• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 53
  • 19
  • 4
  • Tagged with
  • 73
  • 73
  • 36
  • 24
  • 22
  • 20
  • 19
  • 16
  • 16
  • 13
  • 13
  • 13
  • 12
  • 12
  • 12
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Spectral and textural analysis of high resolution data for the automatic detection of grape vine diseases / Analyses spectrale et texturale de données haute résolution pour la détection automatique des maladies de la vigne

Al saddik, Hania 04 July 2019 (has links)
La Flavescence dorée est une maladie contagieuse et incurable de la vigne détectable sur les feuilles. Le projet DAMAV (Détection Automatique des MAladies de la Vigne) a été mis en place, avec pour objectif de développer une solution de détection automatisée des maladies de la vigne à l’aide d’un micro-drone. Cet outil doit permettre la recherche des foyers potentiels de la Flavescence dorée, puis plus généralement de toute maladie détectable sur le feuillage à l’aide d’un outil multispectral dédié haute résolution.Dans le cadre de ce projet, cette thèse a pour objectif de participer à la conception et à l’implémentation du système d’acquisition multispectral et de développer les algorithmes de prétraitement d’images basés sur les caractéristiques spectrales et texturales les plus pertinentes reliées à la Flavescence dorée.Plusieurs variétés de vigne ont été considérées telles que des variétés rouges et blanches; de plus, d’autres maladies que ‘Flavescence dorée’ (FD) telles que Esca et ‘Bois noir’ (BN) ont également été testées dans des conditions de production réelles. Le travail de doctorat a été essentiellement réalisé au niveau feuille et a impliqué une étape d’acquisition suivie d’une étape d’analyse des données.La plupart des techniques d'imagerie, même multispectrales, utilisées pour détecter les maladies dans les grandes cultures ou les vignobles, opèrent dans le domaine du visible. Dans DAMAV, il est conseillé que la maladie soit détectée le plus tôt possible. Des informations spectrales sont nécessaires, notamment dans l’infrarouge. Les réflectances des feuilles des plantes peuvent être obtenues sur les longueurs d'onde les plus courtes aux plus longues. Ces réflectances sont intimement liées aux composants internes des feuilles. Cela signifie que la présence d'une maladie peut modifier la structure interne des feuilles et donc altérer sa signature.Un spectromètre a été utilisé sur le terrain pour caractériser les signatures spectrales des feuilles à différents stades de croissance. Afin de déterminer les réflectances optimales pour la détection des maladies (FD, Esca, BN), une nouvelle méthodologie de conception d'indices de maladies basée sur deux techniques de réduction de dimensions, associées à un classifieur, a été mise en place. La première technique de sélection de variables utilise les Algorithmes Génétiques (GA) et la seconde s'appuie sur l'Algorithme de Projections Successives (SPA). Les nouveaux indices de maladies résultants surpassent les indices de végétation traditionnels et GA était en général meilleur que SPA. Les variables finalement choisies peuvent ainsi être mises en oeuvre en tant que filtres dans le capteur MS.Les informations de réflectance étaient satisfaisantes pour la recherche d’infections (plus que 90% de précision pour la meilleure méthode) mais n’étaient pas suffisantes. Ainsi, les images acquises par l’appareil MS peuvent être ensuite traitées par des techniques bas-niveau basées sur le calcul de paramètres de texture puis injectés dans un classifieur. Plusieurs techniques de traitement de texture ont été testées mais uniquement sur des images couleur. Une nouvelle méthode combinant plusieurs paramètres texturaux a été élaborée pour en choisir les meilleurs. Nous avons constaté que les informations texturales pouvaient constituer un moyen complémentaire non seulement pour différencier les feuilles de vigne saines des feuilles infectées (plus que 85% de précision), mais également pour classer le degré d’infestation des maladies (plus que 74% de précision) et pour distinguer entre les maladies (plus que 75% de précision). Ceci conforte l’hypothèse qu’une caméra multispectrale permet la détection et l’identification de maladies de la vigne en plein champ. / ‘Flavescence dorée’ is a contagious and incurable disease present on the vine leaves. The DAMAV project (Automatic detection of Vine Diseases) aims to develop a solution for automated detection of vine diseases using a micro-drone. The goal is to offer a turnkey solution for wine growers. This tool will allow the search for potential foci, and then more generally any type of detectable vine disease on the foliage. To enable this diagnosis, the foliage is proposed to be studied using a dedicated high-resolution multispectral camera.The objective of this PhD-thesis in the context of DAMAV is to participate in the design and implementation of a Multi-Spectral (MS) image acquisition system and to develop the image pre-processing algorithms, based on the most relevant spectral and textural characteristics related to ‘Flavescence dorée’.Several grapevine varieties were considered such as red-berried and white-berried ones; furthermore, other diseases than ‘Flavescence dorée’ (FD) such as Esca and ‘Bois noir’ (BN) were also tested under real production conditions. The PhD work was basically performed at a leaf-level scale and involved an acquisition step followed by a data analysis step.Most imaging techniques, even MS, used to detect diseases in field crops or vineyards, operate in the visible electromagnetic radiation range. In DAMAV, it is advised to detect the disease as early as possible. It is therefore necessary to investigate broader information in particular in the infra-red. Reflectance responses of plants leaves can be obtained from short to long wavelengths. These reflectance signatures describe the internal constituents of leaves. This means that the presence of a disease can modify the internal structure of the leaves and hence cause an alteration of its reflectance signature.A spectrometer is used in our study to characterize reflectance responses of leaves in the field. Several samples at different growth stages were used for the tests. To define optimal reflectance features for grapevine disease detection (FD, Esca, BN), a new methodology that designs spectral disease indices based on two dimension reduction techniques, coupled with a classifier, has been developed. The first feature selection technique uses the Genetic Algorithms (GA) and the second one relies on the Successive Projection Algorithm (SPA). The new resulting spectral disease indices outperformed traditional vegetation indices and GA performed in general better than SPA. The features finally chosen can thus be implemented as filters in the MS sensor.In general, the reflectance information was satisfying for finding infections (higher than 90% of accuracy for the best method) but wasn’t enough. Thus, the images acquired with the developed MS device can further be pre-processed by low level techniques based on the calculation of texture parameters injected into a classifier. Several texture processing techniques have been tested but only on colored images. A method that combines many texture features is elaborated, allowing to choose the best ones. We found that the combination of optimal textural information could provide a complementary mean for not only differentiating healthy from infected grapevine leaves (higher than 85% of accuracy), but also for grading the disease severity stages (higher than 73% of accuracy) and for discriminating among diseases (higher than 72% of accuracy). This is in accordance with the hypothesis that a multispectral camera can enable detection and identification of diseases in grapevine fields.
52

Le lasso linéaire : une méthode pour des données de petites et grandes dimensions en régression linéaire

Watts, Yan 04 1900 (has links)
Dans ce mémoire, nous nous intéressons à une façon géométrique de voir la méthode du Lasso en régression linéaire. Le Lasso est une méthode qui, de façon simultanée, estime les coefficients associés aux prédicteurs et sélectionne les prédicteurs importants pour expliquer la variable réponse. Les coefficients sont calculés à l’aide d’algorithmes computationnels. Malgré ses vertus, la méthode du Lasso est forcée de sélectionner au maximum n variables lorsque nous nous situons en grande dimension (p > n). De plus, dans un groupe de variables corrélées, le Lasso sélectionne une variable “au hasard”, sans se soucier du choix de la variable. Pour adresser ces deux problèmes, nous allons nous tourner vers le Lasso Linéaire. Le vecteur réponse est alors vu comme le point focal de l’espace et tous les autres vecteurs de variables explicatives gravitent autour du vecteur réponse. Les angles formés entre le vecteur réponse et les variables explicatives sont supposés fixes et nous serviront de base pour construire la méthode. L’information contenue dans les variables explicatives est projetée sur le vecteur réponse. La théorie sur les modèles linéaires normaux nous permet d’utiliser les moindres carrés ordinaires (MCO) pour les coefficients du Lasso Linéaire. Le Lasso Linéaire (LL) s’effectue en deux étapes. Dans un premier temps, des variables sont écartées du modèle basé sur leur corrélation avec la variable réponse; le nombre de variables écartées (ou ordonnées) lors de cette étape dépend d’un paramètre d’ajustement γ. Par la suite, un critère d’exclusion basé sur la variance de la distribution de la variable réponse est introduit pour retirer (ou ordonner) les variables restantes. Une validation croisée répétée nous guide dans le choix du modèle final. Des simulations sont présentées pour étudier l’algorithme en fonction de différentes valeurs du paramètre d’ajustement γ. Des comparaisons sont effectuées entre le Lasso Linéaire et des méthodes compétitrices en petites dimensions (Ridge, Lasso, SCAD, etc.). Des améliorations dans l’implémentation de la méthode sont suggérées, par exemple l’utilisation de la règle du 1se nous permettant d’obtenir des modèles plus parcimonieux. Une implémentation de l’algorithme LL est fournie dans la fonction R intitulée linlasso, disponible au https://github.com/yanwatts/linlasso. / In this thesis, we are interested in a geometric way of looking at the Lasso method in the context of linear regression. The Lasso is a method that simultaneously estimates the coefficients associated with the predictors and selects the important predictors to explain the response variable. The coefficients are calculated using computational algorithms. Despite its virtues, the Lasso method is forced to select at most n variables when we are in highdimensional contexts (p > n). Moreover, in a group of correlated variables, the Lasso selects a variable “at random”, without caring about the choice of the variable. To address these two problems, we turn to the Linear Lasso. The response vector is then seen as the focal point of the space and all other explanatory variables vectors orbit around the response vector. The angles formed between the response vector and the explanatory variables are assumed to be fixed, and will be used as a basis for constructing the method. The information contained in the explanatory variables is projected onto the response vector. The theory of normal linear models allows us to use ordinary least squares (OLS) for the coefficients of the Linear Lasso. The Linear Lasso (LL) is performed in two steps. First, variables are dropped from the model based on their correlation with the response variable; the number of variables dropped (or ordered) in this step depends on a tuning parameter γ. Then, an exclusion criterion based on the variance of the distribution of the response variable is introduced to remove (or order) the remaining variables. A repeated cross-validation guides us in the choice of the final model. Simulations are presented to study the algorithm for different values of the tuning parameter γ. Comparisons are made between the Linear Lasso and competing methods in small dimensions (Ridge, Lasso, SCAD, etc.). Improvements in the implementation of the method are suggested, for example the use of the 1se rule allowing us to obtain more parsimonious models. An implementation of the LL algorithm is provided in the function R entitled linlasso available at https://github.com/yanwatts/linlasso.
53

Sélection de variables pour la classification non supervisée en grande dimension / Variable selection in model-based clustering for high-dimensional data

Meynet, Caroline 09 November 2012 (has links)
Il existe des situations de modélisation statistique pour lesquelles le problème classique de classification non supervisée (c'est-à-dire sans information a priori sur la nature ou le nombre de classes à constituer) se double d'un problème d'identification des variables réellement pertinentes pour déterminer la classification. Cette problématique est d'autant plus essentielle que les données dites de grande dimension, comportant bien plus de variables que d'observations, se multiplient ces dernières années : données d'expression de gènes, classification de courbes... Nous proposons une procédure de sélection de variables pour la classification non supervisée adaptée aux problèmes de grande dimension. Nous envisageons une approche par modèles de mélange gaussien, ce qui nous permet de reformuler le problème de sélection des variables et du choix du nombre de classes en un problème global de sélection de modèle. Nous exploitons les propriétés de sélection de variables de la régularisation l1 pour construire efficacement, à partir des données, une collection de modèles qui reste de taille raisonnable même en grande dimension. Nous nous démarquons des procédures classiques de sélection de variables par régularisation l1 en ce qui concerne l'estimation des paramètres : dans chaque modèle, au lieu de considérer l'estimateur Lasso, nous calculons l'estimateur du maximum de vraisemblance. Ensuite, nous sélectionnons l'un des ces estimateurs du maximum de vraisemblance par un critère pénalisé non asymptotique basé sur l'heuristique de pente introduite par Birgé et Massart. D'un point de vue théorique, nous établissons un théorème de sélection de modèle pour l'estimation d'une densité par maximum de vraisemblance pour une collection aléatoire de modèles. Nous l'appliquons dans notre contexte pour trouver une forme de pénalité minimale pour notre critère pénalisé. D'un point de vue pratique, des simulations sont effectuées pour valider notre procédure, en particulier dans le cadre de la classification non supervisée de courbes. L'idée clé de notre procédure est de n'utiliser la régularisation l1 que pour constituer une collection restreinte de modèles et non pas aussi pour estimer les paramètres des modèles. Cette étape d'estimation est réalisée par maximum de vraisemblance. Cette procédure hybride nous est inspirée par une étude théorique menée dans une première partie dans laquelle nous établissons des inégalités oracle l1 pour le Lasso dans les cadres de régression gaussienne et de mélange de régressions gaussiennes, qui se démarquent des inégalités oracle l0 traditionnellement établies par leur absence totale d'hypothèse. / This thesis deals with variable selection for clustering. This problem has become all the more challenging since the recent increase in high-dimensional data where the number of variables can largely exceeds the number of observations (DNA analysis, functional data clustering...). We propose a variable selection procedure for clustering suited to high-dimensional contexts. We consider clustering based on finite Gaussian mixture models in order to recast both the variable selection and the choice of the number of clusters into a global model selection problem. We use the variable selection property of l1-regularization to build a data-driven model collection in a efficient way. Our procedure differs from classical procedures using l1-regularization as regards the estimation of the mixture parameters: in each model of the collection, rather than considering the Lasso estimator, we calculate the maximum likelihood estimator. Then, we select one of these maximum likelihood estimators by a non-asymptotic penalized criterion. From a theoretical viewpoint, we establish a model selection theorem for maximum likelihood estimators in a density estimation framework with a random model collection. We apply it in our context to determine a convenient penalty shape for our criterion. From a practical viewpoint, we carry out simulations to validate our procedure, for instance in the functional data clustering framework. The basic idea of our procedure, which consists in variable selection by l1-regularization but estimation by maximum likelihood estimators, comes from theoretical results we establish in the first part of this thesis: we provide l1-oracle inequalities for the Lasso in the regression framework, which are valid with no assumption at all contrary to the usual l0-oracle inequalities in the literature, thus suggesting a gap between l1-regularization and l0-regularization.
54

Modèles de mélange pour la régression en grande dimension, application aux données fonctionnelles / High-dimensional mixture regression models, application to functional data

Devijver, Emilie 02 July 2015 (has links)
Les modèles de mélange pour la régression sont utilisés pour modéliser la relation entre la réponse et les prédicteurs, pour des données issues de différentes sous-populations. Dans cette thèse, on étudie des prédicteurs de grande dimension et une réponse de grande dimension. Tout d’abord, on obtient une inégalité oracle ℓ1 satisfaite par l’estimateur du Lasso. On s’intéresse à cet estimateur pour ses propriétés de régularisation ℓ1. On propose aussi deux procédures pour pallier ce problème de classification en grande dimension. La première procédure utilise l’estimateur du maximum de vraisemblance pour estimer la densité conditionnelle inconnue, en se restreignant aux variables actives sélectionnées par un estimateur de type Lasso. La seconde procédure considère la sélection de variables et la réduction de rang pour diminuer la dimension. Pour chaque procédure, on obtient une inégalité oracle, qui explicite la pénalité nécessaire pour sélectionner un modèle proche de l’oracle. On étend ces procédures au cas des données fonctionnelles, où les prédicteurs et la réponse peuvent être des fonctions. Dans ce but, on utilise une approche par ondelettes. Pour chaque procédure, on fournit des algorithmes, et on applique et évalue nos méthodes sur des simulations et des données réelles. En particulier, on illustre la première méthode par des données de consommation électrique. / Finite mixture regression models are useful for modeling the relationship between a response and predictors, arising from different subpopulations. In this thesis, we focus on high-dimensional predictors and a high-dimensional response. First of all, we provide an ℓ1-oracle inequality satisfied by the Lasso estimator. We focus on this estimator for its ℓ1-regularization properties rather than for the variable selection procedure. We also propose two procedures to deal with this issue. The first procedure leads to estimate the unknown conditional mixture density by a maximum likelihood estimator, restricted to the relevant variables selected by an ℓ1-penalized maximum likelihood estimator. The second procedure considers jointly predictor selection and rank reduction for obtaining lower-dimensional approximations of parameters matrices. For each procedure, we get an oracle inequality, which derives the penalty shape of the criterion, depending on the complexity of the random model collection. We extend these procedures to the functional case, where predictors and responses are functions. For this purpose, we use a wavelet-based approach. For each situation, we provide algorithms, apply and evaluate our methods both on simulations and real datasets. In particular, we illustrate the first procedure on an electricity load consumption dataset.
55

Développement de méthodes spatio-temporelles pour la prévision à court terme de la production photovoltaïque / Development of spatio-temporal methods for short term forecasting of photovoltaïc production

Agoua, Xwégnon 20 December 2017 (has links)
L’évolution du contexte énergétique mondial et la lutte contre le changement climatique ont conduit à l’accroissement des capacités de production d’énergie renouvelable. Les énergies renouvelables sont caractérisées par une forte variabilité due à leur dépendance aux conditions météorologiques. La maîtrise de cette variabilité constitue un enjeu important pour les opérateurs du système électrique, mais aussi pour l’atteinte des objectifs européens de réduction des émissions de gaz à effet de serre, d’amélioration de l’efficacité énergétique et de l’augmentation de la part des énergies renouvelables. Dans le cas du photovoltaïque(PV), la maîtrise de la variabilité de la production passe par la mise en place d’outils qui permettent de prévoir la production future des centrales. Ces prévisions contribuent entre autres à l’augmentation du niveau de pénétration du PV,à l’intégration optimale dans le réseau électrique, à l’amélioration de la gestion des centrales PV et à la participation aux marchés de l’électricité. L’objectif de cette thèse est de contribuer à l’amélioration de la prédictibilité à court-terme (moins de 6 heures) de la production PV. Dans un premier temps, nous analysons la variabilité spatio-temporelle de la production PV et proposons une méthode de réduction de la non-stationnarité des séries de production. Nous proposons ensuite un modèle spatio-temporel de prévision déterministe qui exploite les corrélations spatio-temporelles entre les centrales réparties sur une région. Les centrales sont utilisées comme un réseau de capteurs qui permettent d’anticiper les sources de variabilité. Nous proposons aussi une méthode automatique de sélection des variables qui permet de résoudre les problèmes de dimension et de parcimonie du modèle spatio-temporel. Un modèle spatio-temporel probabiliste a aussi été développé aux fins de produire des prévisions performantes non seulement du niveau moyen de la production future mais de toute sa distribution. Enfin nous proposons, un modèle qui exploite les observations d’images satellites pour améliorer la prévision court-terme de la production et une comparaison de l’apport de différentes sources de données sur les performances de prévision. / The evolution of the global energy context and the challenges of climate change have led to anincrease in the production capacity of renewable energy. Renewable energies are characterized byhigh variability due to their dependence on meteorological conditions. Controlling this variabilityis an important challenge for the operators of the electricity systems, but also for achieving the Europeanobjectives of reducing greenhouse gas emissions, improving energy efficiency and increasing the share of renewable energies in EU energy consumption. In the case of photovoltaics (PV), the control of the variability of the production requires to predict with minimum errors the future production of the power stations. These forecasts contribute to increasing the level of PV penetration and optimal integration in the power grid, improving PV plant management and participating in electricity markets. The objective of this thesis is to contribute to the improvement of the short-term predictability (less than 6 hours) of PV production. First, we analyze the spatio-temporal variability of PV production and propose a method to reduce the nonstationarity of the production series. We then propose a deterministic prediction model that exploits the spatio-temporal correlations between the power plants of a spatial grid. The power stationsare used as a network of sensors to anticipate sources of variability. We also propose an automaticmethod for selecting variables to solve the dimensionality and sparsity problems of the space-time model. A probabilistic spatio-temporal model has also been developed to produce efficient forecasts not only of the average level of future production but of its entire distribution. Finally, we propose a model that exploits observations of satellite images to improve short-term forecasting of PV production.
56

Contrôle des fausses découvertes lors de la sélection de variables en grande dimension / Control of false discoveries in high-dimensional variable selection

Bécu, Jean-Michel 10 March 2016 (has links)
Dans le cadre de la régression, de nombreuses études s’intéressent au problème dit de la grande dimension, où le nombre de variables explicatives mesurées sur chaque échantillon est beaucoup plus grand que le nombre d’échantillons. Si la sélection de variables est une question classique, les méthodes usuelles ne s’appliquent pas dans le cadre de la grande dimension. Ainsi, dans ce manuscrit, nous présentons la transposition de tests statistiques classiques à la grande dimension. Ces tests sont construits sur des estimateurs des coefficients de régression produits par des approches de régressions linéaires pénalisées, applicables dans le cadre de la grande dimension. L’objectif principal des tests que nous proposons consiste à contrôler le taux de fausses découvertes. La première contribution de ce manuscrit répond à un problème de quantification de l’incertitude sur les coefficients de régression réalisée sur la base de la régression Ridge, qui pénalise les coefficients de régression par leur norme l2, dans le cadre de la grande dimension. Nous y proposons un test statistique basé sur le rééchantillonage. La seconde contribution porte sur une approche de sélection en deux étapes : une première étape de criblage des variables, basée sur la régression parcimonieuse Lasso précède l’étape de sélection proprement dite, où la pertinence des variables pré-sélectionnées est testée. Les tests sont construits sur l’estimateur de la régression Ridge adaptive, dont la pénalité est construite à partir des coefficients de régression du Lasso. Une dernière contribution consiste à transposer cette approche à la sélection de groupes de variables. / In the regression framework, many studies are focused on the high-dimensional problem where the number of measured explanatory variables is very large compared to the sample size. If variable selection is a classical question, usual methods are not applicable in the high-dimensional case. So, in this manuscript, we develop the transposition of statistical tests to the high dimension. These tests operate on estimates of regression coefficients obtained by penalized linear regression, which is applicable in high-dimension. The main objective of these tests is the false discovery control. The first contribution of this manuscript provides a quantification of the uncertainty for regression coefficients estimated by ridge regression in high dimension. The Ridge regression penalizes the coefficients on their l2 norm. To do this, we devise a statistical test based on permutations. The second contribution is based on a two-step selection approach. A first step is dedicated to the screening of variables, based on parsimonious regression Lasso. The second step consists in cleaning the resulting set by testing the relevance of pre-selected variables. These tests are made on adaptive-ridge estimates, where the penalty is constructed on Lasso estimates learned during the screening step. A last contribution consists to the transposition of this approach to group-variables selection.
57

Recherche statistique de biomarqueurs du cancer et de l'allergie à l'arachide

Collignon, Olivier 16 October 2009 (has links) (PDF)
La première partie de la thèse traite de la recherche de biomarqueurs du cancer. Lors de la transcription, il apparaît que certains nucléotides peuvent être remplacés par un autre nucléotide. On s'intéresse alors à la comparaison des probabilités de survenue de ces infidélités de transcription dans des ARNm cancéreux et dans des ARNm sains. Pour cela, une procédure de tests multiples menée sur les positions des séquences de référence de 17 gènes est réalisée via les EST (Expressed Sequence Tag). On constate alors que ces erreurs de transcription sont majoritairement plus fréquentes dans les tissus cancéreux que dans les tissus sains. Ce phénomène conduirait ainsi à la production de protéines dites aberrantes, dont la mesure permettrait par la suite de détecter les patients atteints de formes précoces de cancer. La deuxième partie de la thèse s'attache à l'étude de l'allergie à l'arachide. Afin de diagnostiquer l'allergie à l'arachide et de mesurer la sévérité des symptômes, un TPO (Test de Provocation Orale) est réalisé en clinique. Le protocole consiste à faire ingérer des doses croissantes d'arachide au patient jusqu'à l'apparition de symptômes objectifs. Le TPO pouvant se révéler dangereux pour le patient, des analyses discriminantes de l'allergie à l'arachide, du score du TPO, du score du premier accident et de la dose réactogène sont menées à partir d'un échantillon de 243 patients, recrutés dans deux centres différents, et sur lesquels sont mesurés 6 dosages immunologiques et 30 tests cutanés. Les facteurs issus d'une Analyse Factorielle Multiple sont également utilisés comme prédicteurs. De plus, un algorithme regroupant simultanément en classes des intervalles comprenant les doses réactogènes et sélectionnant des variables explicatives est proposé, afin de mettre ensuite en compétition des règles de classement. La principale conclusion de cette étude est que les mesures de certains anticorps peuvent apporter de l'information sur l'allergie à l'arachide et sa sévérité, en particulier ceux dirigés contre rAra-h1, rAra-h2 et rAra-h3.
58

Développement de méthodes statistiques nécessaires à l'analyse de données génomiques : application à l'influence du polymorphisme génétique sur les caractéristiques cutanées individuelles et l'expression du vieillissement cutané.

Bernard, Anne 20 December 2013 (has links) (PDF)
Les nouvelles technologies développées ces dernières années dans le domaine de la génétique ont permis de générer des bases de données de très grande dimension, en particulier de Single Nucleotide Polymorphisms (SNPs), ces bases étant souvent caractérisées par un nombre de variables largement supérieur au nombre d'individus. L'objectif de ce travail a été de développer des méthodes statistiques adaptées à ces jeux de données de grande dimension et permettant de sélectionner les variables les plus pertinentes au regard du problème biologique considéré. Dans la première partie de ce travail, un état de l'art présente différentes méthodes de sélection de variables non supervisées et supervisées pour 2 blocs de variables et plus. Dans la deuxième partie, deux nouvelles méthodes de sélection de variables non supervisées de type "sparse" sont proposées : la Group Sparse Principal Component Analysis (GSPCA) et l'Analyse des Correspondances Multiples sparse (ACM sparse). Vues comme des problèmes de régression avec une pénalisation group LASSO elles conduisent à la sélection de blocs de variables quantitatives et qualitatives, respectivement. La troisième partie est consacrée aux interactions entre SNPs et dans ce cadre, une méthode spécifique de détection d'interactions, la régression logique, est présentée. Enfin, la quatrième partie présente une application de ces méthodes sur un jeu de données réelles de SNPs afin d'étudier l'influence possible du polymorphisme génétique sur l'expression du vieillissement cutané au niveau du visage chez des femmes adultes. Les méthodes développées ont donné des résultats prometteurs répondant aux attentes des biologistes, et qui offrent de nouvelles perspectives de recherches intéressantes
59

Optimisation combinatoire pour la sélection de variables en régression en grande dimension : Application en génétique animale

Hamon, Julie 26 November 2013 (has links) (PDF)
Le développement des technologies de séquençage et de génotypage haut-débit permet de mesurer, pour un individu, une grande quantité d'information génomique. L'objectif de ce travail est, dans le cadre de la sélection génomique animale, de sélectionner un sous-ensemble de marqueurs génétiques pertinents permettant de prédire un caractère quantitatif, dans un contexte où le nombre d'animaux génotypés est largement inférieur au nombre de marqueurs étudiées. Ce manuscrit présente un état de l'art des méthodes actuelles permettant de répondre à la problématique. Nous proposons ensuite de répondre à notre problématique de sélection de variables en régression en grande dimension en combinant approches d'optimisation combinatoire et modèles statistiques. Nous commençons par paramétrer expérimentalement deux méthodes d'optimisation combinatoire, la recherche locale itérée et l'algorithme génétique, combinées avec une régression li- néaire multiple et nous évaluons leur pertinence. Dans le contexte de la génomique animale les relations familiales entre animaux sont connues et peuvent constituer une information importante. Notre approche étant flexible, nous proposons une adapta- tion permettant de prendre en considération ces relations familiales via l'utilisation d'un modèle mixte. Le problème du sur-apprentissage étant particulièrement présent sur nos données dû au déséquilibre important entre le nombre de variables étudiées et le nombre d'animaux disponibles, nous proposons également une amélioration de notre approche permettant de diminuer ce sur-apprentissage. Les différentes approches proposées sont validées sur des données de la littérature ainsi que sur des données réelles de Gènes Diffusion.
60

Classification non supervisée et sélection de variables dans les modèles mixtes fonctionnels. Applications à la biologie moléculaire.

Giacofci, Madison 22 October 2013 (has links) (PDF)
Un nombre croissant de domaines scientifiques collectent de grandes quantités de données comportant beaucoup de mesures répétées pour chaque individu. Ce type de données peut être vu comme une extension des données longitudinales en grande dimension. Le cadre naturel pour modéliser ce type de données est alors celui des modèles mixtes fonctionnels. Nous traitons, dans une première partie, de la classification non-supervisée dans les modèles mixtes fonctionnels. Nous présentons dans ce cadre une nouvelle procédure utilisant une décomposition en ondelettes des effets fixes et des effets aléatoires. Notre approche se décompose en deux étapes : une étape de réduction de dimension basée sur les techniques de seuillage des ondelettes et une étape de classification où l'algorithme EM est utilisé pour l'estimation des paramètres par maximum de vraisemblance. Nous présentons des résultats de simulations et nous illustrons notre méthode sur des jeux de données issus de la biologie moléculaire (données omiques). Cette procédure est implémentée dans le package R "curvclust" disponible sur le site du CRAN. Dans une deuxième partie, nous nous intéressons aux questions d'estimation et de réduction de dimension au sein des modèles mixtes fonctionnels et nous développons en ce sens deux approches. La première approche se place dans un objectif d'estimation dans un contexte non-paramétrique et nous montrons dans ce cadre, que l'estimateur de l'effet fixe fonctionnel basé sur les techniques de seuillage par ondelettes possède de bonnes propriétés de convergence. Notre deuxième approche s'intéresse à la problématique de sélection des effets fixes et aléatoires et nous proposons une procédure basée sur les techniques de sélection de variables par maximum de vraisemblance pénalisée et utilisant deux pénalités SCAD sur les effets fixes et les variances des effets aléatoires. Nous montrons dans ce cadre que le critère considéré conduit à des estimateurs possédant des propriétés oraculaires dans un cadre où le nombre d'individus et la taille des signaux divergent. Une étude de simulation visant à appréhender les comportements des deux approches développées est réalisée dans ce contexte.

Page generated in 0.1154 seconds