Spelling suggestions: "subject:"ruppia"" "subject:"suppia""
1 |
Ruppia maritima seed and Thalassia testudinum seedling responses to fluctuations in salinity and ammonium /Kahn, Amanda E. January 2004 (has links) (PDF)
Thesis (M.S.)--University of North Carolina at Wilmington, 2004. / Includes bibliographical references (leaves : [57]-62).
|
2 |
The ecology of salt lake hydrophytes : the synecology of saline ecosystems and the autecology of the genus Ruppia L. in the South-East of South AustraliaBrock, Margaret Anne January 1979 (has links)
v, 191 leaves : ill., photos (some col.) tables, graphs, fold. map ; 30 cm. / Title page, contents and abstract only. The complete thesis in print form is available from the University Library. / Thesis (Ph.D.)--University of Adelaide, Dept. of Zoology, 1980
|
3 |
The ecology of salt lake hydrophytes : the synecology of saline ecosystems and the autecology of the genus Ruppia L. in the South-East of South Australia.Brock, Margaret Anne. January 1979 (has links) (PDF)
Thesis (Ph.D.) -- University of Adelaide, Dept. of Zoology, 1980.
|
4 |
Aspects of the ecology and biology of the isopod, Exosphaeroma hylocoetes, (Barnard, 1940) in three temporarily open/closed southern African estuaries /Henninger, Tony Oskar. January 2008 (has links)
Thesis (Ph.D. (Zoology & Entomology)) - Rhodes University, 2009.
|
5 |
On the life history, systematics and ecology of Ruppia maritima L. (Potamogetonaceae) in lower Chesapeake BayRosenzweig, Michael S. 24 October 2005 (has links)
Ruppia maritima is a euryhaline hydrophyte found as a cosmopolitan inhabitant of shallow water habitats. In Chesapeake Bay, Ruppia maritima L. (Potamogetonaceae) and Zostera marina L. (Zosteraceae) form an important submerged aquatic vegetation community. Research in Chesapeake Bay has focused primarily on Zostera marina. Ruppia maritima occurs abundantly in large monospecific stands as well as in mixed stands with Zostera marina. Recent surveys have shown that natural revegetation in some areas has occurred and Ruppia maritima was the primary colonizer in the natural revegetation of some areas.
The objective of this study was to investigate the reproductive biology of Ruppia maritima including the possible function of seed banks and vegetative and sexual propagules on the colonization of new habitats, and the plant's ecological impact around Goodwin Islands, York County, Virginia.
Ruppia maritima rapidly colonized experimental plots that have historically been mixed beds or have been monospecific beds of Zostera marina because it utilized a combination of sexual and asexual reproduction. Ruppia maritima colonized plots by rapid rhizome growth. Seed reserves were probably more important in re-establishing populations than in "maintenance" of populations. Ruppia produces energy costly Post-reproductive shoots. These shoots which produce inflorescences (and then seeds) remain viable after seeds mature and can detach, disperse, and colonize sites. First year plants were not found to produce an inflorescence. This is significant in the establishment of new habitats. If a fledgling population is distressed by poor water quality or sediment disturbance, the possibility of producing seeds seems to be eliminated unless the plants have been established for one full growing season. This may explain the ephemeral nature of some Ruppia populations. / Ph. D.
|
6 |
Experiments to examine transplant procedures on the seagrass Halodule beaudetteiLand, Frederick Joseph 17 September 2007 (has links)
During the growing seasons of 1999 and 2000 five experiments were performed to
test growth of the seagrass Halodule beaudettei (shoal-grass) in nursery pond conditions.
Sediment oxidation state, sediment source, container type, flow regime, and light
transmittance were tested to improve nursery pond cultivation techniques and to test
assumptions about the decline of seagrasses in Galveston Bay, Texas. Oxidized and reduced
sediments exhibited no statistical difference as mean percent change in the number of stems
of shoal-grass, after 47 days. Sediment from three source locations, West Bay, East Beach
Lagoons, and the experimental pond bottoms, showed no significant difference in the mean
percent change in the number of stems of shoal-grass at 48 and 95 days. A statistical
difference was seen in the container type experiment, trays versus pots, at 48 days where
shoal-grass had double the number of stems produced in trays; however no significant
difference was found at 93 days. A significant difference was found in the flow regime
experiment, no-flow versus flow, at 47 days in the mean percent change of shoal-grass with
double the number of stems produced in the flow regime. Significant differences were
observed between the low light and high light treatments with shoal-grass, widgeongrass (Ruppia maritima), star grass (Halophila engelmannii), and turtlegrass (Thalassia
testudinum), with survival and growth occurring in the high light treatment and decline and
death occurring in the low light treatment. The importance of reduced sediment may have
been overstated in the past as sediment reduction occurs rapidly with submersion. It appears
that while West Bay sediment did not have a deleterious effect on shoal-grass, West Bay
simulated light conditions did. Container type seems to be important at first but not so
much in the long term. Some flow, water movement, or current appears to be important.
|
7 |
Mechanisms Controlling Distribution of Cosmopolitan Submerged Aquatic Vegetation: A Model Study of Ruppia maritima L. (widgeongrass) at the Everglades-Florida Bay EcotoneUnknown Date (has links)
Aquatic plants and submerged aquatic vegetation (SAV) are some of the most wide-ranging species and create important habitat for fish and wildlife in many ecosystems, including highly variable coastal ecotones. Mechanistically understanding factors controlling current distributions of these species is critical to project future distribution and abundance under increasing variability and climate change. I used a population-based approach to quantify the effects of spatial and temporal variability on life history transitions of the SAV Ruppia maritima L. (widgeongrass) in the highly dynamic Everglades-Florida Bay ecotone as a model to (1) examine which life history stages were most constrained by these conditions and (2) determine how management can promote life history development to enhance its distribution, an Everglades restoration target. Ruppia maritima life history transitions were quantified in a series of laboratory and field experiments encompassing a ra nge of abiotic and biotic factors known to affect seagrass and SAV (salinity, salinity variability, temperature, light and nutrients and seed bank recruitment and competition). These studies revealed that R. maritima life history varied east to west across the Everglades ecotone, driven by multiple gradients in abiotic factors that constrained different life history transitions in distinct ways. Based on this examination, persistence of SAV populations from dynamic coastal environments is highly dependent on large reproductive events that produce high propagule densities for recruitment. Large productive meadows of SAV also depend on high rates of clonal reproduction where vegetation completely regenerates in a short amount of time. Therefore, in hydrologically variable systems, maintenance or increases in SAV reproduction is required for population persistence through recruitment. However, SAV communities that do not experience high rates of sexual reproduction are dependent on successful seed germination, seedling and adult survival and clonal reproduction for biomass production and maintenance. Seedling survival and to a lesser extent, adult survival, are bottlenecks that can limit life history transitions under highly variable hydrological conditions. To ensure long-term survival in these communities, management activities that increase survival and successful life history development through these critical stages will be beneficial. If not, SAV populations may become highly reduced and ephemeral, providing less productive habitat. / Includes bibliography. / Dissertation (Ph.D.)--Florida Atlantic University, 2015. / FAU Electronic Theses and Dissertations Collection
|
8 |
Sistemática, procesos de especiación, estrategias reproductivas y estructura genética en Ruppia / Systematics, speciation processes, reproductive strategies and genetic structure in RuppiaMartínez-Garrido, Jose 07 July 2017 (has links)
Las plantas acuáticas del género Ruppia habitan lagunas costeras, salinas, humedales y aguas salinas interiores, jugando un papel ecológico clave. Estos sistemas se caracterizan por variaciones extremas de las condiciones ambientales tales como salinidad, temperatura e inundación. La compleja historia evolutiva del género Ruppia ha dificultado la delimitación de especies en el género. Estas especies han desarrollado una gran diversidad de estrategias biológicas para sobrevivir en estos ambientes extremos, tales como ciclos de vida anuales y perennes, reproducción sexual y propagación vegetativa, estrategias de polinización epihidrófila e hidroautogámica, así como autofecundación y fecundación cruzada. Además, existen diferentes vectores que pueden facilitar el flujo de genes entre las poblaciones, incluyendo corrientes marinas, aves acuáticas y peces. Estas características biológicas de Ruppia tienen una influencia importante en sus patrones de especiación, diversidad genotípica y genética, y su estructura poblacional. Por lo tanto, los análisis genéticos proporcionan información importante para delimitar especies y taxones dentro de este género, evaluar la diversidad e identificar procesos y flujos que actúan a distintas escalas temporales y espaciales. Los objetivos principales de esta tesis son: inferir los procesos evolutivos y biológicos de especiación y diversificación, y evaluar la prevalencia y estructura poblacional de especies Europeas del género Ruppia. Esta tesis se centra principalmente en las zonas costeras de la Península Ibérica, debido a la alta diversidad de especies de Ruppia registradas en esta zona geográfica, y al hecho de que en muchas ocasiones es posible encontrar poblaciones de diferentes especies en simpatría. Para alcanzar estos objetivos, en el Capítulo I, se desarrollaron y validaron diez nuevos marcadores moleculares polimórficos (es decir, microsatélites) para Ruppia cirrhosa. Adicionalmente se obtuvo amplificación cruzada con otros dos microsatélites descritos anteriormente para R. maritima. Estas herramientas moleculares son importantes para el estudio de plantas clonales y se han utilizado junto con secuencias nucleares y del cloroplasto en los siguientes capítulos. En el Capítulo II, se estudió la sistemática del género Ruppia en Iberia considerando criterios morfológicos, marcadores nucleares altamente variables (microsatélites) y secuencias nucleares (ITS) y del cloroplasto (psbA-trnH). Al realizar la filogenia utilizando marcadores con diferentes tiempos de mutación y mecanismos hereditarios, pudo identificarse el importante papel de la hibridación y la introgresión en la historia evolutiva de este género. De las tres especies tradicionalmente descritas en la Península Ibérica, se observó que R. drepanensis y R. cirrhosa se situaron en el mismo clado filogenético tanto para los marcadores nucleares como para los cloroplastos, por lo que pueden considerarse especies hermanas. R. maritima está incluida en un clado más distante filogenéticamente, apoyado por ambos marcadores. Además, dos nuevas entidades genéticas fueron identificadas, R. cf. maritima y "R. híbrido", las cuales mostraron algunas incongruencias entre los árboles filogenéticos del núcleo y del cloroplasto, así como una combinación de alelos de microsatélites que sugieren la existencia de efectos de hibridación y/o introgresión. En el Capítulo III, mediante el estudio de microsatélites en diferentes poblaciones de R. cirrhosa de la Península Ibérica y Sicilia, se detectó una fuerte estructura genética poblacional. En términos generales, se registró un bajo nivel de flujo génico, el cual fue más importante entre poblaciones geográficamente cercanas o ubicadas en el mismo cuerpo hidrológico. Además, se evaluaron diferentes hipótesis para explicar la conectividad entre las poblaciones a través de correlaciones entre distancias geográficas y genéticas, sugiriendo que el vector de dispersión más probable entre las poblaciones de R. cirrhosa en la Península Ibérica son las aves acuáticas. Al compilar los resultados del Capítulo II y el Capítulo III, se evaluaron los efectos de diferentes estrategias reproductivas sobre la diversidad genotípica y genética de Ruppia. Todas las entidades genéticas mostraron elevadas tasas de reproducción sexual. En R. cirrhosa, los mayores índices de reproducción sexual se detectaron en los hábitats más inestables hidrológicamente. Estas perturbaciones podrían promover la germinación y el establecimiento de semillas por una baja competencia interespecífica por el espacio, la luz y otros recursos existentes en praderas menos densas. Los mayores valores de diversidad genética detectados en los epihidrófilos R. drepanensis, R. cirrhosa y probablemente en “R. híbrido” (ésto no se ha confirmado) que en la hidroautogámica Ruppia cf. maritima, sugieren una fuerte influencia del modelo de polinización sobre los patrones de diversidad genética. En el Capítulo IV, R. maritima fue identificada por primera vez en Cabo Verde (Isla de Santiago) a partir de análisis morfológicos y filogenéticos. Esta información amplía la distribución geográfica de esta especie al África Occidental.
|
9 |
Aquatic macrophyte and animal communities in a recently restored brackish marsh: possible influences of restoration design and the invasive plant species Myriophyllum spicatumBell, Michael Thomas 2011 May 1900 (has links)
The numerous benefits that wetlands provide make them essential to ecosystem services and ecological functions. Historically, wetland losses have been caused by natural and anthropogenic changes. In Texas, nearly 50% of coastal wetland habitat has been lost since the 1930s and losses in the Lower Neches watershed have been some of the most extensive. Restoration is a way to mitigate these losses and can be accomplished in many ways. Each restoration design creates different aquatic habitats that can influence both submerged aquatic vegetation (SAV) and faunal communities. The restoration of the Lower Neches Wildlife Management Area (LNWMA) has created the conditions for the growth of the invasive submerged macrophyte, Myriophyllum spicatum (Eurasian watermilfoil) which may be competing with the native aquatic grass, Ruppia maritima (widgeongrass) for essential nutrients. In this study, an attempt was made to link restoration design with both SAV and aquatic fauna community structures by using a throw trap to characterize assemblages observed in three different types of restored marshes. We also performed two controlled mesocosm experiments in 0.5 gal aquariums to determine growth inhibition by M. spicatum on R. maritima. Analyses using Kruskal-Wallis non-parametric test determined that temporal variations in fauna and SAV community composition was greater than any restoration effect. Discriminant Function Analyses (DFAs) determined two to three key faunal species that best predicted association among restoration designs, but linear regressions could not determine any consistent relationship between individual species density and biomass of the dominant SAV species, M. spicatum. For the mesocosm experiments, M. spicatum inhibited the biomass production and branch count of R. maritima when the two species are grown together (ANOVA, p = 0.004 and 0.003, respectively). Changes in SAV assemblages due to competition and habitat characteristics could play a major role in determining faunal community.
In order to minimize the temporal effect observed and better determine any habitat pattern that may be present, a much longer study is necessary.
|
10 |
Aspects of the ecology and biology of the isopod, Exosphaeroma hylocoetes, (Barnard, 1940) in three temporarily open/closed southern African estuariesHenninger, Tony Oskar January 2009 (has links)
Temporarily open/closed estuaries (TOCE’s) are the numerically dominant type of estuary accounting for ≈ 70 % of all estuaries along the South African coastline. Despite their numerical dominance, aspects of the biology of organisms within these systems, particularly macrocrustacea remain poorly understood. This study firstly assessed the abundance and biomass of the most common isopod, Exosphaeroma hylocoetes, in three Eastern Cape TOCE’s, (the West Kleinemonde, East Kleinemonde and Kasouga Estuaries), and their response to mouth breaching events. This study was followed by aspects of the biology of the isopod including their utilisation of submerged macrophytes as a refuge from predation and/or possible food source, as well as the growth rates of the isopods in the laboratory under different environmental conditions. Mean isopod abundances and biomasses ranged between 0 and 4 791 ind. m⁻² and 0 and 9.65 mg dwt. m⁻² in the West Kleinemonde Estuary and between 0 and 108 ind. m⁻² and 0 and 0.318 mg dwt. m⁻² in the nearby East Kleinemonde Estuary. In the Kasouga Estuary, the values ranged between 0 and 3 650 ind. m⁻² and 0 and 5.105 mg dwt. m⁻². Temporal and spatial changes in the abundance and biomass of E. hylocoetes within the three systems was primarily linked to mouth phase, with populations declining when the mouth was open and to a lesser extent, seasonality. In all three estuaries maximum isopod abundances and biomasses were recorded in their middle and upper reaches, which could be ascribed to the presence of submerged macrophytes particularly Ruppia maritima, in two of the estuaries. Males (5.71 ± 0.41 mm) were significantly larger than females (3.99 ± 0.26 mm), but the sex ratios were skewed in favour of females, (a common feature in many isopod populations). Females were found carrying brood throughout the study, releasing offspring directly into the water column, to allow recruitment to the populations. The larger the female, the larger the brood carried (up to a maximum of 72 embryo/mancas). Results of laboratory experiments indicate that the close association of Exosphaeroma hylocoetes with submerged macrophytes is a result of the plant stands providing a refuge against predation by selected ichthyofauna. However stable carbon isotope and fatty acid analyses indicate that E. hylocoetes made use of ephiphytic algae and detritus on the stems of R. maritima, rather than the submerged macrophyte itself. There were no significant differences in the growth rates of male and female isopods at combinations of temperature (15 and 25 °C) and salinity (15 and 35 ‰). Laboratory growth studies revealed that males lived longer than females (25.77 ± 3.40 weeks vs 21.52 ± 3.00 weeks), and therefore achieved larger overall size. Females, however, reached sexual maturity (at 2.5 mm) at a faster rate (two to four weeks) than males (5.5 mm after 6.5 to 11 weeks), dependent on temperature. Exosphaeroma hylocoetes with its association with submerged macrophytes, early maturity, its growth rates and longevity, female-biased sex ratios and year-round breeding, all contribute to its success in temporary open/closed estuaries.
|
Page generated in 0.0345 seconds