• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 349
  • 50
  • 46
  • 45
  • 42
  • 28
  • 17
  • 14
  • 13
  • 10
  • 4
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 696
  • 696
  • 121
  • 116
  • 99
  • 86
  • 82
  • 81
  • 75
  • 75
  • 65
  • 65
  • 62
  • 60
  • 58
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
241

Investigation Of Electrical And Optical Properties Of Ag-in-se Based Devices

Kaleli, Murat 01 March 2010 (has links) (PDF)
Ternary chalcopyrite compound semiconductors have received much attention as the absorbing layers in the polycrystalline thin film solar cell structures. Most widely used one is CuInSe2 and CuInGaSe2 structures, but there are some diffusion problems with copper atoms in the structure. On the other hand, AgInSe2 is promising material with several advantages over the CuInSe2. The aim of this study was to investigate and optimize the production and post-production methods of the Ag-In-Se thin film based heterostructure devices. In this study Ag-In-Se thin films were deposited on glass, ITO coated glass and Si wafer substrates by thermal evaporation and RF/DC sputtering methods. The structural, electrical and optical properties of the devices were investigated. The XRD measurements of the thermally evaporated films showed that as-grown films in amorphous nature. By annealing the films under nitrogen atmosphere, the AIS films turn to polycrystalline structure which including AgIn5Se8 and &amp / #948 / &amp / #8722 / In2Se3 multi-phases with n-type conductivity. p-Si/n-AIS heterojunctions showed very good diode behavior with 4 order rectification factor. Annealing under nitrogen atmosphere decreased the series resistance of the devices and calculated solar cell conversion efficiency and fill factor of devices increased up to n=2.6% and FF=63, respectively. The XRD measurements of layer-by-layer sputtered AIS films were showed that as-grown films amorphous in nature. The AIS thin films were annealed at 300oC temperature under selenium ambient and mono-phase AgInSe2 with desired p-type conductivity were obtained. n-Si/p-AIS heterojunctions showed very good diode behaviors with 6 order rectification factor. The results of the study showed that AIS thin film has a photoresponce maximum which is exactly matching with solar photon energy maxima. High series resistance of the devices increases the recombination in the junction and this results in the lower solar conversion efficiency. The adequate electrical, optical and structural properties of the AIS thin films reveals that p-AIS thin films could be used as a solar cell absorber layer with an appropriate window layer, such as CdS.
242

Imaging Solar Cells Using Terahertz Waves

Kayra, Seda 01 January 2011 (has links) (PDF)
In this thesis, Terahertz Time-Domain spectroscopy (THz-TDS) was used in order to measure the electrical properties of silicon solar cells. The advantage of THz-TDS is that it allows us to measure the electrical properties without electrical contacts. In order to perform these measurements, a reflection based system was constructed and the changes in the peak amplitude in the time-domain under a, 450mW 808 nm continuous wave laser source were measured. The solar cell that was used in this thesis was manufactured in Middle East Technical University Microelectromechanical Systems (METU-MEMS) research laboratories located in Ankara, Turkey. The solar cell that we used in the measurements had a thickness of 0.45 mm and was produced on a single silicon crystal in &lt / 100&gt / direction. It is made up of a p-type base and n-type emitter to create p-n junction. Also, it has a Si4N3 AR coating and Al back contacts on it. To compare the THz measurements to that of electrical measurements, some electrical contact measurements were performed on the solar cell under laser illumination. By using these measurements, the energy conversion efficiency and the quantum efficiency of the solar cell were calculated and measured as 3.44 % and 7%, respectively under the 450mW, 808nm illumination on a specific area of the cell. The results that were obtained form the electrical measurements were compared with the THz results. We found that in order to understand the efficiency of the solar cell using THz-TDRS, a more comprehensive study needs to be done where the changes in the reflection of the THz radiation under different excitation powers and different configurations of the system need to be studied.
243

Electrochemical And Optical Properties Of Solution Processable Benzotriazole And Benzothiadiazole Containing Copolymers

Karakus, Melike 01 September 2011 (has links) (PDF)
2-Dodecyl benzotriazole (BTz) and benzothiadiazole (BTd) containing copolymers poly(4-(2-dodecyl-2H-benzo[d][1,2,3]triazol-4-yl)benzo[c][1,2,5]thiadiazole (P1), poly(4-(5-(2-dodecyl-7-(thiophen-2yl)-2H-benzo[d][1,2,3]triazol-4-yl)thiophen-2-yl)benzo[c][1,2,5] thiadiazole (P2) and poly(4-(5-(2-dodecyl-7-(4-hexylthiophen-2-yl)-2H-benzo[d] [1,2,3]triazol-4-yl) -3-hexylthiophen-2-yl) benzo[c][1,2,5] thiadiazole (P3) were synthesized via Suzuki polymerization. Electrochemical and optical properties of the polymers were analyzed. The fabrication of solar cells were carried out and current density-voltage (J-V) and incident photon to charge carrier efficiency (IPCE) measurements were done to characterize the solar cells.
244

Silicon Nanostructures For Electro-optical And Photovoltaic Applications

Kulakci, Mustafa 01 February 2012 (has links) (PDF)
Recently extensive efforts have been spent in order to achieve all silicon based photonic devices exploiting the efficient light emission from nanostructured silicon systems. In this thesis, silicon based nanostructures have been investigated for electro-optical and photovoltaic applications. The thesis focused on three application areas of silicon nanostructures: Light emitting diode (LED), light modulation using quantum confined Stark effect (QCSE) and photovoltaic applications. In the context of LED applications, ZnO nanocrystal/silicon heterojunctions were investigated. Contrary to observation of pure ultraviolet photoluminescence (PL) from ZnO nanocrystals that were synthesized through vapor liquid solidification (VLS) method, visible emissions were observed in the electroluminescence (EL) due to defect states of ZnO. The discrepancy between these emissions could be ascribed to both change in excitation mechanisms and the defect formation on ZnO nanocrystals surface during device fabrication steps. EL properties of silicon nanocrystals embedded in SiO2 matrix were also systematically studied with and without Tb doping. Turn-on voltage of the Tb doped LED structures was reduced below 10 V for the first time. Clear observation of QCSE has been demonstrated for the first time in Si nanocrystals embedded in SiO2 through systematic PL measurements under external electric field. Temperature and size dependence of QCSE measurements were consistently supported by our theoretical calculations using linear combination of bulk Bloch bands (LCBB) as the expansion basis. We have managed to modulate the exciton energy as high as 80 meV with field strength below MV/cm. Our study could be a starting point for fabrication of electro-optical modulators in futures for all silicon based photonic applications. In the last part of the thesis, formation kinetics of silicon nanowires arrays using a solution based novel technique called as metal assisted etching (MAE) has been systematically studied over large area silicon wafers. In parametric studies good control over nanowire formation was provided. Silicon nanowires were tested as an antireflective layer for industrial size solar cell applications. It was shown that with further improvements in surface passivation and contact formation, silicon nanowires could be utilized in very efficient silicon solar cells.
245

Electrochromic And Photovoltaic Applications Of Conjugated Polymers

Apaydin, Dogukan Hazar 01 June 2012 (has links) (PDF)
Three new azobenzene containing conjugated monomers were designed and synthesized. Resulting monomers were characterized by means of 1H NMR and 13C NMR techniques. Monomers (E)-1,2-bis(4-(thiophen-2-yl)phenyl)diazene (M1), (E)-1,2-bis(4-(4-hexylthiophen-2-yl) phenyl) diazene (M2) and (E)-1,2-bis(2-fluoro-4-(4-hexylthiophen-2-yl)phenyl) diazene (M3) were electrochemically polymerized using cyclic voltammetry to give polymers P1, P2 and P3. The polymers were subjected to spectroelectrochemical and kinetic studies in order to obtain information about their elecrochromic characteristics. P1 and P2 were pale-yellow in their neutral states and blue in oxidized states while P3 showed multichromic property due to having polaron bands in visible region of the spectrum. Addition of fluorine atoms to the backbone of P3, lowered the LUMO level of P3 thus gained the polymer n-doping property. In the second part of this thesis poly((9,9-dioctylfluorene)-2,7-diyl-(4,7-bis(thien-2-yl) 2-dodecyl-benzo[1,2,3]triazole)) (PFTBT) polymer was mixed with common electron acceptor Phenyl-C61-butyric acid methyl ester (PCBM) and used in organic solar cell applications. Active layers containing PFTBT and PCBM were spin casted on ITO coated substrates at varying rotational speeds to obtain active layer thicknesses having different values. Thickness of the active layer was optimized so was the efficiency of organic solar cells. As a result of this optimization study, efficiency of PFTBT containing organic solar cells were increased to 1.06% which is a higher value than previosly reported literature results.
246

Optimization Of Metalization In Crystalline Silicon Solar Cells

Demircioglu, Olgu 01 August 2012 (has links) (PDF)
iv ABSTRACT OPTIMIZATION OF METALIZATION IN CRYSTALLINE SILICON SOLAR CELLS Demircioglu, Olgu M. Sc. Department of Micro and Nanotechnology Supervisor : Prof. Dr. Rasit Turan Co-Supervisor : Assist. Prof. Dr. H. Emrah &Uuml / nalan August 2012, 103 pages Production steps of crystalline silicon solar cells include several physical and chemical processes like etching, doping, annealing, nitride coating, metallization and firing of the metal contacts. Among these processes, the metallization plays a crucial role in the energy conversion performance of the cell. The quality of the metal layers used on the back and the front surface of the cell and the quality of the electrical contact they form with the underlying substrate have a detrimental effect on the amount of the power generated by the cell. All aspects of the metal layer, such as electrical resistivity, contact resistance, thickness, height and width of the finger layers need to be optimized very carefully for a successful solar cell operation. In this thesis, metallization steps within the crystalline silicon solar cell production were studied in the laboratories of Center for Solar Energy Research and Application (G&Uuml / NAM). Screen Printing method, which is the most common metallization technique in the industry, was used for the metal layer formation. With the exception of the initial experiments, 6
247

The Competitive Analysis on Taiwan Thin Film Solar Cell Industry

LIN, MENG-HUI 29 June 2009 (has links)
The energy crisis and environmental consciousness arising in recent years induce the rapid development of renewable energy technology, especially in solar energy field. Under the policy support of Germany and Japan, the solar energy market expands to the world speedily. Moreover, due to the high values of environmental protection topics in United Nations and European Union and Kyoto Protocol establishment, the renewable energy industry is imperative to prevail among the world. As a result of the industrial rapid growth, companies adopt all kinds of tactics to develop capability in order to occupy the renewable energy market. Thanks to the remarkable achievement in LCD-TFT and semiconductor industries, Taiwan manufacturers applied the past experiences to invest in the solar cell industry, especially in thin film solar cell product. During 2005 to 2007, many companies found one after another. This research mainly probes into the trend of Taiwan thin film solar cell industry. First, understand the competitors and global market conditions, then penetrate the industrial structure with Porter¡¦s five forces model, discuss the competitive advantage of Taiwan with Porter¡¦s diamond model, and look for the competitive ability of Taiwan thin film solar cell industry by SWOT analysis. Finally, the research proposes some developing suggestions for Taiwan thin film solar cell industry.
248

Study on Fabrication Technology of Functional Nanostructure Array

Huang, Mao-Jung 27 August 2009 (has links)
With the raise of nanotechnology researching, many special physical and chemical properties were found gradually in nanoscale. Among them, the one-dimension nanostructure owns high specific surface area and excellent electron emission properties. Moreover, the two-dimension arrayed nanostructure has the characteristics of photonic crystal and moth-eye effect. Currently, advanced lithographic methods such as electron beam (E-beam) or deep ultraviolet (DUV) lithography and X-ray lithography are adopted to define periodic nanoscale patterns. But these lithographic equipment are too expensive. Moreover, costly etching methods such as inductively coupled plasma reactive ion etching (ICP-RIE) or electron cyclotron resonance reactive ion etching (ECR-RIE) must be used to form arrayed silicon nanostructure with high aspect ratios. The nanoscale array patterns can be defined on the surface of the silicon wafer by the self-assembly of a polystyrene nanosphere. The photo-assisted electrochemical etching (PAECE) has the advantage of forming nanopore, and the aspect ratio of etched nanopores can be as high as 50:1 which is better than ICP-RIE. Therefore, PAECE is very suitable to fabricate nanostructure. This high-cost drawback makes most of academias and small/medium enterprises hard to invest in nanotechnology. This study combines the self-assembly nanosphere lithography (SANSL) process and photo-assisted electrochemical etching to fabricate a nanostructure array with a high aspect ratio on the surface of a silicon wafer. Experimental results show that the nanosphere array with a nearly perfect arrangement can be obtained in the sample of 1.8 ∗1.8 cm2 by spin coating and vibration coating. Using reactive ion etching (RIE) can transfer the nanosphere array pattern to the silicon nitride layer, and form the etching window of PAECE. The concentration of the HF electrolyte used in PAECE was 2.5 wt%. When PAECE was performed with etching mask can produce deeper and periodic nanopores. The surfactant of SDSS added in the HF electrolyte of PAECE can reduce the contact angle of electrolyte and avoid the phenomenon of hole-reaming. When the voltage of 1 V is used to etch for 12.5 min, the etching depth of the nanopore array structure is about 5.69 £gm and its diameter is about 90 nm, such that the aspect ratio of the pore can reach about 63:1. If the etching voltage was increased, the width of pore will be increased and the depth of pore will be reduced gradually at the same time. When the etching voltage of 2 V is applied to etch for 5 min, the etching height of the nanopillar is about 2 £gm and its diameter is about 100 nm, such that the aspect ratio of the pillar can reach about 20:1. The nanopillar was arranged periodically according to the definition of nanosphere, therefore the arrayed nanopillar can be realized successfully. Dropping the solution which has biological samples into the gap of nanopillar, it will affect the light which goes through the nanostructure and produce specific parameters of polarization. The results showed that when the DI water was dropped into the nanopillar structure, the degree of polarization (DOP) is 0.981, azimuth is 4.86¢X and ellipticity is 2.83¢X. When the solution which has alkaline lysis plasmid of 5 £gg/ml was dropped into the nanopillar structure, the DOP is 0.957, azimuth is 7.7¢X and ellipticity is 3.99¢X. The result shows that the change of polarization parameter has the relations with the concentration of biological samples in solution. Therefore, the measure system can be combined with nanopillar array to develop the photonic crystal biosensor. This study also applies the developed nanopore nanostructure array to fabricate sub-wavelength antireflection structure of solar cell. Experimental results show that the deeper in structure and then the better in antireflective effect. After performing 1 V PAECE for 5 min, the weighted mean reflectance can be reduced to 1.73% under the wavelength range of 280¡V890 nm. Further coating of a silicon nitride layer on the surface of a nanostructure array reduces the weighted mean reflectance even to 0.878 %. Finally, this study also uses various voltage of PAECE to produce nanostructure array with different surface area for the electrode fabrication of fuel cell. Experimental results show that the larger in surface area of sample and then the better in catalysis effect. Two-staged PAECE of 1.5 V and 1.75 V can yield nanopillar with surface area of 14.2 cm2 , which is about 50.2 times higher than a planar electrode. When the surface of such a nanopillar array is coated with platinum of 1000 Å, the reaction current of nanopillar array is 10.2 mA, which is 72.9 times higher than that obtained by only a planar electrode.
249

The effects of ITO surface modification on lifetime in organic photovoltaic devices and a test setup for measuring lifetime

Sutcu, Sinan Mahmut 07 July 2010 (has links)
Though relatively young, the field of organic electronics is a rapidly growing market and considerable research is being done in creating a whole range of devices from organic molecules from organic field effect transistors to LEDs to photovoltaic devices. The field of organic photovoltaic in particular has become important in recent years with the push for newer, renewable sources of energy to end the dependence on fossil fuels. While the efficiencies of organic photovoltaic devices continue to rise, one barrier to their commercial adoption has been the limited lifetimes of these devices. While certain degradation methods of organic photovoltaics, such as photo-oxidation, have been extensively studied and solutions to these problems, such as encapsulation, are being researched, certain other degradation mechanisms are less understood and studied. The focus of this thesis is on one such degradation mechanism, UV degradation, specific to the ITO-pentacene interface in pentacene/C60 organic photovoltaic devices. Attempts were made to increase the lifetime of the devices by using phosphonic acids or oxygen plasma to modify the surface of the ITO. While conducting these experiments, the lack of a system to test the lifetime of multiple devices for long periods of time became apparent. As such as system was a requirement for future research into the lifetimes of organic photovoltaic devices a system was designed and built. The system would operate the photovoltaic device in a way comparable to its end-use and would allow over 100 devices to be tested simultaneously for durations exceeding 10,000 hours if necessary. This system would allow for statistically significant lifetime testing to be carried out in the future.
250

Strategien zur Optimierung organischer Solarzellen: Dotierte Transportschichten und neuartige Oligothiophene mit reduzierter Bandlücke

Uhrich, Christian 25 April 2008 (has links) (PDF)
Organische Solarzellen besitzen das Potential für leichte und zugleich flexible photovoltaische Anwendungen, die kostengünstig hergestellt werden können und damit einen Beitrag zur Verminderung der Emission von Kohlendioxid, Methan und Stickoxiden leisten können. Zur Herstellung von organischen Solarzellen werden nur geringe Mengen der organischen Materialien benötigt und die Prozessierung findet bei vergleichsweise geringen Temperaturen statt, was die Abscheidung auf z. B. Plastikfolie ermöglicht. Man unterscheidet drei Arten von organischen Solarzellen. Erstens, Solarzellen bestehend aus kleinen Molekülen, die im Vakuum durch Sublimation auf das Substrat abgeschieden werden. Zweitens, Polymersolarzellen, deren Schichten aus Lösung meist durch „spin-coating“ oder Druckverfahren präpariert werden. Und drittens, „dye-sensitized“ Solarzellen (auch Grätzel-Zellen), die aus einer porösen Schicht Titandioxid und einem flüssigen Elektrolyten für den Ladungsträgertransport bestehen. Diese Arbeit beschäftigt sich ausschließlich mit organischen Solarzellen aus kleinen Molekülen. Die höchsten erreichten Wirkungsgrade organischer Solarzellen aus kleinen Molekülen liegen derzeit bei etwa 5 % . Um die Effizienzen von Solarzellen aus kleinen Molekülen zu steigern, ist es einerseits notwendig das Verständnis der physikalischen und chemischen Prozesse innerhalb der Bauelemente genauer beschreiben zu können, andererseits werden neue Materialien mit optimierten Eigenschaften für die organische Photovoltaik benötigt. In dieser Arbeit wurden zwei Strategien zur Optimierung organischer Solarzellen verfolgt: • Durch die Optimierung des Versatzes der Energieniveaus der organischen Materialien konnte die Leerlaufspannung in einem Modellsystem maximiert werden. An diesem Modellsystem wurden der Ursprung der Leerlaufspannung und die Rekombinationsdynamik von photogenerierten Ladungsträgern untersucht. Bezüglich der Leerlaufspannung zeigen Solarzellen, deren photoaktive Materialien in einer Mischschicht vorliegen, im Vergleich zu Solarzellen, die eine photoaktive Doppelschicht beinhalten, fundamentale Unterschiede . • Des Weiteren wurden neue Thiophenderivate untersucht, die als aktive Materialien in organischen Solarzellen eingesetzt wurden. Durch elektronenziehende Endgruppen wurde das Ionisationspotential der Thiophenderivate abgesenkt und die optische Bandlücke verringert. Das Thiophenderivat DCV3T fungiert in Kombination mit herkömmlichen Donator-Materialien als Akzeptor. In Mischschichten aus DCV3T und C60 kommt es durch einen Hin- und Rücktransfer der Anregungsenergie zwischen den Materialien statt der Generation von freien Ladungsträgern zu einer Erhöhung der Triplett-Exzitonendichte auf DCV3T . Diese Exzitonen besitzen auf Grund der hohen Lebensdauer von Triplett-Exzitonen das Potential für eine erhöhte Exzitonendiffusionslänge, die in einem neuen Solarzellenkonzept ausgenutzt werden konnte . / Organic solar cells have the potential for light weight and flexible applications. They can be manufactured cost-effectively and can thus contribute to the reduction of the emission of carbon dioxide, methane and nitric oxides. In order to manufacture organic solar cells, only small amounts of organic materials are required. They can be processed at comparably low temperatures. Therefore, the fabrication on substrates like plastic foil is possible. Three different types of organic solar cells exist. The first kinds are solar cells prepared from small molecules that are manufactured via sublimation of the material in a vacuum. The second kind are polymer solar cells manufactured from solution by spin coating techniques or ink jet printing. And thirdly, dye sensitized solar cells - also known as Grätzel cells - consisting of a porous layer of titanium dioxide and most commonly a liquid electrolyte for the charge transport. This work deals exclusively with small molecule solar cells. The highest power conversion efficiencies reached by small molecule organic photovoltaics are now in the range of 5 %. In order to increase the efficiencies of solar cells prepared from small molecules, two major aspects must be developed. The understanding of the physical processes within the organic devices must be improved. And secondly, new materials are required with physical properties optimized for organic photovoltaics. In this work, I followed two strategies for optimizing organic solar cells: • By optimizing the offset of energy levels between donor and acceptor material, the open circuit voltage could be increased. In the investigated model system, the origin of the open circuit voltage and the recombination dynamics of photo generated charge carriers were analyzed. Concerning the open circuit voltage, solar cells consisting of a donor acceptor double layer structure, show fundamental differences to solar cells consisting of a donor acceptor blend. • Furthermore, new thiophene derivatives used as photoactive materials were investigated. By the attachment of electron withdrawing end groups, the ionization potential of the oligothiophenes is increased and the optical band gap is reduced at the same time. The investigated thiophene derivative DCV3T acts as an acceptor in combination with the commonly used donor-materials. A back- and forth-transfer of excitation energy is observed in blends of DCV3T and fullerene C60. In these blends, excitons are not separated into free charge carriers. This back and forth transfer leads to an enhancement of the density of triplet excitons on DCV3T. These excitons have a potentially high diffusion length due to the long lifetime of triplet excitons. This effect was utilized in the organic solar cells.

Page generated in 0.0677 seconds