• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 1
  • Tagged with
  • 7
  • 6
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Säsongslagring av spillvärme : Ersättning av Halmstad fjärrvärmenäts spetslastanläggning

Berg, Nichlas, Kårhammer, Per January 2013 (has links)
I Sverige används mycket energi för uppvärmning av bostäder och lokaler. För att uppfylla det ständigt ökande behovet av värme, byggs exempelvis nya värmeproducerande anläggningar som komplement i fjärrvärmesystem. Samtidigt finns det outnyttjad energi i industrin som i sin produktion får värme som oönskad biprodukt. Denna rapport undersöker möjligheten att utnyttja denna biprodukt från industrin för att tillföra energi till ett befintligt fjärrvärmenät och lagra i ett säsongsvärmelager. När värmebehovet ökar under den kalla delen av året, skall säsongsvärmelagret bidra med värme. Idén är att lagret skall ersätta delar av de värmeproducerande anläggningarna som utnyttjas i Halmstads fjärrvärmesystem. Målet är att all fossil bränsleanvändning skall kunna tas bort. Rapporten undersöker även ekonomiska lönsamheten samt miljövinsten i att ersätta del av biobränsleanvändningen. I Halmstad finns ett stålverk, Höganäs Halmstadverken, som kan bidra med överskottsenergi i form av värme. Rapporten genomför beräkningar på industrins potential att leverera prima värme till fjärrvärmenätet. Med hjälp av beräkningar och simuleringar i Microsoft Excel tas ett system med lämplig lagringsmetod samt spillvärme från lokal industri fram. Detta system skall optimeras med hänsyn till ekonomiska och miljömässiga förutsättningar. Resultatet visar att Halmstads förutsättningar är goda för att integrera ett groplager samt att det finns potential att leverera spillvärme från Höganäs Halmstadverken. Storlekarna på vattenburna säsongsvärmelager optimeras till 200 000 m3 för ersättning av endast fossila bränslen respektive 550 000 m3 för ersättning av fossila och biobränslen. Spillvärmeeffekten från Höganäs Halmstadverken beräknas till 15 MW. De ekonomiska kalkylerna resulterar i en årlig vinst på upp till 8 miljoner kronor med en payoff-tid på 8 år. Den totala miljövinsten i minskade växthusgasutsläpp blir 4 800 ton koldioxidekvivalenter per år. / In Sweden, a great deal of energy is used for residential and commercial heating. To fulfill the ever increasingly need for heat, new heating plants is built to complement the district heating system. At the same time there is unused energy in industry, which produces heat as an unwanted byproduct. This report evaluates the possibility to use this byproduct to supply energy to a district heating system and store it in seasonal heat storage. When the heat demand increases during the cold season of the year, the seasonal heat storage contributes with heat energy. The idea is to replace parts of the heating plants in Halmstad with heat storage and waste heat. The aim is to exclude usage of all fossil fuels. This report will also evaluate the economical prerequisites and environmental benefits in replacing biofuels. A steelworks company, Höganäs Halmstadverken, is situated in Halmstad. This industry could contribute with surplus heat, which is calculated in this report. With help of calculations and simulations in Microsoft Excel, a system with adequate heat storage method and surplus heat from local industry is formed. This system is optimized concerning economic and environmental matters. The results reveal that Halmstad's conditions are favorable to integrate pit heat storage and there is potential to deliver waste heat from Höganäs Halmstadverken steelworks. Sizes of seasonal heat storage is optimized to 200 000 m3 for replacing fossil fuels respectively 550 000 m3 for replacing fossil fuels and biofuels. Waste heat effect is calculated to 15 MW. The economical calculations results in an annual profit up to 8 million SEK with a payoff equal to 8 years. The environmental benefits consisting of reduced greenhouse gases are calculated to 4 800 tons carbon dioxide equivalents annually.
2

Säsongslagring av överskottsenergi

Abrahamsson, Mattias January 2022 (has links)
Genom att kartlägga smältugnarna och dess kylvattensystem inom Åkers Sweden AB har en studie genomförts för att analysera vilken potential det finns till att ytterligare återvinna överskottsenergi. Detta har genomförts för att uppfylla de av Sverige ställda miljö- och energi-mål till år 2030 som dels handlar om att vi behöver energieffektivisera våra processer och tillföra mindre energi för att uppnå samma resultat som tidigare. Uppdraget är genomfört på uppdrag av Åkers Ledningsgrupp som önskar förstå om det finns tekniska och ekonomiska förutsättningar att starta upp ett projekt för att investera i ett energilager. Överskottsenergi som idag inte kan tillvaratas kyls bort med sjövatten vilket kan betraktas som ett rent energislöseri. Resultatet påvisar att det finns en potential till att återvinna ytterligare 2 GWh överskottsenergi vilka är möjliga att lagra i ett energilager till en investeringskostnad på 21 MSEK.
3

Användning och lagring av solenergi flerbostadshus från 50-talet

Magnusson, Sara January 2018 (has links)
An increase of the use of renewable energy sources is a part of the solution to tackle the climate change problems. Solar energy is a renewable energy source used for both electricity and heat. The housing sector has a high energy demand and has a potential to increase its use of solar energy. In this study different energy solutions for solar energy use in multifamily residential buildings was examined. To meet the difference in solar energy production and energy use some options for energy storage were investigated. Seasonal storage of solar energy enables solar heat from the summer to be used during the winter. Simulations were made of a existing multifamily residential building from 1950 owned by the housing company Uppsalahem in the city of Uppsala. Different combinations of solar panels, solar thermal collectors and geothermal energy, which originates from solar energy, were dimensioned to decrease the amount of bought heatand electricity, and at the same time be economically defensible. Energy storage in the form of battery storage, heat storage in a combination with district heating system, and heat storage in the bedrock were investigated. The results showed that none of the systems were profitable except for a system with only solar panels. Two systems with geothermal energy in combination with solar panels or solar thermal collectors met the Swedish National Board of Housing, Building and Planning's demands of energy requirement for a newly built multifamily residential building.
4

Äldreboendet på Zakrisdal : En studie om solvärme med säsongslagring / Home for elderly at Zakrisdal : A study about solar heat with seasonal heat storage

Skantz, Christoffer January 2008 (has links)
<p>A home for elderly is planed to be built at Zakrisdal, Karlstad, Sweden. The heat source for the building was at the time not determined. In order by the local government of Karlstad this report is meant to examine if the need of heat could be provided only by solar heat combined with a seasonal heat storage. The problem to solve is, if the need of heat from the home for elderly is provided from only solar heat, whitch dimensions of the solar collectors and the storage is needed?</p>
5

Äldreboendet på Zakrisdal : En studie om solvärme med säsongslagring / Home for elderly at Zakrisdal : A study about solar heat with seasonal heat storage

Skantz, Christoffer January 2008 (has links)
A home for elderly is planed to be built at Zakrisdal, Karlstad, Sweden. The heat source for the building was at the time not determined. In order by the local government of Karlstad this report is meant to examine if the need of heat could be provided only by solar heat combined with a seasonal heat storage. The problem to solve is, if the need of heat from the home for elderly is provided from only solar heat, whitch dimensions of the solar collectors and the storage is needed?
6

Småskalig säsongslagring av solenergi för uppvärmning av bostäder : Simulering av lagerutformning och konsekvensen av adderade uppvärmningsbehov motsvarande en pool och ett atrium / Small scale seasonal storage of solar energy for domestic heating : Simulation of storage design and the consequence of added heating demands corresponding to a pool and an atrium

Fryklund, Jenny January 2010 (has links)
The sun is a huge energy source with great potential of providing energy to the heating of homes and other buildings in an environmentally sustainable manner. In order to provide buildings with energy from the sun it is necessary to transfer the energy supply over time to when the demand arises. By storing the heat in a seasonal storage, solar energy from the summer can be used in the winter when the demand for heating is greatest. Today's existing plants are mainly in Europe and particularly in Germany. These facilities are designed to supply heat demands greater than 400 MWh and covers about 40-50 % of this need which consists of energy for space heating and domestic hot water. How much of the heat demand that is covered, the solar fraction, is partly due to losses from the storage which in turn is connected to the surface area of the storage. The bigger a storage, the smaller the losses because of the decreasing relationship between surface area and storage volume. Looking at the size of the seasonal storages that are currently in operation, the question if seasonal storage is also suitable for installations designed for heat demands smaller than 400 MWh arises. Jonas Haglund at the architect office Skanark AB in Karlstad is planning an accommodation of 40 flats and hopes that seasonal stored solar energy can serve as the main energy source for space heating and hot water. In order to make housing more attractive he is considering the idea of adding other features, like a pool and an atrium, that also require heating but with lower temperature requirements. Haglund would like to investigate whether the efficiency of the solar collector increases when the extra energy demands are added and if the energy cost, for those demands, in this way can be reduced. The purpose of this study is to investigate the possibility of covering a large fraction of a small-scale annual heat demand corresponding to about 40 newly built apartments. The study shall present the solar fractions that can be achieved with different storage concepts when storage size and collector area is varied. The study will also answer how the solar fraction will change if a heating demand with lower temperature requirements and varied character is added to the basic domestic heating and if the added energy demand to some extent can be free. These questions are answered by calculations and simulations with the simulation software COMSOL Multiphysics. The results show that it is possible to obtain solar fractions above 80% with sufficient collector area. Suitable storage volume varies depending on the specific storage concept. Simulations of seasonal storage in a tank show that a storage volume of 13 m3/MWh is an appropriate size, while the corresponding figure for duct storage in clay is 20 m3/MWh. An added heating demand of low temperature character increases the efficiency of the solar panels and creates, so called, free energy. / Examensarbete
7

Techno-economic Pricing model for Carbon Neutral Fuels as Seasonal Energy Storage

Saraf, Ananya January 2021 (has links)
Green hydrogen produced through electrolysis of excess renewable energy is a promising seasonal energy storage solution with the potential to decarbonize the energy sector. However, it has physical properties that make it difficult to store and transport on a large scale for grid scale storage applications. An alternative to storing excess renewable energy in hydrogen is converting the hydrogen to synthetic fuel that has an industrially mature production process and an established transportation, storage and distribution infrastructure. This study aims to conduct a feasibility analysis to compare the cost and compatibility of green hydrogen, ammonia, methane and methanol as seasonal energy storage. The production of each fuel and the barriers to their commercialization as energy vectors is discussed. The hydrogen storage technologies holding the most potential are identified as salt cavern and lined rock cavern storage however type I-IV pressure vessel storage is also included in the analysis due to its prevalence within the industry The outcome of the study is a conceptual model calculating the levelized cost of storage of each fuel considering the storage system size, compression energy required and annualized CAPEX and OPEX of compression and storage. Three cases are developed to analyse the storage system, A- seasonal discharging, B-weekly discharging and C- daily discharging. The results identify that the most feasible seasonal storage option for hydrogen is utilizing a salt cavern. If building a salt cavern is infeasible due to geographical constraints, a lined rock cavern is more cost-effective as compared to utilizing pressure vessel storage. For shorter storage periods or smaller scale applications it is more beneficial to employ low pressure (200-300 bar) pressure vessel storage since geological storage becomes expensive as compared to the seasonal case. Low pressure storage is better suited for smaller applications as compression costs account for a significant share of the total annual cost of each storage system in the weekly and daily cases. The most suitable hydrogen storage option is highly dependent on the end use application. Overall, methanol storage provided the lowest levelized cost of storage in all scenarios. / Grönt väte som produceras genom elektrolys av överskott av förnybar energi är en lovande säsongsbaserad energilagringslösning med potential att koldioxidutlösa energisektorn. Det har dock fysiska egenskaper som gör det svårt att lagra och transportera i stor skala för lagringsapplikationer i nätskala. Ett alternativ till att lagra överskott av förnybar energi i väte är att omvandla vätgas till syntetiskt bränsle som har en industriellt mogen produktionsprocess och en etablerad transport-, lagrings- och distributionsinfrastruktur. Denna studie syftar till att genomföra en genomförbarhetsanalys för att jämföra kostnaden och kompatibiliteten för grönt väte, ammoniak, metan och metanol som säsongsbetonad energilagring. Produktionen av varje bränsle och hindren för deras kommersialisering som energivektorer diskuteras. De tekniker för lagring av väte som har störst potential identifieras som lagring av saltrum och fodrad bergrum, men lagring av tryckkärl av typ I-IV ingår också i analysen på grund av dess förekomst inom industrin Resultatet av studien är en konceptuell modell som beräknar den utjämnade kostnaden för lagring av varje bränsle med hänsyn till lagringssystemets storlek, kompressionsenergi som krävs och årlig CAPEX och OPEX för kompression och lagring. Tre fall är utvecklade för att analysera lagringssystemet, A-säsongsurladdning, B-veckotursning och C-daglig urladdning. Resultaten visar att det mest möjliga säsongsbetonade lagringsalternativet för väte är att använda en saltgrotta. Om det är omöjligt att bygga en salthåla på grund av geografiska begränsningar, är en fodrad berghåla mer kostnadseffektiv jämfört med att använda tryckkärlslagring. För kortare lagringsperioder eller tillämpningar i mindre skala är det mer fördelaktigt att använda lågtrycks (200-300 bar) tryckkärllagring eftersom geologisk lagring blir dyr jämfört med säsongsfallet. Lågtryckslagring är bättre lämpad för mindre applikationer eftersom kompressionskostnaderna står för en betydande del av den totala årliga kostnaden för varje lagringssystem i vecko- och dagliga fall. Det mest lämpliga vätgaslagringsalternativet är starkt beroende av slutanvändningsapplikationen. Sammantaget gav metanollagring den lägsta utjämnade kostnaden för lagring i alla scenarier.

Page generated in 0.1992 seconds