• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 17
  • 10
  • 6
  • 5
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Theory, Design and Development of Artificial Magnetic Materials

Yousefi, Leila January 2009 (has links)
Artificial Magnetic Materials (AMMs) are a subgroup of metamaterials which are engineered to provide desirable magnetic properties not seen in natural materials. These artificial structures are designed to provide either negative or enhanced positive (higher than one) relative permeability. AMMs with negative permeability are used to develop Single Negative (SNG), or Double Negative (DNG) metamaterials. AMMs with enhanced positive permeability are used to provide magneto-dielectric materials at microwave frequencies where the natural magnetic materials fail to work efficiently. AMMs are realized by embedding metallic resonators in a host dielectric. These inclusions provide desirable magnetic properties near their resonance frequency. Artificial magnetic materials used as SNG, or DNG have many applications such as: sub-wavelength cavity resonators, sub-wavelength parallel-plate wave guides, sub-wavelength cylindrical and spherical core–shell systems, efficient electrically small dipole antennas, super lenses, THz active devices, sensitivity enhancement near-field probes using double and single negative media, and mutual coupling reduction between antennas. On the other hand, artificial magnetic materials used as magneto-dielectrics have other applications in developing enhanced bandwidth efficient miniaturized antennas, low profile enhanced gain antennas using artificial magnetic superstrates, wide band woodpile Electromagnetic Band Gap (EBG) structures, EBGs with enhanced in-phase reflection bandwidth used as artificial magnetic ground planes. In this thesis, several advances are added to the existing knowledge of developing artificial magnetic materials, in terms of analytical modeling, applications, realization, and experimental characterization. To realize AMMs with miniaturized unit cells, new inclusions based on fractal Hilbert curves are introduced, and analyzed. Analytical models, numerical full wave simulation, and experimental characterization are used to analyze, and study the new structures. A comprehensive comparison is made between the new inclusions, and perviously developed inclusions in terms of electromagnetic properties. The new inclusions have advantages of miniaturization, and less dispersion when compared to the existing structures in the literature. To realize multi-band AMMs, unit cells with multiple inclusions are proposed, designed, and analyzed. The new unit cells can be designed to give the desired magnetic properties either over distinguished multiple frequency bands, or over a single wide frequency band. Numerical full wave simulation is used to verify the proposed concept, and analytical models are provided for design, and optimization of the new unit cells. Unit cells with different configurations are optimized to get a wideband responce for the effective permeability. Space mapping technique is used to provide a link between analytically optimized structures, and full wave numerical simulation results. Two new methods are proposed for experimental characterization of artificial structures using microstrip, and strip line topologies. Using numerical results, the effect of anisotropy on the accuracy of the extracted parameters are investigated, and a fitting solution is proposed, and verified to address this challenge. New structures based on 2nd , and 3rd order fractal Hilbert curves are fabricated, and characterized using microstrip line, and strip line fixtures. Experimental results are presented, and compared with numerical results. The new experimental methods have advantages of lower cost, easier to fabricate and measure, and smaller sample size when compared to the existing methods in the literature. A new application is proposed for use of magnetic materials to develop wide band artificial magnetic conductors (AMC). Analytical models, and numerical analysis is used to validate the concept. A new ultra wideband AMC is designd, and analysed. The designed AMC is used as the ground plane to develop a low profile high gain ultra wide band antenna. The designed antenna is simulated, and its return loss, and gain is presented over a wide range of frequencies. A comprehensive study is presented on the performance of AMMs for the application of miniaturized antennas. A miniaturized antenna, using fractal Hilbert metamaterials as substrate, is fabricated, and measured. Measurement results are presented, and compared with numerical results. A parametric study is presented on the effect of the constitutive parameters of the artificial substrate on the performance of the miniaturized antenna. In this study, the effect of magnetic loss of AMM on the gain, and efficiency of the antenna, as well as the effect of dispersion of AMM on the bandwidth of the antenna is investigated.
12

Zpracování bioplynu / Biogas processing

Vařeka, Miloš January 2010 (has links)
The aim of this work is to introduce technology sufficient of usage for treatment of biogas to the quality of natural gas and to propose and to realize an experiment in finding effectivity of one of these methods.
13

Turbomachinery in Biofuel Production

Görling, Martin January 2011 (has links)
The aim for this study has been to evaluate the integration potential of turbo-machinery into the production processes of biofuels. The focus has been on bio-fuel produced via biomass gasification; mainly methanol and synthetic natural gas. The research has been divided into two parts; gas and steam turbine applications. Steam power generation has a given role within the fuel production process due to the large amounts of excess chemical reaction heat. However, large amounts of the steam produced are used within the production process and is thus not available for power production. Therefore, this study has been focused on lowering the steam demand in the production process, in order to increase the power production. One possibility that has been evaluated is humidification of the gasification agent in order to lower the demand for high quality steam in the gasifier and replace it with waste heat. The results show that the power penalty for the gasification process could be lowered by 18-25%, in the specific cases that have been studied. Another step in the process that requires a significant amount of steam is the CO2-removal. This step can be avoided by adding hydrogen in order to convert all carbon into biofuel. This is also a way to store hydrogen (e.g. from wind energy) together with green carbon. The results imply that a larger amount of sustainable fuels can be produced from the same quantity of biomass. The applications for gas turbines within the biofuel production process are less obvious. There are large differences between the bio-syngas and natural gas in energy content and combustion properties which are technical problems when using high efficient modern gas turbines. This study therefore proposes the integration of a natural gas fired gas turbine; a hybrid plant. The heat from the fuel production and the heat recovery from the gas turbine flue gas are used in a joint steam cycle. Simulations of the hybrid cycle in methanol production have shown good improvements. The total electrical efficiency is increased by 1.4-2.4 percentage points, depending on the fuel mix. The electrical efficiency for the natural gas used in the hybrid plant is 56-58%, which is in the same range as in large-scale combined cycle plants. A bio-methanol plant with a hybrid power cycle is consequently a competitive production route for both biomass and natural gas. / QC 20110128
14

Utvinning av metan genom membranseparering vid förgasning av biomassa : En litteraturstudie

Nilsson, Emil January 2015 (has links)
The possibility to extract bio-SNG from the product gas obtained from gasification of biofuel with a pressurized, oxygen-blown CFB gasifier connected to a heat and power station using only membrane separation was theoretically investigated. Selling the methane, instead of feeding it to the plant’s turbine(s), might mean that overall profitability is increased. The considered product gas mainly consists of H2, CO, CO2, H2O and CH4. By doing a literature review different membrane types were studied and it was concluded that for now only polymers may be of interest, due to high production costs for other membranes or for the fact they are still at laboratory stage. It was further determined though that neither membranes made of glassy polymers (fixed polymer chains) nor rubbery polymers (mobile polymer chains) are probably capable of separating the methane from the other gas components on their own. Glassy membranes will most likely have trouble separating CO from CH4 due to similarity in size of the two molecules, while a separation using rubbery membranes will result in at least H2 accompanying the methane. The rubbery polymers’ incapability of separating H2 from CH4 despite greatly differing condensation temperatures between the two components can be explained by the fact that rubbery membranes, apart from condensation temperature, also separate according to molecular diffusivity. If a multistep process with recirculation that combines both glassy and rubbery polymers is applied, satisfying results may be obtained. This, however, builds on a higher separation of CH4 and CO with rubbery membranes than condensation data indicates and needs to be further investigated with help of real life experiments and more advanced computation programs than used in this study.
15

Využití bioplynu v plynárenské síti / Utilization of biogas in gas distribution system

Frühbauer, Zdeněk January 2012 (has links)
The thesis deals with the technologies upgrading the biogas to the quality of the natural gas for the following use in the gas distribution system. The main concern of the thesis is the pressure swing adsorption (PSA), which is nowadays one of the most exploited technologies. For a certain flow and composition of the biogas, completely new PSA technology was designed. Technological schema was created and the main technological devices (adsorbers) were drawn up together with the design documentation for this new technology. The important part of the thesis is also the model of the whole PSA technology in the ChemCAD programme and the evaluation of the operating and investment costs.
16

An Applied Numerical Simulation of Entrained-Flow Coal Gasification with Improved Sub-models

Lu, Xijia 06 August 2013 (has links)
The United States holds the world's largest estimated reserves of coal and is also a net exporter of it. Coal gasification provides a cleaner way to utilize coal than directly burning it. Gasification is an incomplete oxidation process that converts various carbon-based feedstocks into clean synthetic gas (syngas), which can be used to produce electricity and mechanical power with significantly reduced emissions. Syngas can also be used as feedstock for making chemicals and various materials. A Computational Fluid Dynamics (CFD) scheme has been used to simulate the gasification process for many years. However, many sub-models still need to be developed and improved. The objective of this study is to use the improved CFD modeling to understand the thermal-flow behavior and the gasification process and to provide guidance in the design of more efficient and cheaper gasifiers. Fundamental research has been conducted to improve the gasification sub-models associated with the volatile thermal cracking, water-gas-shift (WGS) reaction, radiation effect, low-rank-coal gasification, coal to synthetic-natural-gas (SNG), and ash deposition mechanisms. The improved volatile thermal cracking model includes H2S and COS contents. A new empirical WGS reaction model is developed by matching the result with experimental data. A new coal demoisturization model is developed for evaporating the inherent moisture inside the coal particles during low-rank-coal gasification. An ash deposition model has also been developed. Moreover, the effect of different radiation models on the simulated result has been investigated, and the appropriate models are recommended. Some improved model tests are performed to help modify an industrial entrained-flow gasifier. A two-stage oxygen feeding scheme and a unique water quench design are investigated. For the two-stage oxygen feeding design, both experimental data and CFD predictions verify that it is feasible to reduce the peak temperature and achieve a more uniform temperature distribution in the gasifier by controlling the injection scheme without changing the composition and production rate of the syngas. Furthermore, the CFD simulation can acceptably approximate the thermal-flow and reaction behaviors in the coal gasification process, which can then be used as a preliminary screening tool for improving existing gasifiers’ performance and designing new gasifiers.
17

Improved Energy Efficiency and Fuel Substitution in the Iron and Steel Industry

Johansson, Maria January 2014 (has links)
IPCC reported in its climate change report 2013 that the atmospheric concentrations of the greenhouse gases (GHG) carbon dioxide (CO2), methane, and nitrous oxide now have reached the highest levels in the past 800,000 years. CO2 concentration has increased by 40% since pre-industrial times and the primary source is fossil fuel combustion. It is vital to reduce anthropogenic emissions of GHGs in order to combat climate change. Industry accounts for 20% of global anthropogenic CO2 emissions and the iron and steel industry accounts for 30% of industrial emissions. The iron and steel industry is at date highly dependent on fossil fuels and electricity. Energy efficiency measures and substitution of fossil fuels with renewable energy would make an important contribution to the efforts to reduce emissions of GHGs. This thesis studies energy efficiency measures and fuel substitution in the iron and steel industry and focuses on recovery and utilisation of excess energy and substitution of fossil fuels with biomass. Energy systems analysis has been used to investigate how changes in the iron and steel industry’s energy system would affect the steel plant’s economy and global CO2 emissions. The thesis also studies energy management practices in the Swedish iron and steel industry with the focus on how energy managers think about why energy efficiency measures are implemented or why they are not implemented. In-depth interviews with energy managers at eleven Swedish steel plants were conducted to analyse energy management practices. In order to show some of the large untapped heat flows in industry, excess heat recovery potential in the industrial sector in Gävleborg County in Sweden was analysed. Under the assumptions made in this thesis, the recovery output would be more than three times higher if the excess heat is used in a district heating system than if electricity is generated. An economic evaluation was performed for three electricity generation technologies for the conversion of low-temperature industrial excess heat. The results show that electricity generation with organic Rankine cycles and phase change material engines could be profitable, but that thermoelectric generation of electricity from low-temperature industrial excess heat would not be profitable at the present stage of technology development. With regard to fossil fuels substituted with biomass, there are opportunities to substitute fossil coal with charcoal in the blast furnace and to substitute liquefied petroleum gas (LPG) with bio-syngas or bio synthetic natural gas (bio-SNG) as fuel in the steel industry’s reheating furnaces. However, in the energy market scenarios studied, substituting LPG with bio-SNG as fuel in reheating furnaces at the studied scrap-based steel plant would not be profitable without economic policy support. The development of the energy market is shown to play a vital role for the outcome of how different measures would affect global CO2 emissions. Results from the interviews show that Swedish steel companies regard improved energy efficiency as important. However, the majority of the interviewed energy managers only worked part-time with energy issues and they experienced that lack of time often was a barrier for successful energy management. More efforts could also be put into engaging and educating employees in order to introduce a common practice of improving energy efficiency at the company. / Halterna av växthusgaserna koldioxid (CO2), metan och kväveoxider har under de senaste 800 000 åren aldrig varit högre i atmosfären än vad de är idag. Detta resultat redovisades i IPCCs klimatrapport år 2013. CO2-koncentrationen har ökat med 40 % sedan förindustriell tid och denna ökning beror till största delen på förbränning av fossila bränslen. Ökade koncentrationer av växthusgaser leder till högre global medeltemperatur vilket i sin tur resulterar i klimatförändringar.  För att bromsa klimatförändringarna är det viktigt att vi arbetar för att minska utsläppen av växthusgaser. Industrin står för 20 % av de globala utsläppen av CO2 och järn- och stålindustrin står för 30 % av industrins utsläpp. Järn- och stålindustrin är i dag till stor del beroende av fossila bränslen och el för sin energiförsörjning. Energieffektiviseringsåtgärder och byte av fossila bränslen mot förnybar energi i järn- och stålindustrin skulle kunna bidra till minskade utsläpp av växthusgaser. Denna avhandling studerar åtgärder för effektivare energianvändning och möjligheter för bränslebyte i järn- och stålindustrin. Avhandlingen fokuserar på återvinning och utnyttjande av överskottsenergier och ersättning av fossila bränslen med biomassa. Energisystemanalys har använts för att undersöka hur förändringar i järn- och stålindustrins energisystem skulle påverka ekonomin och de globala utsläppen av CO2. Avhandlingen studerar också betydelsen av energiledning och nätverkande för att uppnå en effektivare energianvändning. Fokus har här varit på att studera hur energiansvariga resonerar kring varför energieffektiviseringsåtgärder genomförs eller varför de inte genomförs. Djupintervjuer med energiansvariga vid elva svenska stålverk genomfördes för att analysera denna fråga. För att ge ett exempel på den stora outnyttjade potentialen av överskottsvärme från industrin analyserades potentialen i Gävleborgs län. Möjligheterna att använda överskottsvärmen som fjärrvärme eller för att producera el analyserades. Här visar resultaten att fjärrvärmeproduktionen skulle bli mer än tre gånger så stor som elproduktionen. En ekonomisk utvärdering gjordes där tre tekniker för produktion av el från lågtempererad industriell överskottsvärme jämfördes. Resultaten visar att elproduktion med organisk Rankine-cykel eller en så kallad fasändringsmaterialmotor kan vara lönsam, men att termoelektrisk elproduktion inte är lönsam med dagens teknik och prisnivåer. Det är möjligt att ersätta en del av det fossila kolet i masugnen med träkol och på detta sätt introducera förnybar energi i stålindustrin. Man kan också ersätta gasol som används som bränsle i stålindustrins värmningsugnar med syntesgas eller syntetisk naturgas (SNG) som produceras genom förgasning av biomassa. Under de antaganden som gjorts i avhandlingen skulle det dock inte vara lönsamt för det skrotbaserade stålverk som studerats att ersätta gasolen med bio-SNG. För att uppnå lönsamhet behövs i detta fall ekonomiska styrmedel. Hur olika åtgärder påverkar de globala utsläppen av CO2 beror till stor del på hur framtidens energimarknad ser ut. Elproduktion från industriell överskottsvärme skulle minska de globala CO2-utsläppen i alla scenarier som studerats, men för de andra åtgärderna varierar resultaten beroende på vilka antaganden som gjorts. Resultaten från intervjustudien visar att svensk stålindustri anser att energifrågan är viktig, men det finns fortfarande mycket att göra för att effektivisera energianvändningen i denna sektor. Flera av de intervjuade arbetade bara deltid med energifrågor och de upplevde att tidsbrist hindrade dem från ett effektivt energiledningsarbete. En rekommendation till företagen är därför att anställa en energiansvarig på heltid och/eller fler personer som kan arbeta med energifrågor. Det bör också läggas mer resurser på att engagera och utbilda anställda för att på så sätt introducera en företagskultur som främjar effektiv energianvändning.

Page generated in 0.0136 seconds