of inundation, 3,45, 3,85 and 4,5 m for 50, 100 and 200 years of return period respectively. At the semi-exposed sector, the values calculated were 2,85 (50 years), 3,25 (100 years) and 3,9 (200 years) m. At semi-protected sector, inundation levels for the 50-, 100- and 200-year return period intervals were 2,65, 3,05 and 3,75 m, respectively. At the protected sector the lowest levels were reached: 2,4, 2,85 and 3,5 m for 50-, 100- and 200-year return period intervals. 2,4% of the total area for which topographic data is available would be inundated during 50% of the time, increasing to 26%, 29% and 33% for 50-, 100- and 200-year return periods. At Morro dos Conventos, the level of inundation reaches 1,1 m 50% of the time;, for 50,100 and 200 years the level rises to 4,2, 4,6 and 5,36 m respectively. Approximately 15% of the area for which topographic data is available would be area is inundated during 50% of the time, 85% with a 50 year return period, 91% with a 100-year period and 96% with a 200 year period.
13

The Efficacy and Design of Coastal Protection Using Large Woody Debris

Wilson, Jessica 16 December 2020 (has links)
Those who frequent the coastline may be accustomed to seeing driftwood washed onshore, some of it having seemingly found a home there for many years, others having been freshly deposited during the last set of storms; However, if a passerby were to take a closer look at the driftwood on the coastline, they may notice that some of these logs – also known as Large Woody Debris (LWD) – are anchored in place, a practice which is generally used for the purpose of stabilizing the shoreline or reducing wave-induced flooding. Records of existing anchored LWD project sites date back to 1997 and anecdotal evidence suggests that the technique has been used since the mid-1900’s in coastal British Columbia (BC), Canada, and Washington State, USA. Now, with an increased demand for natural and nature-based solutions, the technique is again gaining popularity. Despite this, the design of anchored LWD has largely been based on anecdotal observations and experience, as well as a continuity of design practices from the river engineering field. To date, there is no known peer-reviewed literature on the design or efficacy of LWD protection systems in a coastal environment. In 2019, the “Efficacy and Design of Coastal Protection using Large Woody Debris” research project was initiated to determine if LWD are effective at stabilizing the shoreline under wave action, if they are effective at reducing wave run-up, and if they are durable enough to meet engineering requirements for shore protection. In addition, the project aimed to determine the optimum configuration of LWD for design purposes. To meet these objectives, this study included the following work: (1) field studies of existing LWD installations, (2) experimental modeling of beach morphology with and without LWD structures, (3) experimental modeling of wave run-up with and without LWD structures, and (4) development of preliminary design guidance. The first phase of the project included field investigations at 15 existing anchored LWD sites in coastal BC and Washington State. Site characteristics, design techniques, and durability indicators were examined and correlated to a new design life parameter: ‘Effective Life’. Six primary installation techniques were observed: Single, Multiple, Benched, Stacked, Matrix, and Groyne. Observed durability and/or performance issues included: missing LWD, erosion, arson, wood decay, and anchor corrosion/damage. The Effective Life of anchored LWD was found to be strongly correlated to the tidal range and the upper beach slope for all installation types, and the LWD placement elevation relative to the beach crest elevation for single, shore-parallel structures. The many noted durability issues and ineffectiveness as mitigating erosion indicates that existing design methods for anchored LWD have not generally been effective at providing coastal protection and meeting engineering design life requirements. A comprehensive set of over 60 experimental tests were completed as part of the overall research program. Thirty-two (32) tests were analyzed as part of this study relating to the morphological response of a gravel beach with and without various LWD configurations. The tests were conducted within a wave flume at the National Research Council’s Ocean, Coastal and River Engineering Research Centre (NRC-OCRE), at a large scale (5:1) based on site characteristics and LWD design characteristics made during the previous field investigations. Tests were also conducted to assess experiment repeatability, sensitivity to test duration, sensitivity to wave height, wave period, and relative water level, influence of regular waves, and influence of log roughness. The position of the most seaward LWD (whether considering distance or elevation) was found to be strongly linked to morphological response. A theoretical relationship was developed between LWD elevation and sediment volume change. Configurations which included LWD placement below the still water level, such as the Benched configuration, were found to be most effective at stabilizing the beach profile. As part of the experimental modeling program, 24 tests were also conducted for the purpose of estimating the effect of LWD design configuration on wave run-up. In total, six different beach and LWD configurations were tested under a base set of four regular wave conditions. The study findings indicated that anchored LWD may increase wave run-up relative to a gravel beach with no structures. In particular, configurations with more logs tended to result in higher wave run-up. However, additional research is needed on the effect of LWD on wave run-up to confirm and expand these findings. There are a number of potential engineering, ecological, social, and economic benefits associated with anchored LWD installations if designed, installed, and monitored appropriately for the site conditions and user needs. To realize these potential benefits, significant additional research is needed on the topic. One of the most significant barriers to usage is a lack of information on how to effectively anchor LWD structures. However, this research project provides a baseline for future comprehensive studies on the effect and design of coastal protection using LWD. The project provides preliminary design considerations for the usage of LWD as coastal protection and contributes to the growing body of literature on nature-based solutions.
14

Simulation d'un écoulement de jet de rive par une méthode VOF

Mauriet, Sylvain 02 July 2009 (has links) (PDF)
Les processus dynamiques présents en zone de swash ont un impact significatif sur l'évolution des zones côtières. Une part importante du transport sédimentaire cross-shore se produit dans cette zone, plus particulièrement dans cette zone où se produisent le run-up et le run-down. La zone située au-delà de la ligne de rivage au repos est le plus souvent décrite par des modèles intégrés sur la verticale. La décroissance des vagues est bien reproduite, cependant l'étude du transport sédimentaire impose une paramétrisation du frottement sur le fond. Nous présentons les résultats de simulations RANS de la propagation d'un mascaret (obtenu par un "lâcher de barrage") sur une plage en pente et le run-up et le run-down ainsi générés. Les résultats numériques sont comparés aux résultats expérimentaux de Yeh et al. (1989). Les simulations ont été réalisées avec le code Navier-Stokes diphasique AQUILON. Deux méthodes de suivi d'interface VOF (VOF TVD ET VOF PLIC) sont implémentées. La viscosité turbulente est calculée par un modèle V2-F (Durbin, 1991). Une estimation des grandeurs turbulentes k et epsilon basée sur la théorie des ondes longues pour la propagation d'un ressaut hydraulique est présentée. Une modélisation VOF-PLIC & V2-F est appliquée pour reproduire les caractéristiques macroscopiques du lâcher de barrage, qui comme on pouvait s'y attendre dépendent peu de la turbulence. Nous étudions aussi l'impact des conditions initiales sur k et epsilon sur l'établissement de l'écoulement turbulent. Après ces validations vis-à-vis de la turbulence, des simulations du cas décrit par Yeh et al. (1989) sont menées pour optimiser le choix des paramètres de calcul. La théorie de Whitham (1958), prédit un effondrement du mascaret au niveau de la ligne de rivage au repos. La théorie de Shen and Meyer (1963) est toujours à l'heure actuelle le modèle de référence. Les résultats expérimentaux de Yeh et al. (1989) montrent clairement un phénomène différent. L'utilisation conjointe de la technique VOF-TVD et du modèle de turbulence V2-F semble apporter les meilleurs résultats par rapport aux expériences de Yeh et al. (1989). Une étude de la transition mascaret/lame de swash est proposée. Nos résultats montrent que la théorie de Whitham décrit de façon assez précise le mécanisme de d'effondrement du mascaret. Les résultats de nos simulations sont utilisés pour décrire la transition entre l'effondrement du mascaret et l'écoulement du run-up. L'analyse des processus de frottement dans le jet de rive met en évidence une forte dissymétrie entre le run-up et le run-down avec cisaillement plus faible lors du run-down
15

Semi-empirical Probability Distributions and Their Application in Wave-Structure Interaction Problems

Izadparast, Amir Hossein 2010 December 1900 (has links)
In this study, the semi-empirical approach is introduced to accurately estimate the probability distribution of complex non-linear random variables in the field of wavestructure interaction. The structural form of the semi-empirical distribution is developed based on a mathematical representation of the process and the model parameters are estimated directly from utilization of the sample data. Here, three probability distributions are developed based on the quadratic transformation of the linear random variable. Assuming that the linear process follows a standard Gaussian distribution, the three-parameter Gaussian-Stokes model is derived for the second-order variables. Similarly, the three-parameter Rayleigh-Stokes model and the four-parameter Weibull- Stokes model are derived for the crests, troughs, and heights of non-linear process assuming that the linear variable has a Rayleigh distribution or a Weibull distribution. The model parameters are empirically estimated with the application of the conventional method of moments and the newer method of L-moments. Furthermore, the application of semi-empirical models in extreme analysis and estimation of extreme statistics is discussed. As a main part of this research study, the sensitivity of the model statistics to the variability of the model parameters as well as the variability in the samples is evaluated. In addition, the sample size effects on the performance of parameter estimation methods are studied. Utilizing illustrative examples, the application of semi-empirical probability distributions in the estimation of probability distribution of non-linear random variables is studied. The examples focused on the probability distribution of: wave elevations and wave crests of ocean waves and waves in the area close to an offshore structure, wave run-up over the vertical columns of an offshore structure, and ocean wave power resources. In each example, the performance of the semi-empirical model is compared with appropriate theoretical and empirical distribution models. It is observed that the semi-empirical models are successful in capturing the probability distribution of complex non-linear variables. The semi-empirical models are more flexible than the theoretical models in capturing the probability distribution of data and the models are generally more robust than the commonly used empirical models.
16

Database Development For Tsunami Warning System In Mediterranean Basin By Tsunami Modeling

Onat, Yaprak 01 June 2011 (has links) (PDF)
Wider awareness, proper preparedness and effective mitigation strategies need better understanding of tsunamis and tsunami hazard assessment. Tsunami assessment study covers the exchange and enhancement of available earthquake and tsunami data, development of bathymetric and topographic data in sufficient resolution, selection of possible or credible tsunami scenarios, selection and application of the valid and verified numerical tools for tsunami generation, propagation, coastal amplification, inundation and visualization. From this point of view, this thesis deals with all these components of tsunami hazards assessment. The database of 38 different seismic sources is generated and applied to Eastern Mediterranean Basin by using numerical code called NAMI DANCE. Furthermore, the simulation results are compared and discussed. In the thesis, the difficulties in defining seismic source parameters, the effect of dip and rake (slip) angle on seismic generated tsunamis are evaluated. Moreover, the performance of the numerical code, the accuracy of results, the efficiency of the numerical methods in the application to Mediterranean Basin Tsunamis and the comparisons of simulations in nested domains for Bodrum, Kas and Iskenderun are given as case studies. According to the study, north-west and south-west of Turkey may have tsunami risk more than other regions. The maximum wave amplitudes, which may be expected to occur near the shore, are found more than 4 m. However, maximum positive wave amplitude observed in history is approximately 8 m. The arrival time of first wave to hit the coasts vary in a range of 15 to 60 minutes depending on the closeness of the location to the sources&rsquo / epicenter.
17

Tsunami amplification phenomena

Stefanakis, Themistoklis 30 September 2013 (has links) (PDF)
This thesis is divided in four parts. In the first one I will present our work on long wave run-up and some resonant amplification phenomena. With the use of numerical simulations for the nonlinear shallow water equations, we show that in the case of monochromatic waves normally incident on a plane beach, resonant run-up amplification occurs when the incoming wavelength is 5.2 times larger the beach length. We also show that this resonant run-up amplification can be observed for several wave profiles such as bichromatic, polychromatic and cnoidal. However, resonant run-up amplification is not restricted to infinitely sloping beaches. We varied the bathymetric profile, and we saw that resonance is present in the case of piecewise linear and real bathymetries. In the second part I will present a new analytical solution to study the propagation of tsunamis from a finite strip source over constant depth using linear shallow-water wave theory. The solution, which is based on separation of variables and a double Fourier transform in space, is exact, easy to implement and allows the study of realistic waveforms such as N-waves. In the third part I will explore the effect of localized bathymetric features on long wave generation. Even when the final displacement is known from seismic analysis, the deforming seafloor includes relief features such as mounts and trenches. We investigate analytically the effect of bathymetry on the surface wave generation, by solving the forced linear shallow water equation. Our model for bathymetry consists of a cylindrical sill on a flat bottom, to help understand the effect of seamounts on tsunami generation. We derive the same solution by applying both the Laplace and the Fourier transforms in time. We find that as the sill height increases, partial wave trapping reduces the wave height in the far field, while amplifying it above the sill. Finally, in the last part I will try to explore whether small islands can protect nearby coasts from tsunamis as it is widely believed by local communities. Recent findings for the 2010 Mentawai Islands tsunami show amplified run-up on coastal areas behind small islands, compared with the run-up on adjacent locations, not influenced by the presence of the islands. We will investigate the conditions for this run-up amplification by numerically solving the nonlinear shallow water equations. Our bathymetric setup consists of a conical island sitting on a flat bed in front of a plane beach and we send normally incident single waves. The experimental setup is governed by five physical parameters. The objective is twofold: Find the maximum run-up amplification with the least number of simulations. Given that our input space is five-dimensional and a normal grid approach would be prohibitively computationally expensive, we present a recently developed active experimental design strategy, based on Gaussian Processes, which significantly reduces the computational cost. After running two hundred simulations, we find that in none of the cases considered the island did offer protection to the coastal area behind it. On the contrary, we have measured run-up amplification on the beach behind it compared to a lateral location on the beach, not directly affected by the presence of the island, which reached a maximum factor of 1.7. Thus, small islands in the vicinity of the mainland will act as amplifiers of long wave severity at the region directly behind them and not as natural barriers as it was commonly believed so far.
18

Solitary waves and wave groups at the shore

Orszaghova, Jana January 2011 (has links)
A significant proportion of the world's population and physical assets are located in low lying coastal zones. Accurate prediction of wave induced run-up and overtopping of sea defences are important in defining the extent and severity of wave action, and in assessing risk to people and property from severe storms and tsunamis. This thesis describes a one-dimensional numerical model based on the Boussinesq equations of Madsen and Sorensen (1992) and the non-linear shallow water equations. The model is suitable for simulating propagation of weakly non-linear and weakly dispersive waves from intermediate to zero depth, such that any inundation and/or overtopping caused by the incoming waves is also calculated as part of the simulation. Wave breaking is approximated by locally switching to the non-linear shallow water equations, which can model broken waves as bores. A piston paddle wavemaker is incorporated into the model for complete reproduction of laboratory experiments. A domain mapping technique is used in the vicinity of the paddle to transform a time-varying domain into a fixed domain, so that the governing equations can be more readily solved. First, various aspects of the numerical model are verified against known analytical and newly derived semi-analytical solutions. The complete model is then validated with laboratory measurements of run-up and overtopping involving solitary waves. NewWave focused wave groups, which give the expected shape of extreme wave events in a linear random sea, are used for further validation. Simulations of experiments of wave group run-up on a plane beach yield very good agreement with the measured run-up distances and free surface time series. Wave-by-wave overtopping induced by focused wave groups is also successfully simulated with the model, with satisfactory agreement between the experimental and the predicted overtopping volumes. Repeated simulations, now driven by second order paddle displacement signals, give insight into second order error waves spuriously generated by using paddle signals derived from linear theory. Separation of harmonics reveals that the long error wave is significantly affecting the wave group shape and leading to enhanced runu-up distances and overtopping volumes. An extensive parameter study is carried out using the numerical model investigating the influence on wave group run-up of linear wave amplitude at focus, linear focus location, and wave group phase at focus. For a given amplitude, both the phase and the focus location significantly affect the wave group run-up. It is also found that the peak optimised run-up increases with the wave amplitude, but wave breaking becomes an inhibiting factor for larger waves. This methodology is proposed for extreme storm wave induced run-up analysis.
19

Schwallwellen infolge der Bewegung einer Begrenzungsfläche

Röhner, Michael 29 September 2011 (has links) (PDF)
Restlöcher ausgekohlter Braunkohlentagebaue werden aus landeskulturellen und ökonomischen Gründen wasserwirtschaftlich als Speicher, Hochwasserrückhaltebecken, Klärteiche, Wassergewinnungsanlagen sowie zur Naherholung genutzt. Diese Restlöcher werden zum großen Teil von aus geschüttetem Abraum bestehenden Böschungen umschlossen. Bei Wasserspiegelschwankungen neigen diese unbefestigten Böschungen zum Rutschen. Als Folge dieser Böschungsrutschungen bilden sich auf der Wasseroberfläche Wellen, die eine beachtliche Größe erreichen können. Diese Schwallwellen übertreffen in ihren Ausmaßen die Windwellen in den Tagebaurestlöchern um ein Vielfaches. Um diese Erscheinungen vorausberechnen zu können, wurden im Hubert-Engels-Laboratorium der Sektion Wasserwesen Untersuchungen durchgeführt. Die Entwicklung einer allgemeingültigen Berechnungsmethode für die Schwallwelle bei der Bewegung eines Teiles der das Wasserbecken begrenzenden Böschung verlangt die Einführung erfassbarer Parameter wie der Breite der rutschenden Böschung, den zeitlichen Verlauf der Wasserverdrängung sowie Tiefen- und Lageverhältnisse des Beckens. Die dafür notwendigen Kennzahlen können nur näherungsweise bestimmt werden, so dass einfache Beckengeometrien, ein über die Rutschzeit gleich bleibender Verlauf der Wasserverdrängung und Erhaltung der Böschungskante einem Berechnungsverfahren zugrunde gelegt werden müssen. Für die Berechnung des Füllschwalles auf das ruhende Wasser sind einige Verfahren bekannt geworden, die auf eine gemeinsame Gleichung für die Berechnung der Schwallhöhe zurückzuführen sind. Für die ebene Ausbreitung des Füllschwalles über Ruhewasser ergeben sieh zwei prinzipielle Abflussmöglichkeiten: Auflösung in Wellen oder brandender Schwallkopf. Diese beiden Möglichkeiten sowie der Übergangsbereich werden durch FROUDE-zahlen festgelegt. Der Wellenkopf von Füllschwallwellen wird durch eine Einzelwelle gebildet. Die Rutschung einer Böschung wurde durch die gleichzeitige Horizontal- und Vertikalbewegung einer Platte nachgebildet. Die Bewegung der Platte, die entstehenden Wellen und die Kräfte auf Auflaufböschung wurden durch einen Oszillografen aufgezeichnet. Die Auswertung der Versuche ergab eine Übereinstimmung zwischen Messergebnissen und den Berechnungen nach den Gesetzen des Füllschwalls. Die sekundlich verdrängte Wassermenge pro Breiteneinheit und die Ruhewassertiefe bestimmen die entstehenden Schwallwellen. Ein Einfluss der vertikalen Bewegungskomponente ist im untersuchten Bereich nicht nachweisbar. Die dynamischen Kräfte auf die Abschlussböschung können durch den Impuls der Einzelwelle dargestellt werden. Die räumliche Ausbreitung der Schwallwellen wurde in einem Modell untersucht. Dabei wurde festgestellt, dass die größten Wellenhöhen in der Richtung der Bewegung der Platte auftreten, während die Wellenhöhen in seitlichen Ausbreitungsrichtungen kleiner sind. Berechnungsansätze für die maximale Wellenhöhe der front wurden ermittelt. Als Ergebnis wurde ein Berechnungsverfahren entwickelt, welches ausgehend von den Parametern dar Rutschung, die Eigenschaften der Schwallwellen einschließlich der durch sie hervorgerufenen Belastungen auf der Auflaufböschung ermöglicht. Mit diesem Berechnungsverfahren ist es möglich, Böschungen wirtschaftlich zu gestalten und schädliche Rückwirkungen auf das Staubecken durch Schwallwellen zu vermeiden. Bisher notwendige Kosten für eine sehr flache Gestaltung der Böschung können entfallen. Gleichzeitig bleibt ein größerer nutzbarer Stauraum erhalten. Die Digitalisierung der vorliegenden Arbeit durch die Sächsische Landesbibliothek - Staats- und Universitätsbibliothek Dresden (SLUB) wurde durch die Gesellschaft der Förderer des Hubert-Engels-Institutes für Wasserbau und Technische Hydromechanik an der Technischen Universität Dresden e.V. unterstützt.
20

An investigation into wave run-up on vertical surface piercing cylinders in monochromatic waves

Morris-Thomas, Michael January 2003 (has links)
[Formulae and special characters can only be approximated here. Please see the pdf version of the abstract for an accurate reproduction.] Wave run-up is the vertical uprush of water when an incident wave impinges on a free- surface penetrating body. For large volume offshore structures the wave run-up on the weather side of the supporting columns is particularly important for air-gap design and ultimately the avoidance of pressure impulse loads on the underside of the deck structure. This investigation focuses on the limitations of conventional wave diffraction theory, where the free-surface boundary condition is treated by a Stokes expansion, in predicting the harmonic components of the wave run-up, and the presentation of a simplified procedure for the prediction of wave run-up. The wave run-up is studied on fixed vertical cylinders in plane progressive waves. These progressive waves are of a form suitable for description by Stokes' wave theory whereby the typical energy content of a wave train consists of one fundamental harmonic and corresponding phase locked Fourier components. The choice of monochromatic waves is indicative of ocean environments for large volume structures in the diffraction regime where the assumption of potential flow theory is applicable, or more formally A/a < Ο(1) (A and a being the wave amplitude and cylinder radius respectively). One of the unique aspects of this work is the investigation of column geometry effects - in terms of square cylinders with rounded edges - on the wave run-up. The rounded edges of each cylinder are described by the dimensionless parameter rc/a which denotes the ratio of edge corner radius to half-width of a typical column with longitudinal axis perpendicular to the quiescent free-surface. An experimental campaign was undertaken where the wave run-up on a fixed column in plane progressive waves was measured with wire probes located close to the cylinder. Based on an appropriate dimensional analysis, the wave environment was represented by a parametric variation of the scattering parameter ka and wave steepness kA (where k denotes the wave number). The effect of column geometry was investigated by varying the edge corner radius ratio within the domain 0 <=rc/a <= 1, where the upper and lower bounds correspond to a circular and square shaped cylinder respectively. The water depth is assumed infinite so that the wave run-up caused purely by wave-structure interaction is examined without the additional influence of a non-decaying horizontal fluid velocity and finite depth effects on wave dispersion. The zero-, first-, second- and third-harmonics of the wave run-up are examined to determine the importance of each with regard to local wave diffraction and incident wave non-linearities. The modulus and phase of these harmonics are compared to corresponding theoretical predictions from conventional diffraction theory to second-order in wave steepness. As a result, a basis is formed for the applicability of a Stokes expansion to the free-surface boundary condition of the diffraction problem, and its limitations in terms of local wave scattering and incident wave non-linearities. An analytical approach is pursued and solved in the long wavelength regime for the interaction of a plane progressive wave with a circular cylinder in an ideal fluid. The classical Stokesian assumption of infinitesimal wave amplitude is invoked to treat the free-surface boundary condition along with an unconventional requirement that the cylinder width is assumed much smaller than the incident wavelength. This additional assumption is justified because critical wavelengths for wave run-up on a fixed cylinder are typically much larger in magnitude than the cylinder's width. In the solution, two coupled perturbation schemes, incorporating a classical Stokes expansion and cylinder slenderness expansion, are invoked and the boundary value problem solved to third-order. The formulation of the diffraction problem in this manner allows for third-harmonic diffraction effects and higher-order effects operating at the first-harmonic to be found. In general, the complete wave run-up is not well accounted for by a second-order Stokes expansion of the free-surface boundary condition and wave elevation. This is however, dependent upon the coupling of ka and kA. In particular, whilst the modulus and phase of the second-harmonic are moderately predicted, the mean set-up is not well predicted by a second-order Stokes expansion scheme. This is thought to be caused by higher than second-order non-linear effects since experimental evidence has revealed higher-order diffraction effects operating at the first-harmonic in waves of moderate to large steepness when k < < 1. These higher-order effects, operating at the first-harmonic, can be partially accounted for by the proposed long wavelength formulation. For small ka and large kA, subsequent comparisons with measured results do indeed provide a better agreement than the classical linear diffraction solution of Havelock (1940). To account for the complete wave run-up, a unique approach has been adopted where a correction is applied to a first-harmonic analytical solution. The remaining non-linear portion is accounted for by two methods. The first method is based on regression analysis in terms of ka and kA and provides an additive correction to the first-harmonic solution. The second method involves an amplification correction of the first-harmonic. This utilises Bernoulli's equation applied at the mean free-surface position where the constant of proportionality is empirically determined and is inversely proportional to ka. The experimental and numerical results suggest that the wave run-up increases as rc/a--› 0, however this is most significant for short waves and long waves of large steepness. Of the harmonic components, experimental evidence suggests that the effect of a variation in rc/a on the wave run-up is particularly significant for the first-harmonic only. Furthermore, the corner radius effect on the first-harmonic wave run-up is well predicted by numerical calculations using the boundary element method. Given this, the proposed simplified wave run-up model includes an additional geometry correction which accounts for rc/a to first-order in local wave diffraction. From a practical view point, it is the simplified model that is most useful for platform designers to predict the wave run-up on a surface piercing column. It is computationally inexpensive and the comparison of this model with measured results has proved more promising than previously proposed schemes.

Page generated in 0.0345 seconds