Spelling suggestions: "subject:"séparation dde phase liquideliquide"" "subject:"séparation dde phase liquidliquid""
1 |
The effects of additives and chemical modification on the solution properties of thermo-sensitive polymersXue, Na 04 1900 (has links)
Cette thèse concerne l’étude de phase de séparation de deux polymères thermosensibles connus-poly(N-isopropylacylamide) (PNIPAM) et poly(2-isopropyl-2-oxazoline) (PIPOZ). Parmi des études variées sur ces deux polymères, il y a encore deux parties de leurs propriétés thermiques inexplicites à être étudiées. Une partie concerne l’effet de consolvant de PNIPAM dans l’eau et un autre solvant hydromiscible. L’autre est l’effet de propriétés de groupes terminaux de chaînes sur la séparation de phase de PIPOZ.
Pour ce faire, nous avons d’abord étudié l’effet de l’architecture de chaînes sur l’effet de cosolvant de PNIPAMs dans le mélange de méthanol/eau en utilisant un PNIPAM en étoile avec 4 branches et un PNIPAM cyclique comme modèles. Avec PNIPAM en étoile, l’adhérence de branches PNIPAM de à un cœur hydrophobique provoque une réduction de Tc (la température du point de turbidité) et une enthalpie plus faible de la transition de phase. En revanche, la Tc de PNIPAM en étoile dépend de la masse molaire de polymère. La coopérativité de déhydratation diminue pour PNIPAM en étoile et PNIPAM cyclique à cause de la limite topologique.
Une étude sur l’influence de concentration en polymère sur l’effet de cosolvant de PNIPAM dans le mélange méthanol/eau a montré qu’une séparation de phase liquide-liquide macroscopique (MLLPS) a lieu pour une solution de PNIPAM dans le mélange méthanol/eau avec la fraction molaire de méthanol entre 0.127 et 0.421 et la concentration en PNIPAM est constante à 10 g.L-1. Après deux jours d’équilibration à température ambiante, la suspension turbide de PNIPAM dans le mélange méthanol/eau se sépare en deux phases dont une phase possède beaucoup plus de PNIPAM que l’autre.
Un diagramme de phase qui montre la MLLPS pour le mélange PNIPAM/eau/méthanol a été établi à base de données expérimentales. La taille et la morphologie de gouttelettes dans la phase riche en polymère condensée dépendent de la fraction molaire de méthanol. Parce que la présence de méthanol influence la tension de surface des gouttelettes liquides, un équilibre lent de la séparation de phase pour PNIPAM/eau/méthanol système a été accéléré et une séparation de phase liquide-liquide macroscopique apparait.
Afin d’étudier l’effet de groupes terminaux sur les propriétés de solution de PIPOZ, deux PIPOZs téléchéliques avec groupe perfluorodécanyle (FPIPOZ) ou groupe octadécyle (C18PIPOZ) comme extrémités de chaîne ont été synthétisés. Les valeurs de Tc des polymères téléchéliques ont beaucoup diminué par rapport à celle de PIPOZ. Des micelles stables se forment dans des solutions aqueuses de polymères téléchéliques. La micellization et la séparation de phase de ces polymères dans l’eau ont été étudiées. La séparation de phase de PIPOZs téléchéliques suit le mécanisme de MLLPS. Des différences en tailles de gouttelettes formées à l’intérieur de solutions de deux polymères ont été observées. Pour étudier profondément les différences dans le comportement d’association entre deux polymères téléchéliques, les intensités des signaux de polymères correspondants et les temps de relaxation T1, T2 ont été mesurés. Des valeurs de T2 de protons correspondants aux IPOZs sont plus hautes. / This thesis focused on the phase separation of two well-known thermoresponsive polymers, namely PNIPAM (poly(N-isopropylacrylamide)) and PIPOZ (poly(2-isopropyl-2-oxazoline). Despite various studies of the two polymers, two aspects of their thermal properties remained unclear and needed to be investigated. One is the cononsolvency effect of PNIPAM in water and a second water miscible solvent. The other is the effect of the end group properties on the phase separation of PIPOZ.
With this in mind, we first studied the effect of the chain architecture on the cononsolvency of PNIPAM in water/methanol mixture, employing a 4-arm star shape PNIPAM and a cyclic PNIPAM as model. Tethering PNIPAM arms to a hydrophobic core resulted in a reduced Tc (cloud point temperature) and a lower phase transition enthalpy change. The Tc of the star shape PNIPAM was inversely dependent on the polymer molecular weight. The dehydration cooperativity was depressed for the star PNIPAM and cyclic PNIPAM due to topological constraints.
A study of the effect of polymer concentration on the cononsolvency of PNIPAM in water/methanol mixture revealed a macroscopic liquid-liquid phase separation (MLLPS) for PNIPAM in water/methanol mixtures of methanol molar fraction ranging from 0.127 to 0.421 at a polymer concentration of 10 g·L-1. The turbid suspension of PNIPAM/water/methanol separated into a polymer rich phase coexisting with a polymer poor solution phase after equilibration for two days at room temperature. The phase diagram showing the MLLPS for the PNIPAM/water/methanol mixtures was constructed based on experimental data. The droplets in the condensed polymer rich phase showed a dependence on the methanol molar fraction. Methanol affects the surface tension of the liquid droplets. The slow equilibrium kinetics of PNIPAM phase separation was sped up and a macroscopic liquid-liquid phase separation realized.
In order to study the effect of end groups on the solution properties of PIPOZ, two telechelic PIPOZ end capped with perfluorodecanyl groups (FPIPOZ) and octadecyl groups (C18PIPOZ), respectively, were synthesized. The Tc values of the telechelic polymers were greatly reduced after end-functionalization. Stable micelles formed in aqueous solutions of the telechelic polymers. The micellization and phase separation of the telechelic polymers in water were studied. The phase separation of the telechelic PIPOZs in water followed a liquid-liquid phase separation mechanism. Differences in the sizes of droplets formed inside of the two polymer solutions were observed. To further investigate the differences in the association behaviour between the two telechelic polymer, NMR signal intensities and T1 and T2 relaxation times were examined. Higher 1H T2 values were obtained for the IPOZ unit in FPIPOZ than that in C18PIPOZ, indicating a higher mobility of the main chain in the FPIPOZ micelles than that in the C18PIPOZ micelles. Together with the 13C NMR and 19F NMR relaxation studies, we obtained better knowledge of the association properties of the telechelic PIPOZ in water. NMR relaxation studies proved to be efficient way of probing the solution behaviour of the polymers.
|
2 |
Un nouveau mécanisme moléculaire de régulation du système ubiquitine-protéasome par séparation de phase liquide-liquideUriarte, Maxime 12 1900 (has links)
L'homéostasie cellulaire implique une régulation fine de la production ainsi que de l'élimination des protéines. La dérégulation de cette homéostasie entraîne des effets néfastes touchant de nombreuses voies de signalisation et de métabolisme et pouvant conduire à diverses maladies telles que le cancer ou la neurodégénérescence. De ce fait, la dégradation des protéines est un processus hautement contrôlé effectué par le système ubiquitine-protéasome (UPS) qui permet le ciblage, l’étiquetage et la dégradation des protéines mal repliées, endommagées ou en fin de vie. Le protéasome est un complexe multiprotéique vital présent dans toutes les cellules eucaryotes dont la biogenèse, la fonction de dégradation et la régulation dans le cytoplasme sont bien connues. Cependant, la fonction du protéasome dans le noyau, notamment en réponse au stress, est encore peu comprise. Les cellules ont développé de nombreux mécanismes adaptatifs en réponse à la variation de l'apport en nutriments comme l’augmentation de la dégradation et le recyclage des protéines. Chez l’humain, le protéasome est dégradé dans le cytoplasme par autophagie lors d’une privation de nutriments mais les mécanismes de régulation du protéasome nucléaire en réponse au stress métabolique restent peu connus.
Nous avons trouvé que le protéasome 26S et la sous-unité régulatrice PSME3 forment des foyers nucléaires dans différents types cellulaires de mammifère en réponse à une privation en nutriments. Les foyers, nommés SIPAN pour Starvation-Induced Proteasome Assemblies in the Nucleus, ne sont colocalisés avec aucune structure ou corps nucléaires connus. La formation des SIPAN est réversible lors d’une réintégration des nutriments, suggérant une réponse spécifique liée à un stress métabolique. La manipulation de la quantité d’acides aminés intracellulaire a révélé que les acides aminés non-essentiels jouent un rôle important dans la formation et la résolution des SIPAN. Une analyse métabolomique a permis de trouver des voies reliées au métabolisme des nucléotides et des acides aminés qui pourraient fournir des facteurs clés pour la dissipation des foyers du protéasome. Le fort dynamisme des SIPAN, la présence d’événements de fusion et leur instabilité vis-à-vis des conditions cellulaires suggèrent que les SIPAN résultent d’une séparation de phase liquide-liquide (LLPS). De plus, nous avons trouvé que l’ubiquitine conjuguée est présente dans les SIPAN et que l’ubiquitination et la déubiquitination semblent être impliquées dans la formation et la résolution, respectivement. Nous avons ensuite découvert que la perte du récepteur à l’ubiquitine RAD23B empêche la formation des SIPAN. En effet, les domaines de liaison au protéasome UBL et de liaison à l’ubiquitine UBA1/UBA2 sont nécessaires pour la formation des SIPAN. De manière intéressante, la perte de RAD23B ou du complexe régulateur PSME3 retarde l’induction de l’apoptose et promeut la survie cellulaire. Enfin, en utilisant un inducteur de l’apoptose, nous avons observé l’apparition de ces foyers du protéasome dans le noyau des cellules dont certaines caractéristiques sont similaires aux SIPAN.
Notre étude aborde une question très importante dans la compréhension des rôles et du dynamisme du protéasome nucléaire, en particulier dans l'adaptation au stress, qui peut réguler le niveau des protéines nucléaires. De façon générale, cela nous aidera à mieux comprendre le rôle du protéasome dans l’homéostasie nucléaire et son implication dans les maladies humaines. / Cellular homeostasis involves specific regulation of the production as well as the elimination of proteins. The deregulation of this equilibrium leads to harmful effects affecting many signaling and metabolic pathways and can lead to various diseases, such as cancer or neurodegeneration. Hence, protein degradation is a highly controlled process performed by the ubiquitin-proteasome system (UPS) that allows targeting, labeling and degradation of misfolded, damaged, or end-of-life proteins. The proteasome is a vital multiprotein complex found in all eukaryotic cells whose biogenesis, degradative function, and regulation in the cytoplasm are well known. However, the function of the proteasome in the nucleus, particularly in response to stress, is still poorly understood. Cells have evolved many adaptive mechanisms in response to varying nutrient supply such as increased protein degradation and recycling. In humans, the proteasome is degraded in the cytoplasm by autophagy during nutrient deprivation, but the regulatory mechanisms of the nuclear proteasome in response to metabolic stress remain poorly understood.
We have found that the 26S proteasome and regulatory subunit PSME3 form nuclear foci in different mammalian cell types in response to nutrient deprivation. These foci, called SIPAN for Starvation-Induced Proteasome Assemblies in the Nucleus, do not colocalize with any known nuclear structures or bodies. The formation of SIPAN is reversible upon nutrient replenishment, suggesting a specific response to metabolic stress. Manipulation of the intracellular amino acid pool revealed that non-essential amino acids play important roles in the formation and resolution of SIPAN. A metabolomics study has identified pathways related to nucleotide and amino acid metabolism that may provide key factors for the dissipation of the proteasome foci. The strong dynamism of SIPAN, the presence of fusion events and their instability towards cellular conditions suggest that SIPAN result from liquid-liquid phase separation (LLPS). Additionally, we have found that conjugated ubiquitin is present in SIPAN and that ubiquitination and deubiquitination appear to be involved in their formation and resolution, respectively. We then discovered that the depletion of the ubiquitin receptor RAD23B prevents the formation of SIPAN. Indeed, the UBL proteasome binding domain and UBA1/UBA2 ubiquitin binding domains are required for SIPAN formation. Interestingly, the depletion of RAD23B or the proteasome regulatory particle PSME3 delays the induction of apoptosis and promotes cell survival. Finally, we found that an apoptosis-inducing agent promotes proteasome foci formation in the nucleus of cells, and these organelles share similarities with SIPAN.
Our study addresses a very important question in understanding the roles and dynamism of the proteasome in the nucleus, specifically during stress adaptation, which can regulate the level of nuclear proteins. In general, this will help us to better understand the role of the proteasome in nuclear homeostasis and its involvement in human diseases.
|
3 |
Rôle du système ubiquitine protéasome dans les séparations de phase nucléairesSen Nkwe Dibondo, Nadine 04 1900 (has links)
Le système ubiquitine-protéasome représente une plateforme de signalisation cellulaire chez les eucaryotes et joue un rôle majeur dans la coordination des processus cellulaires. Des progrès récents suggèrent que l’ubiquitination joue un rôle important dans les phénomènes de séparation de phase liquide-liquide (LLPS), un processus permettant la localisation d’une quantité accrue de protéines dans un compartiment subcellulaire, afin de réaliser une fonction biologique. En effet, il a été démontré que l’ubiquitination joue un rôle central dans les mécanismes qui gouvernent la LLPS durant la formation des granules de stress dans le cytoplasme ou les foci de réparation de l’ADN dans le noyau. D’autre part, chez la levure, des travaux ont montré que le protéasome est capable de s’assembler sous forme de granules dans le cytoplasme suite à un stress métabolique. Toutefois, les mécanismes par lesquels le système ubiquitine-protéasome ainsi que ses régulateurs contrôlent les processus de LLPS restent à déterminer.
Dans la première étude de cette thèse, nous avons investigué le mécanisme d’action de la déubiquitinase USP16, qui a été suggérée comme un régulateur négatif de la LLPS, empêchant la formation des foci de réparations de dommages à l’ADN. Cependant, nos résultats démontrent que USP16 est majoritairement cytoplasmique et que seulement une entrée forcée de USP16 dans le noyau empêche la formation des foci de réparation des cassures double brin induites par des radiations ionisagntes et ce en favorisant la déubiquitination de l’histone H2A. De plus, aucune translocation nucléaire de USP16 n’a été observée durant le cycle cellulaire ou suite à des dommages à l’ADN. Nos travaux montrent que USP16 est activement exclue du noyau via son signal d’export nucléaire et régulerait indirectement la LLPS menant à la formation des foci de réparation de l’ADN.
Dans la deuxième étude, nous décrivons le comportement dynamique des protéines du protéasome lors d’une LLPS induite par un stress métabolique. Nos résultats indiquent que le protéasome forme des foci distincts dans le noyau des cellules humaines en réponse à une privation de nutriments. Nous avons constaté que ces foci sont enrichis en ubiquitine conjuguée et nous avons démontré que le récepteur d’ubiquitine Rad23B ainsi que l’absence des acides aminés non essentiels sont des éléments clés nécessaires à l’assemblage de ces foci du
iv
protéasome. De plus, des expériences de survie cellulaire montrent que la présence de ces foci est associée à la mort des cellules par apoptose.
En conclusion, nos travaux mettent en lumière l’importance du système ubiquitine-protéasome dans la formation et la régulation des foci cellulaires suite à une LLPS. De même, cette étude aidera également à approfondir notre compréhension sur les mécanismes qui gouvernent l’homéostasie des protéines, la survie cellulaire et le développement du cancer. / The ubiquitin-proteasome system represents a major cell-signaling platform in eukaryotes and plays a pivotal role in the coordination of cellular processes. Recent studies provided evidence that ubiquitination plays a role in liquid-liquid phase separation (LLPS), a process that results in the localization of highly increased levels of a protein in a defined subcellular compartment, in order to achieve a biological function. Indeed, ubiquitination has been shown to play a central role in the mechanisms that govern LLPS and subsequent formation of stress granules in the cytoplasm or the DNA repair foci in the nucleus. On the other hand, several studies have shown that the proteasome itself is able to form granules in the cytoplasm following metabolic stress in yeasts. However, the mechanisms by which the ubiquitin-proteasome system and its regulators control LLPS processes remain to be determined. In the first study of this thesis, we investigated the mechanism of action of USP16 deubiquitinase, which has been suggested as a negative regulator of LLPS preventing the formation of DNA damage repair foci. However, our results demonstrate that USP16 is predominantly cytoplasmic and that only enforced nuclear entry of USP16 prevents the formation of repair foci after double strand breaks induced by ionizing radiation, and this by promoting the deubiquitination of histone H2A. In addition, no nuclear translocation of USP16 was observed during cell cycle or following DNA damage. Our study shows that USP16 is actively excluded from the nucleus via its nuclear export signal and would indirectly regulate LLPS that lead to DNA repair foci. In the second study, we describe the dynamic behavior of proteasome proteins during metabolic stress, a process that involves LLPS. Our results indicate that the proteasome forms distinct foci in the nucleus of human cells in response to nutrients deprivation. We found that these foci are enriched with conjugated ubiquitin and demonstrated that the ubiquitin receptor Rad23B as well as the absence of nonessential amino acids are the key elements necessary for the assembly of these proteasome foci. In addition, cell survival experiments show that the presence of these foci is associated with cell death by apoptosis. In conclusion, our work has shed new light on the importance of the ubiquitin-proteasome system in the formation and regulation of cell foci following LLPS. Likewise, this
vi
study will also help deepen our understanding of the mechanisms leading to protein homeostasis, cell survival and cancer development.
|
Page generated in 0.1449 seconds