• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • Tagged with
  • 7
  • 7
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Identifier le rôle des interactions inter-fréquences en mémoire de travail auditive

Borderie, Arthur 18 October 2022 (has links)
Les oscillations fournissent le matériel expérimental pour observer la structure dynamique de l'activité cérébrale (Baillet, 2017 ; Buzsaki et Draguhn, 2004 ; Silva, 2013). Entre le repos et la réalisation d'une tâche, les propriétés du signal des oscillations (fréquence, phase et amplitude) varient selon les régions du cerveau, en fonction de l'état mental et de la tâche en cours. Il a été proposé que le couplage phase-amplitude entre la phase des oscillations thêta et l'amplitude des oscillations gamma soit un mécanisme que le cerveau implémente pour permettre la rétention d'informations en mémoire. Cependant, le rôle du couplage thêta-gamma dans la mémoire à court terme doit encore être démontré. Dans cette étude, nous avons cherché à savoir si le couplage phase-amplitude thêta-gamma dans l'hippocampe soutient la rétention de l'information en mémoire, par rapport à la simple perception, et si le couplage thêta-gamma dans l'hippocampe humain est lié la performance comportementale dans un tâche de mémoire à court terme. Des enregistrements EEG stéréotaxiques ont été obtenus chez 16 patients épileptiques pharmaco-résistants qui ont effectué des tâches de comparaison de séquences sonores et une condition de contrôle d'écoute passive avec le même matériel. Pour étudier la mémoire à court terme, la durée de la période silencieuse de rétention entre les séquences à comparer (2000, 4000, 8000 ms) ainsi que la charge en mémoire (3 - 6 éléments à encoder) ont été manipulées. Les analyses de Temps-Fréquence pendant la période d'encodage de la tâche montrent que chaque note a été encodée par une bouffée gamma transitoire dans le cortex auditif, tandis que la séquence entière a induit des oscillations thêta soutenues dans la voie auditive ventrale (à partir du gyrus temporal supérieur jusqu'au gyrus frontal inférieur en incluant des régions du lobe temporal médian). Pendant la période de rétention, le couplage thêta-gamma était augmenté dans l'hippocampe gauche pendant les essais de mémoire par rapport aux essais de perception. Il est important de noter que la force du couplage thêta-gamma était corrélée à la performance des participants et qu'une forte stabilité du couplage (bouffée gamma imbriquée dans la phase ascendante de l'oscillation thêta) a été observée dans l'hippocampe gauche et le cortex auditif secondaire. Ce résultat suggère que le couplage thêta-gamma dans l'hippocampe favorise la rétention des éléments mémorisés dans une tâche de mémoire auditive à court terme. Cela élargit nos connaissances sur le rôle général du couplage inter-fréquentiel en tant que mécanisme biologique global pour le traitement et l'intégration des informations dans le cerveau humain. / Brain oscillations provide the experimental material to observe the dynamical structure of brain activity (Baillet, 2017; Buzsaki and Draguhn, 2004; Silva, 2013). Between rest and task performance, the signal properties of oscillations (frequency, phase, and amplitude) vary across brain regions, according to the mental state and the ongoing task performed. Phase Amplitude Coupling between theta and gamma oscillations has been hypothesized to implement the retention of information during short-term memory. However, the role of theta-gamma coupling in short-term memory functions still needs to be demonstrated. In this study, we investigated if hippocampal theta-gamma PAC supports auditory memory retention, as compared to simple perception, and if theta-gamma coupling in the human hippocampus can correlate with behavioural performance in a short-term auditory memory task. Stereotaxic EEG recordings were obtained from 16 pharmaco-resistant epileptic patients who performed delayed match-to-sample tasks for tone sequences, and a passive listening perception condition with the same material. To investigate short-term memory functions, the duration of the silent retention period between the to-be-compared sequences (2000, 4000, 8000 ms) as well as the memory load (3, 6 tones) were manipulated. Time-frequency analyses during the encoding period of the task show that each tone was encoded by a transient gamma burst in the auditory cortex, while the entire sequence elicited sustained theta oscillations in the ventral auditory stream (from the superior temporal gyrus to the inferior frontal gyrus including regions of the medial temporal lobe). During the retention period, theta-gamma coupling increased in the left hippocampus during memory trials as compared to perception trials. Importantly, theta-gamma coupling strength was correlated with participant's performance and high coupling stability/consistency (gamma burst nested to the ascending phase of the theta oscillation) was observed in both the left hippocampus and secondary auditory cortex. This study suggests that hippocampal theta-gamma coupling supports the retention of memorized items in auditory short-term memory. This expands our knowledge of the general role of cross-frequency coupling as a global biological mechanism for brain information processing and integration in the human brain.
2

Identifier le rôle des interactions inter-fréquences en mémoire de travail auditive

Borderie, Arthur 22 November 2023 (has links)
Les oscillations fournissent le matériel expérimental pour observer la structure dynamique de l'activité cérébrale (Baillet, 2017 ; Buzsaki et Draguhn, 2004 ; Silva, 2013). Entre le repos et la réalisation d'une tâche, les propriétés du signal des oscillations (fréquence, phase et amplitude) varient selon les régions du cerveau, en fonction de l'état mental et de la tâche en cours. Il a été proposé que le couplage phase-amplitude entre la phase des oscillations thêta et l'amplitude des oscillations gamma soit un mécanisme que le cerveau implémente pour permettre la rétention d'informations en mémoire. Cependant, le rôle du couplage thêta-gamma dans la mémoire à court terme doit encore être démontré. Dans cette étude, nous avons cherché à savoir si le couplage phase-amplitude thêta-gamma dans l'hippocampe soutient la rétention de l'information en mémoire, par rapport à la simple perception, et si le couplage thêta-gamma dans l'hippocampe humain est lié la performance comportementale dans un tâche de mémoire à court terme. Des enregistrements EEG stéréotaxiques ont été obtenus chez 16 patients épileptiques pharmaco-résistants qui ont effectué des tâches de comparaison de séquences sonores et une condition de contrôle d'écoute passive avec le même matériel. Pour étudier la mémoire à court terme, la durée de la période silencieuse de rétention entre les séquences à comparer (2000, 4000, 8000 ms) ainsi que la charge en mémoire (3 - 6 éléments à encoder) ont été manipulées. Les analyses de Temps-Fréquence pendant la période d'encodage de la tâche montrent que chaque note a été encodée par une bouffée gamma transitoire dans le cortex auditif, tandis que la séquence entière a induit des oscillations thêta soutenues dans la voie auditive ventrale (à partir du gyrus temporal supérieur jusqu'au gyrus frontal inférieur en incluant des régions du lobe temporal médian). Pendant la période de rétention, le couplage thêta-gamma était augmenté dans l'hippocampe gauche pendant les essais de mémoire par rapport aux essais de perception. Il est important de noter que la force du couplage thêta-gamma était corrélée à la performance des participants et qu'une forte stabilité du couplage (bouffée gamma imbriquée dans la phase ascendante de l'oscillation thêta) a été observée dans l'hippocampe gauche et le cortex auditif secondaire. Ce résultat suggère que le couplage thêta-gamma dans l'hippocampe favorise la rétention des éléments mémorisés dans une tâche de mémoire auditive à court terme. Cela élargit nos connaissances sur le rôle général du couplage inter-fréquentiel en tant que mécanisme biologique global pour le traitement et l'intégration des informations dans le cerveau humain. / Brain oscillations provide the experimental material to observe the dynamical structure of brain activity (Baillet, 2017; Buzsaki and Draguhn, 2004; Silva, 2013). Between rest and task performance, the signal properties of oscillations (frequency, phase, and amplitude) vary across brain regions, according to the mental state and the ongoing task performed. Phase Amplitude Coupling between theta and gamma oscillations has been hypothesized to implement the retention of information during short-term memory. However, the role of theta-gamma coupling in short-term memory functions still needs to be demonstrated. In this study, we investigated if hippocampal theta-gamma PAC supports auditory memory retention, as compared to simple perception, and if theta-gamma coupling in the human hippocampus can correlate with behavioural performance in a short-term auditory memory task. Stereotaxic EEG recordings were obtained from 16 pharmaco-resistant epileptic patients who performed delayed match-to-sample tasks for tone sequences, and a passive listening perception condition with the same material. To investigate short-term memory functions, the duration of the silent retention period between the to-be-compared sequences (2000, 4000, 8000 ms) as well as the memory load (3, 6 tones) were manipulated. Time-frequency analyses during the encoding period of the task show that each tone was encoded by a transient gamma burst in the auditory cortex, while the entire sequence elicited sustained theta oscillations in the ventral auditory stream (from the superior temporal gyrus to the inferior frontal gyrus including regions of the medial temporal lobe). During the retention period, theta-gamma coupling increased in the left hippocampus during memory trials as compared to perception trials. Importantly, theta-gamma coupling strength was correlated with participant's performance and high coupling stability/consistency (gamma burst nested to the ascending phase of the theta oscillation) was observed in both the left hippocampus and secondary auditory cortex. This study suggests that hippocampal theta-gamma coupling supports the retention of memorized items in auditory short-term memory. This expands our knowledge of the general role of cross-frequency coupling as a global biological mechanism for brain information processing and integration in the human brain.
3

EFFETS NON THERMIQUES DES CHAMPS DE RADIOFREQUENCES SUR LE SYSTEME NERVEUX CENTRAL : ETUDE MULTIPARAMETRIQUE REALISEE SUR LE RAT VIGILE

Crouzier, David 26 April 2006 (has links) (PDF)
DE NOMBREUSES CRAINTES SONT AUJOURD'HUI FORMULEES QUANT A L'INNOCUITE DES CHAMPS DE RADIOFREQUENCES SUR LA SANTE. PARMI CELLES-CI DES PERTURBATIONS DE LA NEUROPHYSIOLOGIE ET PLUS SPECIFIQUEMENT DU SYSTEME CHOLINERGIQUE CENTRAL ONT ETE EVOQUEES. <br />UN MODELE D'ETUDE MULTIPARAMETRIQUE A ETE DEVELOPPE CHEZ LE RAT VIGILE PRESENTANT A LA FOIS UN ASPECT ELECTROPHYSIOLOGIQUE, NEUROCHIMIQUE OBTENU PAR MICRODIALYSE, COMPORTEMENTAL PAR QUANTIFICATION DES ETATS DE VIGILANCE ET THERMOPHYSIOLOGIQUE PAR LE SUIVI DE LA TEMPERATURE CORPORELLE.<br />LORS DE L'EXPOSITION A UN CHAMP ELECTROMAGNETIQUE DE 1,8 GHZ OU 2,45 GHZ POUR DES PUISSANCES ATHERMIQUES, AUCUN EFFET SIGNIFICATIF N'A PU ETRE MIS EN EVIDENCE SUR LA NEUROPHYSIOLOGIE. PARALLELEMENT A CETTE ETUDE, UNE ETUDE DE LA COMPOSITION LIPIDIQUE DU TISSU CEREBRAL ET UNE ETUDE DE SES METABOLITES ONT ETE REALISEES PAR SPECTROSCOPIE RMN. CES ETUDES EGALEMENT N'ONT PAS MONTRE D'EFFETS DES ONDES ELECTROMAGNETIQUES.
4

Base moléculaire et rôle du courant potassique transitoire I(A) des interneurones de l'hippocampe chez le rongeur

Bourdeau, Mathieu 05 1900 (has links)
Les mécanismes cellulaires et moléculaires qui sous-tendent la mémoire et l’apprentissage chez les mammifères sont incomplètement compris. Le rythme thêta de l’hippocampe constitue l’état « en ligne » de cette structure qui est cruciale pour la mémoire déclarative. Dans la région CA1 de l’hippocampe, les interneurones inhibiteurs LM/RAD démontrent des oscillations de potentiel membranaire (OPM) intrinsèques qui pourraient se révéler importantes pour la génération du rythme thêta. Des travaux préliminaires ont suggéré que le courant K+ I(A) pourrait être impliqué dans la génération de ces oscillations. Néanmoins, peu de choses sont connues au sujet de l’identité des sous-unités protéiques principales et auxiliaires qui soutiennent le courant I(A) ainsi que l’ampleur de la contribution fonctionnelle de ce courant K+ dans les interneurones. Ainsi, cette thèse de doctorat démontre que le courant I(A) soutient la génération des OPM dans les interneurones LM/RAD et que des protéines Kv4.3 forment des canaux qui contribuent à ce courant. De plus, elle approfondit les connaissances sur les mécanismes qui régissent les interactions entre les sous-unités principales de canaux Kv4.3 et les protéines accessoires KChIP1. Finalement, elle révèle que la protéine KChIP1 module le courant I(A)-Kv4.3 natif et la fréquence de décharge des potentiels d’action dans les interneurones. Nos travaux contribuent à l’avancement des connaissances dans le domaine de la modulation de l’excitabilité des interneurones inhibiteurs de l’hippocampe et permettent ainsi de mieux saisir les mécanismes qui soutiennent la fonction de l’hippocampe et possiblement la mémoire chez les mammifères. / Cellular and molecular mechanisms underlying learning and memory in mammals are incompletely understood. The theta rhythm in the hippocampus constitutes the « on-line » state of this structure which is crucial for declarative memory. In the CA1 hippocampal area, LM/RAD inhibitory interneurons exhibit intrinsic membrane potential oscillations (MPOs) that could be important for the generation of theta rhythm. Preliminary work suggested that K+ current I(A) could be involved in the generation of these oscillations. Nevertheless, little is known about the identity of the principal and auxiliary protein subunits underlying I(A) current and the extent of the functional contribution of this K+ current in hippocampal interneurons. Thus, this Ph.D. thesis shows that I(A) current underlies MPO generation in LM/RAD interneurons and that Kv4.3 proteins form channels that contribute to this current. Also, it deepens the knowledge on the mechanism controlling the interactions between Kv4.3 channel-forming principal subunits and KChIP1 auxiliary proteins. Finally, it reveals that KChIP1 modulates native I(A)-Kv4.3 current and the action potential discharge frequency in interneurons. Our work takes part in advancing the knowledge on the field of modulation of excitability in hippocampal inhibitory interneurons and allows a better understanding of the mechanisms underlying the function of the hippocampus and possibly memory in mammals.
5

Base moléculaire et rôle du courant potassique transitoire I(A) des interneurones de l'hippocampe chez le rongeur

Bourdeau, Mathieu 05 1900 (has links)
Les mécanismes cellulaires et moléculaires qui sous-tendent la mémoire et l’apprentissage chez les mammifères sont incomplètement compris. Le rythme thêta de l’hippocampe constitue l’état « en ligne » de cette structure qui est cruciale pour la mémoire déclarative. Dans la région CA1 de l’hippocampe, les interneurones inhibiteurs LM/RAD démontrent des oscillations de potentiel membranaire (OPM) intrinsèques qui pourraient se révéler importantes pour la génération du rythme thêta. Des travaux préliminaires ont suggéré que le courant K+ I(A) pourrait être impliqué dans la génération de ces oscillations. Néanmoins, peu de choses sont connues au sujet de l’identité des sous-unités protéiques principales et auxiliaires qui soutiennent le courant I(A) ainsi que l’ampleur de la contribution fonctionnelle de ce courant K+ dans les interneurones. Ainsi, cette thèse de doctorat démontre que le courant I(A) soutient la génération des OPM dans les interneurones LM/RAD et que des protéines Kv4.3 forment des canaux qui contribuent à ce courant. De plus, elle approfondit les connaissances sur les mécanismes qui régissent les interactions entre les sous-unités principales de canaux Kv4.3 et les protéines accessoires KChIP1. Finalement, elle révèle que la protéine KChIP1 module le courant I(A)-Kv4.3 natif et la fréquence de décharge des potentiels d’action dans les interneurones. Nos travaux contribuent à l’avancement des connaissances dans le domaine de la modulation de l’excitabilité des interneurones inhibiteurs de l’hippocampe et permettent ainsi de mieux saisir les mécanismes qui soutiennent la fonction de l’hippocampe et possiblement la mémoire chez les mammifères. / Cellular and molecular mechanisms underlying learning and memory in mammals are incompletely understood. The theta rhythm in the hippocampus constitutes the « on-line » state of this structure which is crucial for declarative memory. In the CA1 hippocampal area, LM/RAD inhibitory interneurons exhibit intrinsic membrane potential oscillations (MPOs) that could be important for the generation of theta rhythm. Preliminary work suggested that K+ current I(A) could be involved in the generation of these oscillations. Nevertheless, little is known about the identity of the principal and auxiliary protein subunits underlying I(A) current and the extent of the functional contribution of this K+ current in hippocampal interneurons. Thus, this Ph.D. thesis shows that I(A) current underlies MPO generation in LM/RAD interneurons and that Kv4.3 proteins form channels that contribute to this current. Also, it deepens the knowledge on the mechanism controlling the interactions between Kv4.3 channel-forming principal subunits and KChIP1 auxiliary proteins. Finally, it reveals that KChIP1 modulates native I(A)-Kv4.3 current and the action potential discharge frequency in interneurons. Our work takes part in advancing the knowledge on the field of modulation of excitability in hippocampal inhibitory interneurons and allows a better understanding of the mechanisms underlying the function of the hippocampus and possibly memory in mammals.
6

Modélisation fonctionnelle de l'activité neuronale hippocampique : Applications pharmacologiques / Functional modeling of hippocampal neuronal activity : Pharmacological applications

Legendre, Arnaud 28 October 2015 (has links)
Les travaux de cette thèse ont pour but de mettre en œuvre des outils de modélisation et de simulation numériques de mécanismes sous-tendant l’activité neuronale, afin de promouvoir la découverte de médicaments pour le traitement des maladies du système nerveux. Les modèles développés s’inscrivent à différentes échelles : 1) les modèles dits « élémentaires » permettent de simuler la dynamique des récepteurs, des canaux ioniques, et les réactions biochimiques des voies de signalisation intracellulaires ; 2) les modèles de neurones permettent d’étudier l’activité électrophysiologique de ces cellules ; et 3) les modèles de microcircuits permettent de comprendre les propriétés émergentes de ces systèmes complexes, tout en conservant les mécanismes élémentaires qui sont les cibles des molécules pharmaceutiques. À partir d’une synthèse bibliographique des éléments de neurobiologie nécessaires, et d’une présentation des outils mathématiques et informatiques mis en œuvre, le manuscrit décrit les différents modèles développés ainsi que leur processus de validation, allant du récepteur de neurotransmetteur au microcircuit. D’autre part, ces développements ont été appliqués à trois études visant à comprendre : 1) la modulation pharmacologique de la potentialisation à long terme (LTP) dans les synapses glutamatergiques de l’hippocampe, 2) les mécanismes de l'hyperexcitabilité neuronale dans l'épilepsie mésio-temporale (MTLE) à partir de résultats expérimentaux in vitro et in vivo, et 3) la modulation cholinergique de l'activité hippocampique, en particulier du rythme thêta associé à la voie septo-hippocampique. / The work of this thesis aims to apply modeling and simulation techniques to mechanisms underlying neuronal activity, in order to promote drug discovery for the treatment of nervous system diseases. The models are developed and integrated at different scales: 1) the so-called "elementary models" permit to simulate dynamics of receptors, ion channels and biochemical reactions in intracellular signaling pathways; 2) models at the neuronal level allow to study the electrophysiological activity of these cells; and 3) microcircuits models help to understand the emergent properties of these complex systems, while maintaining the basic mechanisms that are the targets of pharmaceutical molecules. After a bibliographic synthesis of necessary elements of neurobiology, and an outline of the implemented mathematical and computational tools, the manuscript describes the developed models, as well as their validation process, ranging from the neurotransmitter receptor to the microcircuit. Moreover, these developments have been applied to three studies aiming to understand: 1) pharmacological modulation of the long-term potentiation (LTP) of glutamatergic synapses in the hippocampus, 2) mechanisms of neuronal hyperexcitability in the mesial temporal lobe epilepsy (MTLE), based on in vitro and in vivo experimental results, and 3) cholinergic modulation of hippocampal activity, particularly the theta rhythm associated with septo-hippocampal pathway.
7

Déficits cognitifs et altération de l'activité de réseau au cours de l'épileptogenèse dans un modèle expérimental d'épilepsie du lobe temporal / Cognitive deficits and network alterations during epileptogenesis in an experimental model of temporal lobe epilepsy

Chauviere, Laëtitia 02 April 2010 (has links)
L’épilepsie du lobe temporal (ELT) est la forme d’épilepsie partielle la plus fréquente chez l’adulte. Elle se caractérise par une période de latence pendant laquelle l’ELT se met en place. Cette période est appelée épileptogenèse. L’épileptogenèse reste une période inaccessible chez l’Homme. Cependant, les modèles animaux présentent l’avantage de pouvoir l’étudier, dans le but de prévenir l’ELT. Ainsi, mon travail de thèse a consisté à mettre en évidence des marqueurs prédictifs de l’épileptogenèse, sur le plan cognitif et électrophysiologique in vivo, à partir du modèle pilocarpine. Les résultats ont montré que dès le stade précoce de l’épileptogenèse, des déficits de mémoire spatiale corrélaient avec une diminution de la puissance des oscillations thêta chez les animaux pilocarpine, sans modification jusqu’au stade chronique. Au même stade, une diminution de la puissance et de la fréquence des oscillations thêta lors du comportement d’exploration a été observée. L’activité interictale, activité paroxystique présente chez les patients entre leurs crises et caractéristique du stade épileptogène dans les modèles animaux, ne corrèle pas directement avec les déficits cognitifs mais diminue la puissance des oscillations thêta dans l’onde après la pointe au cours de l’épileptogenèse mais plus au stade chronique, ce qui suggère une importante modification du réseau avant le stade chronique. On a également décrit deux types d’activité interictale dont les propriétés (amplitude, nombre) et la dynamique au cours du temps sont modifiées juste avant la première crise spontanée, ce qui pourrait constituer, comme les déficits spatiaux et l’altération du rythme thêta, un marqueur prédictif de l’épileptogenèse. De plus, une augmentation du couplage entre l’hippocampe et le CE est observée au cours de l’épileptogenèse mais plus au stade chronique, alors qu’une modification du flux de l’information entre ces deux structures au stade épileptogène précoce persiste jusqu’au stade chronique, indépendamment de la présence ou non d’activité interictale. Ces résultats mettent en évidence la construction d’un réseau épileptogène, un changement majeur du réseau avant la première crise spontanée, et des marqueurs qui pourraient être prédictifs de l’épileptogenèse. L’ELT, les oscillations et les fonctions cognitives faisant intervenir des propriétés de réseau, tels les processus de synchronisation, l’enregistrement de 15 structures au sein du lobe temporal a montré, à partir du modèle pilocarpine, un réseau doté de caractéristiques plus « small-world » (SW) qui tendrait à se synchroniser plus localement, avec une perte des connexions longue distance. Ces résultats pourraient expliquer les altérations de réseau observées précédemment au cours de l’épileptogenèse. L’analyse SW et de cohérence, à l’échelle de ce réseau de structures, lors de différents états (comportementaux, processus cognitifs), mettent en évidence des changements de la dynamique lors de ces états, en conditions normales et pathologiques. Toutes ces modifications de réseau doivent être sûrement recrutées dans la mise en place d’un cerveau épileptique et des altérations cognitives associées. / Temporal lobe epilepsy (TLE) is the most common form of partial epilepsy in adults. TLE is characterized by a latent period during which TLE takes place. This period is called epileptogenesis. In TLE patients, epileptogenesis is unexplored. However, the use of animal models, like pilocarpine model, allows the study of epileptogenic processes, in order to try to prevent TLE. Thus, my PhD work tries to yield some predictive markers of epileptogenesis, in the pilocarpine model. We studied cognitive and electrophysiological in vivo alterations in this model. We showed that there are early and persistent spatial deficits that correlate with a decrease of the power of theta oscillations, i.e. during the early stage of epileptogenesis and the chronic stage. At the same time, there is also a decrease of power and frequency of theta rhythm during exploratory behaviors. Interictal-like activity (ILA) is a pathological activity present during epileptogenesis in experimental models. ILA does not correlate with cognitive deficits, but decreases theta power after the spike, i.e. in its wave, during epileptogenesis but not during the chronic stage anymore. This suggests an important network alteration before the chronic stage. Indeed, we described two types of ILA, whose properties (number, amplitude) and dynamics evolved during epileptogenesis with a major switch just before the first spontaneous seizure. All together, these results may constitute, with spatial deficits and theta rhythm alterations, predictive markers of epileptogenesis. Moreover, we showed an increase in the coupling, ILA-dependent, between the hippocampus and the entorhinal cortex, during epileptogenesis but not during the chronic stage, whereas a reversal of the information flow between these two structures occurs at the early stage of epileptogenesis and persists without any modification till the chronic stage. These results suggest the build-up of an epileptogenic network, a major switch of network properties just before the first spontaneous seizure, and some markers that could be predictive of epileptogenesis. TLE, oscillations and cognition involved processes at the network level, in particular synchronization processes. These processes could be possible via oscillations, which allow information transfer between structures of the network, in order to provide behavioral and cognitive processing. Recordings performed in 15 different structures of the temporal lobe showed, in pilocarpine animals, a network with more “small-world” (SW) features, with a higher local clustering and a loss of long-range connections. These results could explain cognitive and oscillatory alterations observed previously during epileptogenesis. SW and coherence analysis, at the network level, between signals during different brain-states (behaviors and cognitive processes) showed changes in dynamics occurring during these states, in normal and epileptogenic conditions. All these modifications in network activities may be involved in the construction of an epileptic brain and in associated cognitive deficits.

Page generated in 0.039 seconds