• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 14
  • 9
  • 5
  • 3
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 40
  • 40
  • 13
  • 13
  • 10
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Complexes de Ruthénium Bis-Terdentates pour la réalisation d'assemblages photoactivables / Bis-terdentate ruthenium complexes for the construction of photoactive assemblies.

Liatard, Sébastien 03 April 2012 (has links)
Ce mémoire est consacré à la synthèse et la caractérisation de complexes bis-terdentates de ruthénium pour leur potentielle utilisation dans des triades photosensibles, ou pour la fabrication de dispositifs photosensibles. La première partie se concentre sur les propriétés photophysiques de deux complexes de RuII bis-terdentates. Le premier est un complexe homoleptique, formé de ligands tridentates comprenant deux sous-unités carbène (CNC), le second est un complexe hétéroleptique composé d'un ligand CNC et d'une terpyridine. Ce complexe hétéroleptique est luminescent à température ambiante, contrairement à ses deux complexes parents homoleptiques. Les propriétés électrochimiques et photoélectrochimiques de complexes de type [M(tpy)2]2+ (M=FeII ou RuII), dont les ligands terpyridine sont substitués par des groupements thiols, sont étudiées dans une seconde partie. Ces complexes électropolymérisent de manière organisée sur des électrodes d'or, par oxydation des thiols en disulfures. Ces propriétés ont été utilisées pour construire des diades [RuII]-[FeII] sur des électrodes d'or, dont le photocourant a pu être mesuré. Dans le dernier chapitre, les propriétés photophysiques et d'électropolymérisation du complexe de ruthénium décrit dans le chapitre 2 sont utilisées pour tenter de fabriquer un transistor pho-toactivable. / This thesis deals with the synthesis and characterization of several bis-terdentate complexes, and their potential use for the construction of photoactive molecular triads, or the fabrication of photoactive devices. The first chapter focuses on the photophysical properties of two new bis-terdentate RuII com-plexes. The first one is a homoleptic complex containing two N-heterocyclic carbene-based ligands (CNC) allowing close-to-perfect octahedral coordination geometry. The second one is a heteroleptic complex bearing a CNC ligand and an ancillary terpyridine ligand. This second complex displays room temperature luminescence whereas both homoleptic terpyridine-based and CNC-based RuII complexes are only luminescent at 77 K. The second chapter describes the electrochemical properties of a [M(tpy)2]2+-type (M = RuII or FeII) complex bearing thiol groups on both of the terpyridines are described. These complexes display electropolymerization properties through oxidation of thiols into disulfides. This phenomenon happens only on gold, suggesting that the polymer chains organize on the surface of the electrodes. Moreover, self-assembled monolayers of the RuII complexes were formed on gold, and their ability to exchange charges with the electrode upon irradiation was studied. Finally, self-organisation and electropolymerization properties were used to form [RuII]-[FeII] diads on a gold surface, and their photoresponse was recorded. The last chapter describes the attempts to construct a molecular photosensitive device by electropolymerizing the RuII complexes depicted in the second chapter in nanogaps between gold electrodes.
32

Estudo da atividade citotóxica, antitumoral e determinação do perfil tóxico de complexos de rutênio(II)/aminoácidos em células do tumor de Ehrlich in vitro e in vivo / Study of cytotoxic, antitumor activity and toxicity prolife determination the ruthenium(II)/amino acids complexes in Ehrlich tumor cells in vitro and in vivo

Mello, Francyelli Mariana dos Santos 13 March 2014 (has links)
Submitted by Erika Demachki (erikademachki@gmail.com) on 2015-01-29T17:22:15Z No. of bitstreams: 2 license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) Dissertação - Francyelli Mariana dos Santos Mello - 2014.pdf: 1908256 bytes, checksum: 0b0b96161a9770cff17f951fe907cadc (MD5) / Approved for entry into archive by Erika Demachki (erikademachki@gmail.com) on 2015-01-29T17:43:57Z (GMT) No. of bitstreams: 2 license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) Dissertação - Francyelli Mariana dos Santos Mello - 2014.pdf: 1908256 bytes, checksum: 0b0b96161a9770cff17f951fe907cadc (MD5) / Made available in DSpace on 2015-01-29T17:43:58Z (GMT). No. of bitstreams: 2 license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) Dissertação - Francyelli Mariana dos Santos Mello - 2014.pdf: 1908256 bytes, checksum: 0b0b96161a9770cff17f951fe907cadc (MD5) Previous issue date: 2014-03-13 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / Fundação de Amparo à Pesquisa do Estado de Goiás - FAPEG / Ruthenium complexes represent a new alternative anticancer chemotherapeutics, with activity against several types of cancer, including those resistant to cisplatin, low toxicity and selectivity for tumor cells. The new amino acids/ruthenium(II) complexes (RuAA) w ere tested against Ehrlich ascitic tumor (TAE) cells, murino mammary carcinoma, in vitro and in vivo . The concentration that inhibits 50% of cell viability (IC 50 ) was determined by MTT assay to TAE and L929 cells. Based on the values of IC50 value was determined selective potential of RuAA and selected two complexes most promising, estimated the LD50 (median lethal dose). The toxicological profile of RuMet and RuTrp was determined by acute oral toxicity following the class method, hippocratic screening, and determination of the genotoxic potential evaluated by the comet assay. The effectiveness of the antitumor potential of RuMet and RuTrp was established by the percentage of inhibition of tumor growth and increased survival in vivo after 24 hours of inoculation of TAE. Swiss mice were treated at doses of 2 and 6 mg/kg/day v.ip for 7 days. Hippocratic screening, assessment the viability of TAE cells after treatment, and hematological and biochemical parameters also were performed. Complexes RuAA are cytotoxic to TAE cells in vitro with IC50 value ranging from 8.70 to 90.41 µM. RuMet and RuTrp complexes showed selective and potent for tumor cells. The estimated in vitro LD50 for RuMet and RuTrp were higher than 1000 mg/kg, and in vivo these complexes have low toxicity and genotoxicity. RuMet and RuTrp complexes showed moderate to high antitumor activity compared to the vehicle group, with increased median survival time (from 23.6 to 27.4 days) and percentage increase in survival (from 31 to 52%). RuMet and RuTrp increased the percentage of cells killed by apoptosis initial. There were no signs of toxicity or changes in the behavior of animals. Hematological parameters showed alterations in platelet count at doses of 6 mg/kg/day complexes of RuMet and RuTrp. The dosage of lactate dehydrogenase showed a change in the assessment of biochemical parameters. Complexes of RuMet and RuTrp are efficient, selective and potent for ascitic tumor cells presenting in vitro cytotoxicity and in vivo antitumor activity, with increased survival time, with low toxicity and genotoxicity. / Complexos de rutênio representam uma nova alternativa de quimioterápicos para o tratamento do câncer, com atividade em vários tipos de tumores, inclusive os resistentes a cisplatina, baixa toxicidade e seletividade para as células tumorais. Novos complexos de rutênio(II)/aminoácido (RuAA) foram testados contra células do tumor ascítico de Ehrlich (TAE), um carcinoma de mama murino, in vitro e in vivo. A concentração que inibe 50% o crescimento celular (IC 50 ) foi determinada pelo teste de MTT para as células de TAE e L929, fibroblasto murino. Com base nos valores de IC50 foi determinado o potencial seletivo dos complexos de RuAA e selecionados dois complexos de RuAA, denominados RuMet e RuTrp, mais promissores e a DL50 (dose letal mediana) foi estimada in vitro. O perfil tóxico dos complexos RuMet e RuTrp foi determinado pela toxicidade oral aguda pelo método de classe, screening hipocrático e a determinação do potencial genotóxico foi avaliada pelo ensaio cometa. A eficácia antitumoral dos complexos RuMet e RuTrp foi estabelecida pelo percentual de inibição do crescimento tumoral e o aumento da sobrevida in vivo após 24 h de inoculação do TAE. Camundongos Swiss foram tratados nas doses de 2 e 6 mg/Kg/dia, via intraperitoneal por 7 dias. Screening hipocrático, avaliação da viabilidade das células do TAE após tratamento, avaliação dos parâmetros hematológicos e bioquímicos também foram realizados. Os complexos de RuAA foram citotóxicos para as células do TAE in vitro com valor de IC 50 variando de 8,70 a 90,41µM. Os complexos de RuMet e RuTrp apresentaram potencial seletivo para as células do TAE. A estimativa in vitro de DL50 para os complexos RuMet e RuTrp foram superiores a 1000 mg/Kg, e in vivo estes complexos apresentaram baixa toxicidade e genotoxicidade. Os complexos RuMet e RuTrp apresentaram atividade antitumoral moderada a elevada em relação ao grupo veículo, com aumento do tempo médio de sobrevida (de 23,6 a 27,4 dias) e aumento percentua l de sobrevida (de 31 a 52%). Os complexos RuMet e RuTrp aumentaram o percentual de células de TAE mortas por apoptose. Não foram observados sinais de toxicidade ou alteração no comportamento dos animais. Parâmetros hematológicos apresentaram alteração na contagem de plaquetas nas doses de 6 mg/Kg/dia dos complexos de RuMet e RuTrp. A dosagem de lactato desidrogenase apresentou alteração na avaliação bioquímica. Os complexos de RuMet e RuTrp são eficientes, seletivos e potentes para células do tumor ascítico de Ehrlich apresentando citotoxicidade in vitro e atividade antitumoral in vivo, com aumento do tempo de sobrevida, com baixa toxicidade e genotoxicidade.
33

Influence of Ancillary Ligands in the Chemistry of Transition Metal σ-Complexes

Bera, Barun January 2014 (has links) (PDF)
This thesis work is based on an investigation of intermediates involved in various metal mediated catalytic reactions such as hydrogenation, hydroboration, functionalization of methane etc. An intermediate dictates the energetics of the catalytic cycle of these reactions. Therefore, it is important to study such types of intermediates in order to design a better catalyst. These intermediates are called σ-complexes in which a σ-bond is coordinated to the metal center at some stage of the reaction coordinate. These species are rarely stable at ambient conditions which create difficulties in exploring their chemistry. Our aim is to study the effect of ancillary ligands on the coordination properties of a σ-bond ligand. We chose two different classes of σ-complexes – one contains a B–H σ-bond as a ligand, i.e., σ-borane complex and another contains a H–H σ-bond as a ligand, i.e., σ-dihydrogen complex. Both M–H–B and M–H2 interactions are 3-center-2-electron coordination bonds comprised of two bonding components. One is σ-donation, which is present in both and another is π-back donation from the metal center, which is negligible in the σ-borane complexes contrary to the σ-dihydrogen complexes. The bonding characteristics of M–H–B and M–H2 interactions suggest that an electron deficient metal center is necessary to study the σ-borane complexes with reasonable stability. Thus, we selected an early transition metal, i.e., Cr(0) bearing arene and CO ancillary ligands, for studying the σ-borane complexes. On the other hand, the cis-dihydrogen/hydride and cis-dihydrogen chloride complexes were studied on a late transition metal center, i.e., Ru(II) bearing phosphine and N–N bidentate ligands. Ammonia-borane is known to be a potential hydrogen storage material. Therefore, we picked up the catalytic dehydrogenation reaction of this compound and intended to investigate the interaction between a metal center and the BH σ-bonds of amine-boranes. We characterized the σ-borane complexes [(η6-arene)Cr(CO)2(η1-H–BH2•NMe3)] (arene = fluorobenzene, benzene, and mesitylene), and observed an interesting correlation between the electronics and stability of these species. This was the first report of σ-borane systems possessing an η6-arene ligand. A prototype homobimetallic σ-borane complex, [(η6-C6H5CH2NMe2•BH2–HCr(CO)5)Cr(CO)3] was characterized using single crystal X-ray crystallography. An intramolecular σ-borane complex, (η1-(η6-C6H5CH2NMe2•BH2–H))Cr(CO)2 was found to possess an interesting chelation of the η6-arene, and BH coordination sites of its amine-borane moiety with the Cr(0) center. These σ-borane complexes showed an interesting dynamics in the binding interface between the metal center and the borane ligand. Free energy of activation (ΔG#) for this process was estimated to be 30-40 kJ/mol. To explore certain σ-dihydrogen complexes we investigated the chemistry of cis-dihydrogen/hydride complexes of Ru(II) bearing phosphine and N-N bidentate ligands cis,trans-[RuH(η2-H2)(PPh3)2(N-N)][OTf] (N-N = 2, 2′-bipyridyl, 2, 2′-bipyrimidine) in detail. In those cases, we established that the adjacent hydride ligand has large influence on the dihydrogen coordination. The η2-H2 and hydride ligands showed a single 1H NMR spectral signal due to fast site exchange among each other. We established the mechanism and calculated the free energy of activation (ΔG# = 8-13 kJ/mol) of this dynamics. These complexes were found to be stable at ambient conditions although, a labile dihydrogen ligand is present in the coordination sphere of the metal center. In fact, we could obtain the single crystals of cis,trans-[RuH(η2-H2)(PPh3)2(bpy)][OTf]. The molecular structure of a σ-complex in which a σ-bond (before it gets completely formed or broken) acts as a ligand is what fascinates this area in chemistry. A cis-dihydrogen chloride complex, cis,trans-[RuCl(η2-H2)(PPh3)2(bpm)][OTf] was characterized unambiguously using NMR spectroscopy. The H-H distance (dHH) for the η2-H2 ligand of these complexes were estimated to be 0.9-1.0 Å. We attempted to observe some σ-methane species spectroscopically at low temperatures. Unfortunately, these species were quite unstable for exhibiting the NMR spectral signals even at low temperatures. Nevertheless, we investigated the reactivity of cis,trans-[RuHX(PPh3)2(N-N)] (X = H, Cl; N-N = 2, 2′-bipyridyl, 2, 2′-bipyrimidine) towards a methylating agent, CH3OTf. This reaction resulted in methane evolution by the combination of the hydride ligand of a Ru(II) complex and the CH3+ moiety of CH3OTf. This reaction was carried out in a sealed tube inside a NMR probe at ~183 K and monitored for a long period of time; however, the methane bound metal species was not observed. Perhaps, the longevity of this class of σ-methane complex falls below the NMR time scale.
34

Chemical vapor deposition of ruthenium-based layers by a single-source approach

Jeschke, Janine, Möckel, Stefan, Korb, Marcus, Rüffer, Tobias, Assim, Khaybar, Melzer, Marcel, Herwig, Gordon, Georgi, Colin, Schulz, Stefan E., Lang, Heinrich 06 March 2017 (has links)
A series of ruthenium complexes of the general type Ru(CO)2(P(n-Bu)3)2(O2CR)2 (4a, R = Me; 4b, R = Et; 4c, R = i-Pr; 4d, R = t-Bu; 4e, R = CH2OCH3; 4f, R = CF3; 4g, R = CF2CF3) was synthesized by a single-step reaction of Ru3(CO)12 with P(n-Bu)3 and the respective carboxylic acid. The molecular structures of 4b, 4c and 4e–g in the solid state are discussed. All ruthenium complexes are stable against air and moisture and possess low melting points. The physical properties including the vapor pressure can be adjusted by modification of the carboxylate ligands. The chemical vapor deposition of ruthenium precursors 4a–f was carried out in a vertical cold-wall CVD reactor at substrate temperatures between 350 and 400 °C in a nitrogen atmosphere. These experiments show that all precursors are well suited for the deposition of phosphorus-doped ruthenium layers without addition of any reactive gas or an additional phosphorus source. In the films, phosphorus contents between 11 and 16 mol% were determined by XPS analysis. The obtained layers possess thicknesses between 25 and 65 nm and are highly conformal and dense as proven by SEM and AFM studies. / Dieser Beitrag ist aufgrund einer (DFG-geförderten) Allianz- bzw. Nationallizenz frei zugänglich.
35

Ligand design for Ru(II) photosensitizers in photocatalytic hydrogen evolution

Rupp, Mira Theresa 07 1900 (has links)
This thesis was conducted as cotutelle-de-thèse between the Université de Montréal and the Universität Würzburg (Germany). Cette thèse a été réalisée en cotutelle de thèse entre l'Université de Montréal et l'Universität Würzburg (Allemagne). / Cette thèse étudie la conception de différentes ligands pour les complexes de Ru(II) et leur activité comme photosensibilisateur (PS) dans l'évolution photocatalytique de l'hydrogène. Le système catalytique contient généralement un catalyseur, un donneur d'électron sacrificiel (SED) et un PS, qui doit présenter une forte absorption et luminescence et un comportement redox réversible. Les substituants pyridine attracteurs d'électrons sur le récepteur d'ions métalliques terpyridine entraînent une augmentation de la durée de vie de l'état excité et du rendement quantique (Φ = 74*10-5; τ = 3.8 ns) et permettent au complexe III-C1 de présenter une activité en tant que PS. Bien que la fréquence (TOFmax) et le nombre de cycle catalytique (TON) soient relativement faibles (TOFmax = 57 mmolH2 molPS-1 min 1; TON(44 h) = 134 mmolH2 molPS-1), le système catalytique a une longue durée de vie, ne perdant que 20% de son activité au cours de 12 jours. De manière intéressante, la conception hétérolytique dans III-C1 s'avère être bénéfique pour la performance en tant que PS, malgré des propriétés photophysiques et électrochimiques comparables à celles du complexe homoleptique IV-C2 (TOFmax = 35 mmolH2 molPS-1 min-1; TON(24 h) = 14 mmolH2 molPS-1). L'extinction réductive de la PS excitée par le SED est identifiée comme l'étape limitant la vitesse dans les deux cas. Par conséquent, les ligands sont modifiés pour être plus accepteurs d'électrons, soit par N-méthylation des substituants pyridine périphériques, soit par introduction d'un cycle pyrimidine dans le récepteur d'ion métallique, ce qui conduit à une augmentation des durées de vie des états excités (τ = 9–40 ns) et des rendements quantiques de luminescence (Φ = 40–400*10-5). Cependant, le caractère plus accepteur d'électrons des ligands entraîne également des potentiels de réduction décalés anodiquement, ce qui conduit à un manque de force motrice pour le transfert d'électrons du PS réduit au catalyseur. Ainsi, cette étape de transfert d'électrons s'avère être un facteur limitant de la performance globale du PS. Alors que des TOFmax plus élevés dans les expériences d'évolution de l'hydrogène sont observés pour les PS contenant le motif pyrimidine (TOFmax = 300–715 mmolH2 molPS-1 min-1), la longévité de ces systèmes est réduite avec des temps de demi-vie de 2–6 h. L'expansion des ligands contenant le motif pyrimidine en complexes dinucléaires conduit à une absorptivité plus forte (ε = 100–135*103 L mol-1 cm-1), une luminescence accrue (τ = 90–125 ns, Φ = 210–350*10-5) et peut également entraîner un TOFmax plus élevé si la force motrice est suffisante pour le transfert d'électrons vers le catalyseur (1500 mmolH2 molPS-1 min-1). En comparant des complexes avec des forces motrices similaires, une luminescence plus forte se traduit par un TOFmax plus élevé. Outre les considérations thermodynamiques, les effets cinétiques et l'efficacité du transfert d'électrons sont supposés avoir un impact sur l'activité observée dans l'évolution de l'hydrogène. En résumé, ce travail montre que la conception ciblée de ligands peut faire du groupe précédemment négligé des complexes de Ru(II) avec des ligands tridentés des candidats attrayants pour une utilisation comme PS dans l'évolution photocatalytique de l'hydrogène. / This thesis investigates different ligand designs for Ru(II) complexes and the activity of the complexes as photosensitizer (PS) in photocatalytic hydrogen evolution. The catalytic system typically contains a catalyst, a sacrificial electron donor (SED) and a PS, which needs to exhibit strong absorption and luminescence, as well as reversible redox behavior. Electron-withdrawing pyridine substituents on the terpyridine metal ion receptor result in an increase of excited-state lifetime and quantum yield (Φ = 74*10-5; τ = 3.8 ns) and lead to complex III-C1 exhibiting activity as PS. While the turn-over frequency (TOFmax) and turn-over number (TON) are relatively low (TOFmax = 57 mmolH2 molPS-1 min-1; TON(44 h) = 134 mmolH2 molPS-1), the catalytic system is long-lived, losing only 20% of its activity over the course of 12 days. Interestingly, the heteroleptic design in III-C1 proves to be beneficial for the performance as PS, despite III-C1 having comparable photophysical and electrochemical properties as the homoleptic complex IV-C2 (TOFmax = 35 mmolH2 molPS-1 min-1; TON(24 h) = 14 mmolH2 molPS-1). Reductive quenching of the excited PS by the SED is identified as rate-limiting step in both cases. Hence, the ligands are designed to be more electron-accepting either via N-methylation of the peripheral pyridine substituents or introduction of a pyrimidine ring in the metal ion receptor, leading to increased excited-state lifetimes (τ = 9–40 ns) and luminescence quantum yields (Φ = 40–400*10-5). However, the more electron-accepting character of the ligands also results in anodically shifted reduction potentials, leading to a lack of driving force for the electron transfer from the reduced PS to the catalyst. Hence, this electron transfer step is found to be a limiting factor to the overall performance of the PS. While higher TOFmax in hydrogen evolution experiments are observed for pyrimidine-containing PS (TOFmax = 300–715 mmolH2 molPS-1 min-1), the longevity for these systems is reduced with half-life times of 2–6 h. Expansion of the pyrimidine-containing ligands to dinuclear complexes yields a stronger absorptivity (ε = 100–135*103 L mol-1 cm-1), increased luminescence (τ = 90–125 ns, Φ = 210–350*10-5) and can also result in higher TOFmax given sufficient driving force for electron transfer to the catalyst (TOFmax = 1500 mmolH2 molPS-1 min-1). When comparing complexes with similar driving forces, stronger luminescence is reflected in a higher TOFmax. Besides thermodynamic considerations, kinetic effects and electron transfer efficiency are assumed to impact the observed activity in hydrogen evolution. In summary, this work shows that targeted ligand design can make the previously disregarded group of Ru(II) complexes with tridentate ligands attractive candidates for use as PS in photocatalytic hydrogen evolution. / In dieser Arbeit werden verschiedene Liganden für Ru(II)-Komplexe und die Aktivität der Komplexe als Photosensibilisatoren (PS) in der photokatalytischen Wasserstoffentwicklung untersucht. Das katalytische System besteht typischerweise aus einem Katalysator, einem Opferelektronendonator (SED) und einem PS, welcher eine starke Absorption und Lumineszenz sowie ein reversibles Redoxverhalten aufweisen sollte. Elektronenziehende Pyridin-Substituenten am Terpyridin-Metallionenrezeptor resultieren in einer Erhöhung der Lebensdauer des angeregten Zustands sowie der Quantenausbeute (Φ = 74*10-5; τ = 3.8 ns), was dazu führt, dass Komplex III-C1 als PS aktiv ist. Während die Wechselzahl (TOFmax) und der Umsatz (TON) relativ niedrig sind (TOFmax = 57 mmolH2 molPS-1 min-1; TON(44 h) = 134 mmolH2 molPS 1), ist das katalytische System langlebig und verliert im Laufe von 12 Tagen nur 20% seiner Aktivität. Das heteroleptische Design in III-C1 erweist sich als vorteilhaft für die Leistung als PS, obwohl III-C1 vergleichbare photophysikalische und elektrochemische Eigenschaften besitzt wie der homoleptische Komplex IV-C2 (TOFmax = 35 mmolH2 molPS-1 min-1; TON(24 h) = 14 mmolH2 molPS-1). In beiden Fällen erweist sich das reduktive Lumineszenzlöschen des angeregten PS durch den SED als geschwindigkeitsbestimmender Schritt. Daher werden die Liganden entweder durch N-Methylierung der peripheren Pyridin-Substituenten oder durch Einführung eines Pyrimidinrings in den Metallionenrezeptor elektronenziehender gestaltet, was zu erhöhten Lebensdauern des angeregten Zustands (τ = 9–40 ns) und Lumineszenzquantenausbeuten (Φ = 40–400*10-5) führt. Der stärker elektronenziehende Charakter der Liganden führt allerdings auch zu anodisch verschobenen Reduktionspotentialen, wodurch die treibende Kraft für den Elektronentransfer vom reduzierten PS zum Katalysator reduziert wird. Daher erweist sich dieser Elektronentransferschritt als ein limitierender Faktor für die Gesamtleistung des PS. Während höhere TOFmax in Wasserstoffproduktionsexperimenten für Pyrimidin-haltige PS beobachtet werden (TOFmax = 300–715 mmolH2 molPS-1 min-1), ist die Langlebigkeit für diese Systeme mit Halbwertszeiten von 2–6 h deutlich reduziert. Die Erweiterung der Pyrimidin-haltigen Liganden zu zweikernigen Komplexen führt zu einem stärkeren Absorptionsvermögen (ε = 100–135*103 L mol-1 cm-1), erhöhter Lumineszenz (τ = 90–125 ns, Φ = 210–350*10-5) und kann bei ausreichender treibender Kraft für den Elektronentransfer zum Katalysator auch zu einer höheren TOFmax führen (TOFmax = 1500 mmolH2 molPS-1 min-1). Beim Vergleich von Komplexen mit ähnlichen treibenden Kräften spiegelt sich die stärkere Lumineszenz in einem höheren TOFmax wider. Es wird angenommen, dass neben thermodynamischen Faktoren auch kinetische Effekte und die Effizienz des Elektronentransfers die beobachtete Aktivität bei der Wasserstoffentwicklung beeinflussen. Zusammenfassend zeigt diese Arbeit, dass gezieltes Ligandendesign die bisher vernachlässigte Gruppe der Ru(II)-Komplexe mit tridentaten Liganden zu attraktiven Kandidaten für den Einsatz als PS in der photokatalytischen Wasserstoffentwicklung machen kann.
36

Entwicklung und Charakterisierung eines Prozesses zur thermischen Atomlagenabscheidung von Ruthenium mit in-situ Messtechnik / Development and characterisation for a thermal activated atomic layer deposition process of ruthenium via in-situ measurement techniques

Junige, Marcel 11 March 2011 (has links) (PDF)
Ruthenium und sein elektrisch leitfähiges Rutheniumdioxid sind viel versprechende Kandidaten als Elektrodenmaterial in MIM (Metall-Isolator-Metall-)Kondensatoren mit Dielektrika hoher Permittivität der nächsten Generation von DRAM-Speichern, als Metall-Gate-Elektroden in p-Kanal-MOS-Transistoren mit Dielektrika hoher Permittivität, oder als Keimschicht für das direkte elektrochemische Abscheiden von Kupfer-Verbindungsleitungen. Die ALD (Atomic Layer Deposition) wächst Materiallagen mit weniger als einem Zehntel Nanometer Dicke, indem sie gasförmige Reaktanden abwechselnd, getrennt durch spülende Pulse, in die Reaktionskammer einleitet. Dadurch wird mit jeder zyklischen Wiederholung idealerweise selbstbeendender Gas-Festkörper-Reaktionen stets die gleiche Materialmenge abgeschieden, bis eine gewünschte Schichtdicke erreicht ist. Wie sich die Oberfläche aufgrund der Materialabscheidung während der ALD verändert, kann mit der in-situ SE (Spektroskopische Ellipsometrie) beobachtet werden. Die Ellipsometrie misst die Änderung eines Polarisationszustands bzgl. Amplitude und Phase, nachdem ein einfallender Lichtstrahl von einer (schichtbedeckten) Oberfläche reflektiert und/ oder durch diese transmittiert wurde. Die ellipsometrischen Daten stehen im direkten Zusammenhang mit optischen Materialparametern und sind somit physikalisch interpretierbar – oder sie werden in eindimensionale strukturelle Größen, wie die Schichtdicke übersetzt. In dieser Arbeit wurden Schichten aus Ruthenium und Rutheniumdioxid aus dem Präkursor ECPR, [(Ethylcyclopentadienyl)(Pyrrolyl)Ruthenium(II)], und molekularem Sauerstoff per ALD gewachsen. Die chemischen Teilreaktionen wurden während der ALD von Ruthenium und Rutheniumoxid auf frisch abgeschiedenen Schichtoberflächen per in-situ SE, on-site QMS (Quadrupol-Massenspektrometrie) und XPS (Röntgen-Photoelektronenspektroskopie) ohne Vakuumunterbrechung untersucht. Weiterhin wurden Experimente zum Schichtwachstum auf frisch abgeschiedenen Schichten sowie einer Ausgangssubstratoberfläche per in-situ und Echtzeit SE durchgeführt, wobei die folgenden Prozessparameter variiert wurden: die jeweilige Reaktanden Dosis, die Spülpulsdauern, die Substrattemperatur und der Prozessdruck. / Ruthenium and its conductive dioxide are promising candidates as electrodes in MIM (metal-insulator-metal) capacitors with high-k dielectrics of next generation DRAM (dynamic random access memory) devices, as metal-gate electrodes in pMOS-Transistors with high-k dielectrics, and as seed layer for direct electrochemical plating of copper interconnects. ALD (atomic layer deposition) grows material layers with less than a tenth of a nanometer thickness, pulsing gaseous reactants alternately into the reaction chamber, separated by purging pulses. Hence, every cyclic recurrence of ideally self-limiting gas-solid reactions deposits a fixed material amount, until the desired film thickness is achieved. So, the surface’s chemical composition changes through material deposition during ALD, observable by in-situ SE (spectroscopic ellipsometry). Ellipsometry measures the polarization state’s change in amplitude and phase, reflecting an incident light beam from and/ or transmitting it through a (film covered) surface. The ellipsometric data can be directly related to optical material parameters and are thus physically interpretable – or they are translated into one-dimensional structural values, like film thickness. In this work, ruthenium and ruthenium dioxide films were grown from ECPR, [(ethylcyclopentadienyl)(pyrrolyl)ruthenium(II)], and molecular oxygen. Reaction mechanisms during the ALD of ruthenium and ruthenium dioxide were studied on the as-deposited film surface by in-situ SE, on-site QMS (quadrupole mass spectrometry), as well as XPS (x-ray photoelectron spectroscopy) without vacuum break. Additionally, film growth experiments were performed on the as-deposited film and the initial substrate surface by in-situ and real-time SE, varying the process parameters: reactant doses, purging times, substrate temperature and total pressure.
37

Entwicklung und Charakterisierung eines Prozesses zur thermischen Atomlagenabscheidung von Ruthenium mit in-situ Messtechnik

Junige, Marcel 27 January 2011 (has links)
Ruthenium und sein elektrisch leitfähiges Rutheniumdioxid sind viel versprechende Kandidaten als Elektrodenmaterial in MIM (Metall-Isolator-Metall-)Kondensatoren mit Dielektrika hoher Permittivität der nächsten Generation von DRAM-Speichern, als Metall-Gate-Elektroden in p-Kanal-MOS-Transistoren mit Dielektrika hoher Permittivität, oder als Keimschicht für das direkte elektrochemische Abscheiden von Kupfer-Verbindungsleitungen. Die ALD (Atomic Layer Deposition) wächst Materiallagen mit weniger als einem Zehntel Nanometer Dicke, indem sie gasförmige Reaktanden abwechselnd, getrennt durch spülende Pulse, in die Reaktionskammer einleitet. Dadurch wird mit jeder zyklischen Wiederholung idealerweise selbstbeendender Gas-Festkörper-Reaktionen stets die gleiche Materialmenge abgeschieden, bis eine gewünschte Schichtdicke erreicht ist. Wie sich die Oberfläche aufgrund der Materialabscheidung während der ALD verändert, kann mit der in-situ SE (Spektroskopische Ellipsometrie) beobachtet werden. Die Ellipsometrie misst die Änderung eines Polarisationszustands bzgl. Amplitude und Phase, nachdem ein einfallender Lichtstrahl von einer (schichtbedeckten) Oberfläche reflektiert und/ oder durch diese transmittiert wurde. Die ellipsometrischen Daten stehen im direkten Zusammenhang mit optischen Materialparametern und sind somit physikalisch interpretierbar – oder sie werden in eindimensionale strukturelle Größen, wie die Schichtdicke übersetzt. In dieser Arbeit wurden Schichten aus Ruthenium und Rutheniumdioxid aus dem Präkursor ECPR, [(Ethylcyclopentadienyl)(Pyrrolyl)Ruthenium(II)], und molekularem Sauerstoff per ALD gewachsen. Die chemischen Teilreaktionen wurden während der ALD von Ruthenium und Rutheniumoxid auf frisch abgeschiedenen Schichtoberflächen per in-situ SE, on-site QMS (Quadrupol-Massenspektrometrie) und XPS (Röntgen-Photoelektronenspektroskopie) ohne Vakuumunterbrechung untersucht. Weiterhin wurden Experimente zum Schichtwachstum auf frisch abgeschiedenen Schichten sowie einer Ausgangssubstratoberfläche per in-situ und Echtzeit SE durchgeführt, wobei die folgenden Prozessparameter variiert wurden: die jeweilige Reaktanden Dosis, die Spülpulsdauern, die Substrattemperatur und der Prozessdruck.:1 Einleitung I Theoretischer Teil 2 Ruthenium in der Mikroelektronik 2.1 Eigenschaften 2.2 Verwendung 3 Atomlagenabscheidung 3.1 Definition 3.2 Ablauf 3.3 Hauptmerkmale 3.4 Weit verbreitete Irrtümer 3.5 Vorteile und Grenzen 4 Massenspektrometrie 4.1 Definition 4.2 Verwendung 4.3 Aufbau und Funktionsweise von Massenspektrometern 4.4 Massenspektrometrische Methodik 5 Ellipsometrie 5.1 Definition 5.2 Vorteile und Grenzen 5.3 Physikalische Grundlagen 5.4 Messprinzip 5.4.1 Bestimmen ellipsometrischer Rohdaten 5.4.2 Interpretieren ellipsometrischer Spektren 5.4.3 Optisches Modellieren II Praktischer Teil 6 Chemische Reaktionen bei der thermischen Atomlagenabscheidung von Ruthenium und Rutheniumoxid 6.1 Vorbemerkungen 6.2 Untersuchungsmethoden 6.3 Beobachtungen mit Auswertung 6.3.1 Prozessgasanalyse per Quadrupol-Massenspektrometrie 6.3.2 In-situ und Echtzeit Spektroskopische Ellipsometrie 6.3.3 Röntgen-Photoelektronenspektroskopie ohne Vakuumunterbrechung 6.4 Formulieren vermuteter Teilreaktionen für das Ru Schicht-auf-Schicht Wachstum 6.4.1 Sauerstoff-Puls 6.4.2 Präkursor (ECPR)-Puls 6.4.3 ALD-Zyklus 6.5 Schlussfolgerungen für die ALD von Rutheniumoxid 6.6 Zwischenfazit und Ausblick 7 Spektroskopische Ellipsometrie in-situ und in Echtzeit während der thermischen Atomlagenabscheidung 7.1 Vorbemerkungen 7.2 Datenaufnahme 7.2.1 Messtechnische Eckdaten 7.2.2 Echtzeit-Begriff bei der Atomlagenabscheidung 7.2.3 Nasschemisches Vorbehandeln zum Zwecke definierter Ausgangssubstrate 7.2.4 Temperieren der Substrate 7.3 Interpretieren ellipsometrischer Spektren 7.4 Optisches Modellieren zur Datenauswertung 7.5 Fehlerabschätzung 8 Prozessentwicklung der thermischen Atomlagenabscheidung von Ruthenium 8.1 Vorbemerkungen 8.2 Untersuchungsmethoden 8.2.1 Schichtherstellung 8.2.2 Schichtcharakterisierung 8.3 Kennlinien der thermischen Ru-ALD 8.3.1 Zyklenanzahl 8.3.2 ECPR-Puls 8.3.3 Sauerstoff-Puls 8.3.4 Spülpulse 8.3.5 Substrattemperatur 8.3.6 Prozessdruck 8.4 Formulieren einer optimierten ALD-Prozesssequenz 8.5 Schichteigenschaften 9 Zusammenfassung und Ausblick III Anhang A Theoretische Grundlagen verwendeter Messtechnik B Parametereinflüsse im monomolekularen Wachstumsmodell C Weitere Abbildungen / Ruthenium and its conductive dioxide are promising candidates as electrodes in MIM (metal-insulator-metal) capacitors with high-k dielectrics of next generation DRAM (dynamic random access memory) devices, as metal-gate electrodes in pMOS-Transistors with high-k dielectrics, and as seed layer for direct electrochemical plating of copper interconnects. ALD (atomic layer deposition) grows material layers with less than a tenth of a nanometer thickness, pulsing gaseous reactants alternately into the reaction chamber, separated by purging pulses. Hence, every cyclic recurrence of ideally self-limiting gas-solid reactions deposits a fixed material amount, until the desired film thickness is achieved. So, the surface’s chemical composition changes through material deposition during ALD, observable by in-situ SE (spectroscopic ellipsometry). Ellipsometry measures the polarization state’s change in amplitude and phase, reflecting an incident light beam from and/ or transmitting it through a (film covered) surface. The ellipsometric data can be directly related to optical material parameters and are thus physically interpretable – or they are translated into one-dimensional structural values, like film thickness. In this work, ruthenium and ruthenium dioxide films were grown from ECPR, [(ethylcyclopentadienyl)(pyrrolyl)ruthenium(II)], and molecular oxygen. Reaction mechanisms during the ALD of ruthenium and ruthenium dioxide were studied on the as-deposited film surface by in-situ SE, on-site QMS (quadrupole mass spectrometry), as well as XPS (x-ray photoelectron spectroscopy) without vacuum break. Additionally, film growth experiments were performed on the as-deposited film and the initial substrate surface by in-situ and real-time SE, varying the process parameters: reactant doses, purging times, substrate temperature and total pressure.:1 Einleitung I Theoretischer Teil 2 Ruthenium in der Mikroelektronik 2.1 Eigenschaften 2.2 Verwendung 3 Atomlagenabscheidung 3.1 Definition 3.2 Ablauf 3.3 Hauptmerkmale 3.4 Weit verbreitete Irrtümer 3.5 Vorteile und Grenzen 4 Massenspektrometrie 4.1 Definition 4.2 Verwendung 4.3 Aufbau und Funktionsweise von Massenspektrometern 4.4 Massenspektrometrische Methodik 5 Ellipsometrie 5.1 Definition 5.2 Vorteile und Grenzen 5.3 Physikalische Grundlagen 5.4 Messprinzip 5.4.1 Bestimmen ellipsometrischer Rohdaten 5.4.2 Interpretieren ellipsometrischer Spektren 5.4.3 Optisches Modellieren II Praktischer Teil 6 Chemische Reaktionen bei der thermischen Atomlagenabscheidung von Ruthenium und Rutheniumoxid 6.1 Vorbemerkungen 6.2 Untersuchungsmethoden 6.3 Beobachtungen mit Auswertung 6.3.1 Prozessgasanalyse per Quadrupol-Massenspektrometrie 6.3.2 In-situ und Echtzeit Spektroskopische Ellipsometrie 6.3.3 Röntgen-Photoelektronenspektroskopie ohne Vakuumunterbrechung 6.4 Formulieren vermuteter Teilreaktionen für das Ru Schicht-auf-Schicht Wachstum 6.4.1 Sauerstoff-Puls 6.4.2 Präkursor (ECPR)-Puls 6.4.3 ALD-Zyklus 6.5 Schlussfolgerungen für die ALD von Rutheniumoxid 6.6 Zwischenfazit und Ausblick 7 Spektroskopische Ellipsometrie in-situ und in Echtzeit während der thermischen Atomlagenabscheidung 7.1 Vorbemerkungen 7.2 Datenaufnahme 7.2.1 Messtechnische Eckdaten 7.2.2 Echtzeit-Begriff bei der Atomlagenabscheidung 7.2.3 Nasschemisches Vorbehandeln zum Zwecke definierter Ausgangssubstrate 7.2.4 Temperieren der Substrate 7.3 Interpretieren ellipsometrischer Spektren 7.4 Optisches Modellieren zur Datenauswertung 7.5 Fehlerabschätzung 8 Prozessentwicklung der thermischen Atomlagenabscheidung von Ruthenium 8.1 Vorbemerkungen 8.2 Untersuchungsmethoden 8.2.1 Schichtherstellung 8.2.2 Schichtcharakterisierung 8.3 Kennlinien der thermischen Ru-ALD 8.3.1 Zyklenanzahl 8.3.2 ECPR-Puls 8.3.3 Sauerstoff-Puls 8.3.4 Spülpulse 8.3.5 Substrattemperatur 8.3.6 Prozessdruck 8.4 Formulieren einer optimierten ALD-Prozesssequenz 8.5 Schichteigenschaften 9 Zusammenfassung und Ausblick III Anhang A Theoretische Grundlagen verwendeter Messtechnik B Parametereinflüsse im monomolekularen Wachstumsmodell C Weitere Abbildungen
38

Investigação sobre a cinética de formação de compostos tris-heterolépticos de Ru(II) com potencial aplicação em conversão de energia

Müller, Andressa Vidal January 2017 (has links)
Orientador: Prof. Dr. André Sarto Polo / Dissertação (mestrado) - Universidade Federal do ABC, Programa de Pós-Graduação em Nanociências e Materiais Avançados, 2017. / Compostos polipiridínicos de rutênio(II) apresentam características favoráveis para serem utilizados em processos de conversão de energia solar, como a ampla e intensa absorção de luz na região visível. A engenharia molecular permite a sintonização dos níveis de energia destes complexos para que possam executar funções úteis com mais eficiência. Os compostos tris-heterolépticos de rutênio(II) são muito interessantes neste sentido, pois permitem avaliar como a utilização de diferentes ligantes altera as suas propriedades globais e permite modular seus níveis de energia. O presente trabalho insere-se nesse contexto, avaliando como grupos doadores ou retiradores de elétrons influenciam a cinética de formação, as propriedades químicas e o desempenho fotoeletroquímico em células solares sensibilizadas por corante (DSSCs - Dye-Sensitized Solar Cells) desse tipo de composto. É descrita a investigação da cinética de formação dos compostos cis- [Ru(R-phen)(dcbH2)(NCS)2], dcbH2 = ácido- -dicarboxílico- -bipiridina, avaliada de maneira a racionalizar o efeito do substituinte R nas posições 4 e 7 da 1,10- fenantrolina nas velocidades das reações e na distribuição dos isômeros de ligação. Também são descritas a síntese, purificação e caracterização dos compostos cis- [Ru(R-phen)(dcbH2)Cl2] e cis-[Ru(R-phen)(dcbH2)(NCS)2] e as mudanças observadas em suas propriedades espectroscópicas e eletroquímicas são discutidas em função dos diferentes substituintes da 1,10-fenantrolina. Os compostos cis- [Ru(R-phen)(dcbH2)(NCS)2] também foram usados como corantes sensibilizadores em DSSCs e a partir de experimentos fotoeletroquímicos os resultados foram interpretados relacionando-se a natureza do ligante R-phen e os processos que ocorrem nas células solares. Observou-se que mesmo pequenas mudanças estruturais nos ligantes R-phen podem acarretar em grandes mudanças nas propriedades e na formação dos compostos que funcionalizam nanomateriais como o TiO2. / Ruthenium(II) polypyridyl compounds have favorable characteristics for their use in solar energy conversion processes, such as their wide and intense light absorption in the visible region of the spectrum. Molecular engineering allows the tuning of the energy levels of these compounds in order to perform useful functions more efficiently. Ruthenium(II) tris-heteroleptic compounds are very interesting in this field since they can be employed to evaluate how changing the ligands modify their global properties and modulate their energy levels. This work aims to evaluate the influence of electron donating or withdrawing groups on the formation kinetics, chemical properties and photoelectrochemical performance of this type of compound in Dye- Sensitized Solar Cells (DSSCs). The investigation of the formation kinetics of cis- [Ru(R-phen)(dcbH2)(NCS)2] compounds, dcbH2 -dicarboxylic acid- - bipyridine, is described and evaluated in order to rationalize the effect of the R substituent on 4 and 7 positions of 1,10-phenanthroline on reaction rates and linkage isomer distribution. The synthesis, purification and characterization of the compounds cis-[Ru(R-phen)(dcbH2)Cl2] and cis-[Ru(R-phen)(dcbH2)(NCS)2] are also described and changes observed in their spectroscopic and electrochemical properties are discussed in terms of the different substituents of 1,10-phenanthroline. The cis- [Ru(R-phen)(dcbH2)(NCS)2] compounds were also employed as dye-sensitizers in DSSCs and from photoelectrochemical experiments the results were interpreted correlating the R-phen ligand structure and processes which occur in solar cells. It was observed that even small structural changes in R-phen ligands can result in wide changes in properties and formation of the compounds that functionalize nanomaterials such as TiO2.
39

Self-Assembly and Cytotoxic Activity of Homometallic and Heterometallic Coordination Architectures

Adeyemo, Aderonke Ajibola January 2017 (has links) (PDF)
The alluring order in which complex biological networks exist in nature stimulated the interest of chemists to replicate such systems synthetically. With such examples as the deoxyribonucleic acid (DNA) double helix and the phospholipid bilayers, the influence of forces within these networks are solely credited for their excellent stability. The synthetically ordered chemical networks are also held together by interactions within them with little or no external force as seen in the natural systems. This spontaneous and reversible association of molecules or ions to form larger, more complex entities according to the intrinsic information contained in the molecules themselves is known as self-assembly. The self-assembly process is pre-eminent to the formation of ordered structures emerging spontaneously from the precursors in which, the overall structure of the final assemblies is controlled by the symmetry of each of the building blocks. The highly ordered and thermodynamically stable scaffolds are formed via non-covalent interactions including hydrophobic interaction, π-stacking, dipole-dipole interaction, ion-dipole interaction, hydrogen bonding, Van der Waals forces, solvophobic interaction and reversible metal-ligand coordination. These non-covalent interactions are termed as supramolecular interactions. Among several of these self-assembly protocols, the directional metal-ligand coordination strategy has evolved to be a well-established process for the preparation of supramolecular ensembles with pre-defined shapes, cavities and functionalities in a “one-pot” synthesis. Coordination-driven self-assembly strategy is governed by the combination of electron-deficient metal centres and electron-rich organic ligands. The outcome of the final supramolecular architecture is determined by the choice of the pre-designed metal acceptor building blocks as well as the flexibility and steric demands of the ancillary organic ligands. Accurate stoichiometry of each of the building blocks is also a very important factor in coordination-driven self-assembly; although serendipity sometimes happen which is quite unexpected. A large number of these self-assembled supramolecular networks have found useful applications in optoelectronics, material chemistry, adsorption, drug delivery, catalysis, host-guest chemistry, photo- and electro-chemical sensing as well as prospective chemotherapeutics. Transition metals are widely desired as electron-deficient building blocks in supramolecular chemistry. They readily accept lone pair of electrons from electron-rich building blocks. The functional properties of these metals have also been considered during the pre-design of these electron acceptors such that the functional property of each metal can be induced in the final architecture. Pd(II) and Pt(II) metals are highly desirable electron acceptors in supramolecular self-assembly because of their rigid square-planar nature. Nonetheless, Ru(II) and Fe(II) have also been explored as electron acceptors based on their octahedral geometry. Electron-rich building blocks have lone pairs of electrons on their donor sites (nitrogen, oxygen or sulphur) which effortlessly donate electrons to electron-deficient building blocks. The pyridyl appended ligands have been mostly used as the electron-rich building blocks in the construction of supramolecular architectures because of their predictable coordination modes and the symmetrical nature. However, imidazole appended ligands holds a distinctive spot in supramolecular chemistry because of its rotational flexibility and unpredictable binding modes which may lead to uncommon architectures not obtainable with pyridyl appended ligands. Thus, imidazole-based supramolecular architectures are less explored because the outcome of the final architecture cannot be pre-determined during the design. Ruthenium p-cymene complexes have spurred much interest in the last two decades because they possess extremely stable octahedral geometry and has been extensively used in the construction of 2D and 3D supramolecular architectures. The recent search for viable alternatives to platinum drugs in cancer chemotherapy discovered ruthenium as an excellent alternative to platinum because of its low toxicity when compared to platinum. The robustness of the arene head on interaction with biomolecules and the accumulation of large molecular weight compounds specifically in cancer cells rather than in healthy cells also improved the activity of ruthenium supramolecular architectures in cancer therapy. This recent outcome has propelled significant research channelled towards synthesizing better ruthenium-based chemotherapeutics. Additionally, the presence of two different metals in a single self-assembled architecture may also impart an increased activity when compared to the individual activity of each metal. Thus, the heterometallic supramolecular architectures can open a new kind of chemotherapeutics which may give a distinct mechanistic pathway different from those reported in literature. Chapter 1 of this thesis describes the coordination-driven self-assembly strategy with specific emphasis on ruthenium p-cymene self-assembled architectures and their applications. A brief introduction on cancer and cancer therapy is discussed. The use of mononuclear and dinuclear metal-based chemotherapeutics is included while the use of heterometallic complexes as anticancer agents was also highlighted. Chapter 2 showcases the self-assembly of a series of 2D and 3D ruthenium(II) p-cymene architectures constructed from bidentate and tridentate rigid imidazole-based ligands and dinuclear ruthenium(II) building units. The influence of the rotational flexibility of the imidazole ligands on the final architecture was probed. In spite of the likelihood of the formation of different conformational isomeric architectures (syn and anti) and/or polymeric products due to free rotation on the donor sites of the imidazole ligands, the exclusive formation of a single conformational isomer (anti) as the only product turned out to be a noteworthy observation. This indicates that the coordination mode and flexibility of imidazole ligand can control and determine the geometry, topology and conformations of the final molecular architectures. Scheme 1: Self-assembly of 2D macrocycles [2 - 7](OTf)4 employing dinuclear ruthenium(II) building units [1a - 1c](OTf)2 and bidentate rigid imidazole ligands L1 - L2 in methanol at room temperature. Furthermore, the unexpected formation of a tetranuclear cationic macrocycle [8](OTf)4 was reported in the 2 + 3 self-assembly reaction of triazine-based tridentate imidazole ligand L3 and dinuclear ruthenium(II) building unit [1a](OTf)4 over the expected hexanuclear prismatic cage [8a](OTf)6 which is quite surprising. Scheme 2: Schematic representation of the formation of an unexpected tetranuclear macrocycle [8](OTf)4 over the expected hexanuclear prismatic cage [8a](OTf)6. Chapter 3 reports the synthesis of eight octanuclear cages via the coordination-driven self-assembly of two tetradentate pyridyl-based organic ligands and four dinuclear p-cymene Ru(II) acceptor clips. These octanuclear cages were explored in vitro as potential anticancer agents against human lung adenocarcinoma A549 and human cervical cancer HeLa cell lines. Four of the cages with polyaromatic spacers in their Ru(II) acceptor clip unit showed very low micromolar IC50 values and also possess higher anticancer activity than cisplatin against the tested cancer cell lines. The four dinuclear p-cymene Ru(II) acceptor clips A3 in OC-3 and OC-7 revealed some kind of synergy which is evident in their IC50 values against the tested cancer cell lines. In addition, OC-3 and OC-7 trigger both early and late apoptotic phases while OC-4 and OC-8 trigger majorly late apoptotic phase in the cancer cell lines tested. The mechanistic pathway by which cell death is progressing is through the generation of reactive oxygen species (ROS) which is of significant amount in OC-4 and OC-8. Scheme 3: Self-assembly of the discrete octanuclear cages (OC-1 - OC-8) in methanol at room temperature and the schematic illustration of the apoptosis mechanistic pathway. Chapter 4 describes the use of “metalloligands” as electron-rich building blocks and the subsequent use of the metalloligand for “one-pot” self-assembly reactions in the presence of electron-deficient metal acceptor building blocks. The pyridyl donors are the most preferred in metalloligands because of their predictable directionality in self-assembly. The introduction of a second metal into the ligand component of the self-assembled architecture is to bestow additional functionality as well as to construct elegantly designed discrete heterobimetallic supramolecular architectures. Four discrete Ru(II)-Pt(II) hexanuclear trigonal prismatic cages were synthesized employing a tritopic platinum(II) metalloligand and four p-cymene ruthenium(II) clips via coordination-driven self-assembly. The formation of these cages were confirmed by well-known spectroscopic techniques and their structural features was elucidated by geometry optimization. In vitro anticancer studies of these heterometallic cages failed because of solubility challenges in the culture media presumably due to their high molecular weights and many alkyl groups. Scheme 4: Energy minimized structures of the heterometallic trigonal prismatic cages 3a (left) and 3b (right). Hydrogen atoms have been removed for the sake of clarity [Ru: green, Pt: pink, O: red, N: blue, P: orange, C: grey]. Chapter 5 discusses the synthesis of two bidentate platinum(II) metalloligands as well as the self-assembly of six new heterometallic rectangles obtained from four Ru2(OOꓵOO)2(p-cymene)2Cl2 pillars and two bidentate pyridyl-based platinum(II) metalloligands. The Ru4Pt2 and Ru4Pt4 rectangles were structurally characterized and supported by geometry optimisation. Additionally, two Ru4Pt2 and two Ru4Pt4 rectangles were examined for their anticancer properties in eight human cancer cell lines with the aim of checking if the platinum metal centres in the metalloligands can enhance the anticancer activity of the rectangles. The results showed that these heterometallic rectangles are cytotoxic against the cancer cell lines tested but the incorporation of platinum(II) metal(s) into the metalloligand did not further enhance the cytotoxicity in the rectangles tested as hypothesized. The mechanism of cell death is via the generation of reactive oxygen species (ROS) and two Ru4Pt4 rectangles activates both early and late apoptosis. Cell cycle analysis showed that one of the Ru4Pt4 rectangles is a moderate inhibitor of cell cycle progression at the sub G1 phase similar to cisplatin while nuclear condensation and cell blebbing in the cells was also observed in the presence of the two Ru4Pt4 rectangles tested. The overall activity of the heterometallarectangles against the cancer cell lines tested was increased when they exist as a single entity thus reiterating the importance of heterobimetallic supramolecular architectures in cancer therapy. Scheme 5: Schematic diagram of the discrete Ru4Pt4 heterometallic rectangles and illustration of the cell death pathway. The results of the investigation reported in this thesis contribute to the rapidly developing field of organometallic ruthenium(II) self-assembled anticancer chemotherapeutics with specific evidences of the mechanistic pathway of cell death. This results can further guide the design and development of better chemotherapeutics for future use.
40

Chemistry of Ru(II) Complexes Bearing Sigma Bonded H-X (X = H, Si, C) Species/Fragments

Naidu, Kola Sattaiah January 2013 (has links) (PDF)
Introduction The chemistry of transitional metal complexes bearing σ-bonded H−X (X = H, Si, C) species/fragments, the so called σ-complexes, are key intermediates in catalytic processes such as hydrogenation, hydrosilylation, alkane functionalization etc. Particularly, the σ-H2 complexes form the best-known group of σ-complexes in which H2 is bound to the metal center in η2-fashion. Several well characterized examples of η2-silane and η2-borane complexes have also been reported. Moreover, in recent years, the carbon analogues of these complexes in which alkanes are coordinated through η2-C-H bonds to the metal center have been attracting the attention of organometallic chemists. An approach towards direct functionalization of σ-bonds in simple alkanes is the heterolytic activation of the C−H bond using highly electrophilic complexes. After all, for fine catalyst design and the selective functionalization of H−H, silanes or simple alkanes, it is necessary to understand the bonding nature of these σ-complexes in depth. Objectives The objectives of this work are as follows a) An attempt to stabilize and gain insights into the bonding nature and reactivity behavior of various sigma ligands on ruthenium center [Ru(η2-HX)(Tpms)(PPh3)2][OTf], (X = H, SiR (R = Me3 or Me2Ph) and CH3). b) Synthesis, characterization and reactivity studies of electrophilic ruthenium(II) complexes bearing (C6F5)2PCH2CH2P(C6F5)2 (dfppe) ligand towards heterolysis of H2. c) An approach towards preparation of insoluble molecular clusters from [Ru(P(OH)3)(dppe)2][OTf]2 complex and Zn, Cd and Cu acetates to realize σ-bond activation under heterogeneous conditions. Significant results In our attempts to gain insights into the bonding nature and reactivity behavior of σ-H2, silane and methane complexes, we followed two strategies to generate these complexes in solution. First, we synthesized and well characterized two new Ru(II)-complexes [RuH(Tpms)(PPh3)2] and [Ru(OTf)(Tpms)(PPh3)2], (OTf = trifluoromethane sulfonate) where Ru-H and Ru-OTf are the key reactive centers, followed by their subsequent reactions with electrophilic reagents such as HOTf, Me3SiOTf and CH3OTf and with H2, PhMe2SiH and CH4 at low temperature, respectively. These reactions finally resulted in the characterization of σ-H2 and σ-silane complexes, however, no σ-methane complex was observed even at low temperature (Scheme 1). Scheme 1 In order to realize highly eletrophilic metal complexes, a chelating fluorinated phosphine ligand 1,2-bis-(pentafluorophenylphosphino)ethane, (C6F5)2PCH2CH2P(C6F5)2 (dfppe) was employed and the synthesis and structural characterization of a series of new, Ru(II) hydride complexes [RuH(P(OMe)3)(bpy)(dfppe)][OTf], cis-[RuH2(dfppe)(PPh3)2] and [RuH(CO)Cl(PPh3)(dfppe)] were accomplished. Protonation reaction of the hydride complexes [RuH(P(OMe)3)(bpy)(dfppe)][OTf] (Scheme 2) and [RuH(CO)Cl(PPh3)(dfppe)] (Scheme 3) with HOTf at low temperature gave free H2 and five-coordinate species [Ru(P(OMe)3)(bpy)(dfppe)][OTf]2 and [Ru(CO)Cl(PPh3)(dfppe)][OTf], respectively. Surprisingly, in all these reactions, dihydrogen complexes are formed which were unobservable in which the H2 ligand was found to be highly labile. Reaction of is-[Ru(bpy)(dfppe)(OH2)(P(OMe)3)][OTf]2 with H2 however, resulted in the heterolytic activation of the H–H bond and concomitant protonation of H2O to give the corresponding hydride complex cis-[Ru(H)(bpy)(dfppe)(P(OMe)3)][OTf] and H3O+ (Scheme 2) . Scheme 2 Scheme 3 In an attempt to prepare insoluble molecular clusters in order to realize σ-bond activation under heterogeneous conditions, we studied the reactivity of highly electrophilic [Ru(P(OH)3)(dppe)2]2+ (dppe = (C6H5)2PCH2CH2P(C6H5)2) complex with various metal acetates. Usage of Zn(OAc)2.2H2O afforded a novel [Ru2(dppe)4P2(OH)2O4Zn2(OAc)(DMP)(OTf)][OTf]2 (Ru-Zn ) soluble bimetallic complex (Scheme 4) which was characterized in detail by NMR and single crystal X-ray crystallography. To achieve the expected insoluble molecular cluster further studies are required to tune the electronics and the sterics around the phosphorous acid moiety. Scheme 4

Page generated in 0.1263 seconds