• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Contribució a l'estudi de les uninormes en el marc de les equacions funcionals. Aplicacions a la morfologia matemàtica

Ruiz Aguilera, Daniel 04 June 2007 (has links)
Les uninormes són uns operadors d'agregació que, per la seva definició, es poden considerar com a conjuncions o disjuncions, i que han estat aplicades a camps molt diversos. En aquest treball s'estudien algunes equacions funcionals que tenen com a incògnites les uninormes, o operadors definits a partir d'elles. Una d'elles és la distributivitat, que és resolta per les classes d'uninormes conegudes, solucionant, en particular, un problema obert en la teoria de l'anàlisi no-estàndard. També s'estudien les implicacions residuals i fortes definides a partir d'uninormes, trobant solució a la distributivitat d'aquestes implicacions sobre uninormes. Com a aplicació d'aquests estudis, es revisa i s'amplia la morfologia matemàtica borrosa basada en uninormes, que proporciona un marc inicial favorable per a un nou enfocament en l'anàlisi d'imatges, que haurà de ser estudiat en més profunditat. / Las uninormas son unos operadores de agregación que, por su definición se pueden considerar como conjunciones o disjunciones y que han sido aplicados a campos muy diversos. En este trabajo se estudian algunas ecuaciones funcionales que tienen como incógnitas las uninormas, o operadores definidos a partir de ellas.Una de ellas es la distributividad, que se resuelve para las classes de uninormas conocidas, solucionando, en particular, un problema abierto en la teoría del análisis no estándar. También se estudian las implicaciones residuales y fuertes definidas a partir de uninormas, encontrando solución a la distributividad de estas implicaciones sobre uninormas. Como aplicación de estos estudios, se revisa y amplía la morfología matemática borrosa basada en uninormas, que proporciona un marco inicial favorable para un nuevo enfoque en el análisis de imágenes, que tendrá que ser estudiado en más profundidad. / Uninorms are aggregation operators that, due to its definition, can be considered as conjunctions or disjunctions, and they have been applied to very different fields. In this work, some functional equations are studied, involving uninorms, or operators defined from them as unknowns. One of them is the distributivity equation, that is solved for all the known classes of uninorms, finding solution, in particular, to one open problem in the non-standard analysis theory. Residual implications, as well as strong ones defined from uninorms are studied, obtaining solution to the distributivity equation of this implications over uninorms. As an application of all these studies, the fuzzy mathematical morphology based on uninorms is revised and deeply studied, getting a new framework in image processing, that it will have to be studied in more detail.
2

Generació additiva de funcions d'agregació conjuntives i disjuntives discretes

Monreal Garcies, Jaume 14 September 2012 (has links)
En aquest treball es defineix el concepte de generador additiu de t–normes i de t–conormes discretes. S’hi estableixen resultats generals sobre la generació additiva de disjuncions i les caracteritzacions dels generadors de les t–conormes bàsiques. Es planteja un algorisme per a decidir quan una disjunció és additivament generable, basat en l’algorisme Gamma de la teoria de convexitat. S’estudia la relació que hi ha entre la generació additiva amb la suma ordinal i amb l’anidament. S’introdueixen els conceptes de generador concau i generador convex. S’estudia la generació additiva de les disjuncions i les t–conormes suaus i bivalents sobre L*. S’insisteix amb l’aplicabilitat de la generació additiva quan es tracta de manejar la condició de T–transitivitat per a relacions d’indistingibilitat discretes. Finalment, s’estudia la relació que hi ha entre la generació additiva d’una t–conorma S i les propietats de l’S–implicació corresponent. Amb motiu de les propietats d’ordre i modus ponens generalitzat, es defineixen els generadors mixtos

Page generated in 0.0453 seconds