• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2272
  • 400
  • 393
  • 260
  • 87
  • 69
  • 63
  • 42
  • 37
  • 37
  • 25
  • 18
  • 18
  • 18
  • 18
  • Tagged with
  • 4526
  • 645
  • 637
  • 481
  • 353
  • 350
  • 308
  • 308
  • 305
  • 300
  • 299
  • 290
  • 282
  • 268
  • 264
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
661

Study of Integration Technology for Stacking Package

Cheng, Ming-Hsiang 04 February 2007 (has links)
The thesis is mainly focused on the investigation of optimal process operation, which is appropriate for new-type stacking package product to achieve the assembly products of two or more packages. By melting solder balls to form the stacking package products, the eventual goals of lightness, thinness and smallness will be accomplished. To increase and stabilize the production yield of stacking package products, different flux, different temperature setting with reflow oven, and different flux dipping method were used. With Taguchi design of experiment, the solder balls combined situations under varied conditions were observed. The best process character of new-type integration assembly products was achieved. The experimental results and mass production data prove that different flux type and temperature setting with reflow oven won¡¦t influence the solder balls connection between two package products. Only the flux dipping method will directly affect solder balls connection between two package products. The abnormal phenomenon is the so-called cold joint in assembly plants. With innovation, silicon gel head is used as a flux adhesive way to achieve the goal of flux transferred. This method can be used in integration process of new-type stacking package products. That will certainly assure that every solder ball on each package product can be helpful for adhesion of flux. The experiments proved that the yield rate of solder balls connection of two package products is 100% after the stacking package products through reflow oven. This proves that using flux with silicon gel head on new-type stacking package products is the best way of process operation. The innovation of this new process has been granted a patent by the Patent office, ROC. Although this is a simple invention, it will bring profit to ASE Co. as well and ensure the leadership of new-type stacking package products in related industries. Keywords: Stack¡BSolder Ball¡BCold Joint¡BSilicon Pad
662

Electrical Analysis and Physics Mechanism of Dual-gate Amorphous Silicon Thin Film Transistor

Chen, Min-chen 09 July 2007 (has links)
The traditional displayer ¡V CRT has already been substituted by liquid crystal displayer (LCD).The a-Si TFT is used to be a switch, while the size of the displayer increases, the require of the performance and quality of TFTs is more and more better. Therefore, it is very important subject to study the stability and to improve the performance of a-Si TFTs. In this thesis, we fabricate another new structure (asymmetry dual-gate TFTs).For asymmetry dual-gate TFTs, the ITO back gate is extended to the middle of the channel and only covered on the drain contact. The new structure has the advantages of dual-gate TFTs. With dual-channel conduction, it exhibit higher Ion and lower photo leakage current performance than the conventional inverted staggered TFTs. In addition, we use the asymmetry dual-gate structure to investigate how the parasitic capacitance influences the feed-through voltage by C-V measurement. We also to investigate the influences of electrical characteristics with the ITO back gate whether or not overlap the source contact. The asymmetry in on current with source-drain swapping can be attributed to the difference in the ITO back gate whether overlaps the source contact. Finally, it simulated the process of the degradation on the TFTs to find the stability mechanism of the TFTs.
663

Characterization And Fabrication Of Silicon Thin Films For Solar Cell Applications

Karaman, Mehmet 01 September 2011 (has links) (PDF)
In this thesis study, fabrication and characterization of silicon thin films prepared by magnetron sputtering and electron beam evaporation for solar cell applications have been investigated. In the first part of the study, magnetron sputtering method was used to fabricate thin hydrogenated amorphous silicon (a-Si:H) film on a Si substrate. Some samples were prepared on glass substrate for the basic characterizations like transmission and resistivity. Dark and illuminated I-V characteristics of the silicon heterojunction (SHJ) solar cells were studied as a function of material type and process parameters. It was observed that devices show diode characteristics, however their response to the illumination was quite weak. Low performance of the devices was discussed in terms of the resistivity and dopability of the sputtered film. The second part of the thesis deals with the fabrication and characterization of thin polysilicon films fabricated by e-beam evaporation. In order to dope the deposited Si films, a very thin boron film v was deposited by e-beam evaporation on SiO2 surface thermally grown on a Si wafer. Then an a-Si was evaporated by the same technique. Samples were annealed for polysilicon formation by using the technique called solid phase crystallization (SPC). The annealing was performed in two steps. The first step was the nucleation part, carried out at 475&deg / C for 8 hours and the second step was the diffusion and crystallization parts that are accomplished at 900&deg / C for several minutes. The Raman measurements revealed out the crystallinity and grain size. The crystallinity of the polysilicon thin films was also identified by X-Ray diffraction measurements. Finally, the Secondary Ion Mass Spectroscopy (SIMS) analysis was carried out to find out the amount of boron that diffuses into Si film. It was found that a graded boron profile, which is desirable for the solar cell applications, was achieved.
664

Growth of High Resistivity Semiconductor Epilayers and Silicon Oxide Anti-Reflection Films

Lin, Hung-Hsun 02 July 2003 (has links)
The theme of this thesis is MBE growth of high resistivity semiconductor epi-layers and MBD growth of silicon oxide anti-reflection films. For MBE growth of high resistivity semiconductor epi-layers, In0.523Al0.477As and In0.527Al0.228Ga0.245As lattice matched to InP and grown by MBE at 400¢J has been investigated. We construct n-i-n and p-i-n structure diode models to evidence that the nonlinear I-V characteristics are an intrinsic property of 400¢J In0.523Al0.477As and In0.527Al0.228Ga0.245As, and not due to barriers to current injection at the n+ InGaAs/ high resistivity epi-layer and high resistivity epi-layer/n+ InP heterojunctions. We obtained the effective resistivities of 400¢J In0.523Al0.477As and In0.527Al0.228Ga0.245As at 7V are still more than 109 £[ cm and 107 £[ cm, respectively, in n-i-n structure. They are more than sufficient for most practical applications. For MBD growth of silicon oxide anti-reflection films, we have set up the SiO MBD system in our lab. Then we measured the index of the SiO film that we deposited in the wavelength of 1550nm is about 1.85. Finally, we coated SiO anti-reflection film on one cleaved facet of a Fabry-Perot laser. The reflectance R of the coated facet is reduced to about 1.7¡Ñ10-4 in the vicinity of £f¡×1580 nm.
665

Study on the Polishing Characteristics of Silicon Wafer for New Type Ultraprecision Polisher

Huang, Wei-Hang 25 July 2003 (has links)
In conventional abrasive machining , it must using dresser to dress the surface of polishing disc periodically , in order for polishing disc to maintain its ability of machining , and then ensuring the quality of work piece. It will make polishing disk thin , finally it must losing it ability of machining , and then be replaced by a new disc. For this reason , in the study , an idea of a new type ultraprecision polisher is proposed . Using Sn-Al2O3 composite coating to reach the mirror surface grinding of silicon wafer in the tin bath , and grinding with electroplating continuously . It will ensure the ability of machining of polishing disc . In the study , first , analyzing the effect of rotational speed rate of wafer and polishing disc on the grinding trajectories type of machining surface . From the result of analysis , find that , when the rotational speed rate is more irregular or it could not divided , the arrangement of grinding trajectories is more complex . And then , investigating the effect of cathode current density , rotational speed of polishing disc and time of plating on the characteristics of composite coating . In the experiment of composite electroplating , when cathode current density is higher , the size of crystal is smaller , the thickness of coating is thicker , and the quantity of Al2O3 within coating decrease lightly . The increase of the rotational speed of polishing disk could increase the size of crystal , the thickness of coating and the quantity of Al2O3 lightly . The time of plating is longer , the shape of crystal is more obvious , the thickness of coating is thicker and it also increase the quantity of Al2O3 . Finally , investigating the effect of cathode current density and cationic surfactant PEI on the characteristics of coating and wafer . In practical abrasive machining , the removal rate of wafer increases with cathode current density , and the addition of PEI could increase the quantity of Al2O3 indeed . Besides , under the same machining condition , in the tin bath with PEI , the removal rate is higher than the one in the tin bath without PEI .
666

none

Lee, Wan-Chi 29 July 2003 (has links)
none
667

Welding of cast A359/SiC/10p metal matrix composites

Kothari, Mitul Arvind 01 November 2005 (has links)
Welding of metal matrix composites (MMCs) is an alternative to their mechanical joining, since they are difficult to machine. Published literature in fusion welding of similar composites shows metallurgical problems. This study investigates the weldability of A359/SiC/10p aluminum SiC MMC. Statistical experiments were performed to identify the significant variables and their effects on the hardness, tensile and bending strengths, ductility, and microstructure of the weld. Finite Element Analysis (FEA) was used to predict the preheat temperature field across the weld and the weld pool temperature. Welding current, welding speed, and the preheat temperature (300-350??C) affected the weld quality significantly. It was seen that the fracture of the welded specimens was either in the base MMC or in the weld indicating a stronger interface between the weld and the base MMC. Oxides formation was controlled along the weld joint. Low heat inputs provided higher weld strengths and better weld integrity. It was found that the weld strengths were approximately 85% of the parent material strength. The weld region had higher extent of uniform mixing of base and filler metal when welded at low currents and high welding speeds. These adequate thermal conditions helped the SiC particles to stay in the central weld region. The interface reaction between the matrix and SiC particles was hindered due to controlled heat inputs and formation of harmful Al4C3 flakes was suppressed. The hardness values were found to be slightly higher in the base metal rich region. There was no significant loss in the hardness of the heat affected zone. The ductility of the weld was considerably increased to 6.0-7.0% due to the addition of Al-Si filler metal.
668

Characterization of Silicon Nitride Films on n-GaN Prepared by Low-Pressure Chemical Vapor Deposition

Lee, Cheng-yuan 04 August 2008 (has links)
In this study, the characteristics of low-pressure chemical vapor deposition deposited silicon nitride films on n-GaN substrate were investigated. The physical and chemical properties were measured and surveyed. And an Al/LPCVD-Si3N4/n-GaN MOS structure was used for the electrical characterizations. For the electrical property improvements, we investigated the low-pressure chemical vapor deposition deposited silicon nitride films by (NH4)2Sx treatment. Furthermore, the silicon nitride films were passivated by fluorine ions to improve the electrical characterizations that came from the liquid phase deposited SiO2 stacks. After the (NH4)2Sx treatment and fluorine ions passivation, the dielectric constant of low-pressure chemical vapor deposition deposited silicon nitride films were maintained and the leakage current density were improved. The highest dielectric constant is 12.13, and lowest leakage current density are 1.73¡Ñ10-10 A/cm2 at 1 MV/cm and 3.81¡Ñ10-10 A/cm2 at 1 MV/cm for the LPCVD-Si3N4 film after fluorine passivation and (NH4)2Sx treatment.
669

Design, Processing and Characterization of Silicon Carbide Diodes

Zimmermann, Uwe January 2003 (has links)
<p>Electronic power devices made of silicon carbide promisesuperior performance over today's silicon devices due toinherent material properties. As a result of the material'swide band gap of 3.2eV, high thermal conductivity, itsmechanical and chemical stability and a high critical electricfield, 4H-silicon carbide devices have the potential to be usedat elevated temperatures and in harsh environments. Shortercarrier lifetimes and a reduction in the necessary width of thelow-doped drift zone in silicon carbide devices compared totheir silicon counterparts result in faster switching speedsand lower switching losses and thus in much more efficientpower devices.</p><p>High-voltage 4H-silicon carbide diodes have been fabricatedin a newly developed processing sequence, using standardsilicon process equipment. Epitaxial layers grown by chemicalvapor deposition (CVD) on commercial 4H-silicon carbidesubstrates were used as starting material for both mesa-etchedepitaxial and implanted p+n-n+ planar diodes, Schottky diodesand merged pn-Schottky (MPS) diodes, together with additionaltest structures. The device metallization was optimized to givea low contact resistivity on implanted and epitaxial layers anda sufficiently high Schottky barrier with a singlemetallization scheme. Different high-field termination designshave been tested and breakdown voltages of up to 4 kV onimplanted, field-ring terminated diodes were achieved,corresponding to 80% of the critical electric field. A 5kVepitaxial diode design with a forward voltage drop of 3.5V at acurrent density of 100Acm-2 equipped with an implanted junctiontermination extension (JTE) was also fabricated.</p><p>A new measurement setup was designed and built with thecapability of measuring current-voltage and capacitance-voltagecharacteristics of semiconductor devices at reverse biases upto 10kV. Together with these electrical measurements, theresults of other characterization techniques were used toidentify performance limiting defects in the fabricated siliconcarbide diodes. Increased forward voltage drop of bipolardevices during on-state operation was studied and it was shownthat the stacking faults causing forward degradation arevisible in scanning electron microscopy. With the help ofsynchrotron white-beam X-ray diffraction topographs (SWBXT),electron beam induced current (EBIC) and electroluminescencemeasurements of silicon carbide diodes, the role of screwdislocations as a dominant source of device failure in the formof localized microplasma breakdown was identified. Screwdislocations with and without open core have been found tocause a 20-80% reduction in the critical electric field of4H-silicon carbide diodes, both for low-voltage (150V) andhigh-voltage (~5kV) designs. While micropipes have almost beeneliminated from commercial silicon carbide material,closed-core screw dislocations are still abundant withdensities in the order of 10000cm-2 in state-of-the-art siliconcarbide epitaxial layers.</p>
670

Properties of tip-sample nanoscale structure and characterization of silicon using scanning tunneling microscopy-spectroscopy /

Lin, Hai-An. January 2000 (has links)
Thesis (Ph. D.)--Lehigh University, 2000. / Includes vita. Includes bibliographical references (leaves 127-134).

Page generated in 0.0324 seconds