• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 220
  • 26
  • 22
  • 12
  • 9
  • 8
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • Tagged with
  • 448
  • 448
  • 428
  • 297
  • 164
  • 94
  • 75
  • 61
  • 54
  • 43
  • 41
  • 38
  • 37
  • 35
  • 34
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
361

Thermodynamic Investigation of Yttria-Stabilized Zirconia (YSZ) System

Asadikiya, Mohammad 06 November 2017 (has links)
The yttria-stabilized zirconia (YSZ) system has been extensively studied because of its critical applications, like solid oxide fuel cells (SOFCs), oxygen sensors, and jet engines. However, there are still important questions that need to be answered and significant thermodynamic information that needs to be provided for this system. There is no predictive tool for the ionic conductivity of the cubic-YSZ (c-YSZ), as an electrolyte in SOFCs. In addition, no quantitative diagram is available regarding the oxygen ion mobility in c-YSZ, which is highly effective on its ionic conductivity. Moreover, there is no applicable phase stability diagram for the nano-YSZ, which is applied in oxygen sensors. Phase diagrams are critical tools to design new applications of materials. Furthermore, even after extensive studies on the thermodynamic database of the YSZ system, the zirconia-rich side of the system shows considerable uncertainties regarding the phase equilibria, which can make the application designs unreliable. During this dissertation, the CALPHAD (CALculation of PHase Diagrams) approach was applied to provide a predictive diagram for the ionic conductivity of the c-YSZ system. The oxygen ion mobility, activation energy, and pre-exponential factor were also predicted. In addition, the CALPHAD approach was utilized to predict the Gibbs energy of bulk YSZ at different temperatures. The surface energy of each polymorph was then added to the predicted Gibbs energy of bulk YSZ to obtain the total Gibbs energy of nano-YSZ. Therefore, a 3-D phase stability diagram for the nano-YSZ system was provided, by which the stability range of each polymorph versus temperature and particle size are presented. Re-assessment of the thermodynamic database of the YSZ system was done by applying the CALPHAD approach. All of the available thermochemical and phase equilibria data were evaluated carefully and the most reliable ones were selected for the Gibbs energy optimization process. The results calculated by the optimized thermodynamic database showed good agreement with the selected experimental data, particularly on the zirconia-rich side of the system.
362

A Portable Generator Incorporating Mini-Tubular Solid Oxide Fuel Cells

Hyde, Andrew Justin January 2008 (has links)
Modern society has become reliant on battery powered electronic devices such as cell phones and laptop computers. The standard way of recharging these devices is by connecting to a reticulated electricity supply. In situations with no electricity supply some other recharging method is required. Such a possibility is a small, portable, generator based on fuel cell technology, specifically mini-tubular solid oxide fuel cells (MT-SOFC). MT-SOFCs have been developed since the 1990s but there is limited analysis, discussion or research on developing and constructing a portable generator based on MT-SOFC technology. Such a generator, running on a portable gas supply, requires combining the key aspects of cell performance, a heating and fuel reforming system, and cell manifolds. Cell design, fuel type, fuel flow rate, current-collection method and operating temperature all greatly affected MT-SOFCs performance. Segmenting the cathode significantly increased the power output. Maximum power density from an electrolyte supported MT-SOFC was 140 mW/cm2. The partial oxidation reactor (POR) developed provided the required heat to maintain the MT-SOFCs at an operating temperature suitable for generating electricity. The exhaust gas from the POR was a suitable fuel for MT-SOFCs, having sufficient carbon monoxide and hydrogen to generate electricity. Various manifold materials were evaluated including solid metal blocks and folded sheet metal. It was found that manifolds made from easily worked alumina fibre board decreased the thermal stresses and therefore the fracture rate of the MT-SOFCs. The final prototype developed comprised a partial oxidation reactor and MT-SOFCs mounted in alumina fibre board manifolds within a well-insulated enclosure, which could be run on LPG. Calculated efficiency of the final prototype was 4%. If all the carbon monoxide and hydrogen produced by the partial oxidation reactor were converted to electrical energy, efficiency would increase to 39%. Under ideal conditions, efficiency would be 78%. Efficiency of the prototype can be improved by increasing the fuel and oxygen utilisation ratios, ensuring heat from the exhaust gases is transferred to the incoming gases, and improving the methods for collecting current at both the anode and cathode.
363

Bioethanol in der Hochtemperaturbrennstoffzelle

Breite, Manuela 09 April 2013 (has links) (PDF)
Ziel der Arbeit war die Nutzbarmachung von Bioethanol zur Wandlung in Strom und Wärme in einer Hochtemperaturbrennstoffzelle. Dazu waren neben der Entwicklung eines langzeitstabilen, effektiven Katalysators zur Synthesegaserzeugung und dessen Testung sowie der Übertragung gewonnener Erkenntnisse auf in einem Reformer einsetzbare Konzepte die Verifizierung kommerzieller Katalysatorsysteme für die partielle Oxidation von Ethanol notwendig. Außerdem ist für die Entwicklung eines ethanolbetriebenen SOFC-Systems eine pulsations- und ablagerungsfreie Verdampfung von unvergälltem und vergälltem Ethanol – welche nicht Stand der Technik ist – erforderlich, für die ein geeignetes Verdampferkonzept entwickelt und getestet wurde. Experimentell konnte die Betreibbarkeit eines SOFC-Systems mit Ethanol an einem für den Betrieb mit LPG ausgelegten System nachgewiesen werden.
364

Multi-Component and Multi-Dimensional Mathematical Modeling of Solid Oxide Fuel Cells

Hussain, Mohammed Mujtaba January 2008 (has links)
Solid oxide fuel cells (SOFCs) are solid-state ceramic cells, typically operating between 1073 K and 1273 K. Because of high operating temperature, SOFCs are mostly applicable in stationary power generation. Among various configurations in which SOFCs exist, the planar configuration of solid oxide fuel cell (SOFC) has the potential to offer high power density due to shorter current path. Moreover, the planar configuration of SOFC is simple to stack and closely resemble the stacking arrangement of polymer electrolyte membrane (PEM) fuel cells. However, due to high operating temperature, there are problems associated with the development and commercialization of planar SOFCs, such as requirement of high temperature gas seals, internal stresses in cell components, and high material and manufacturing costs. Mathematical modeling is an essential tool for the advancement of SOFC technology. Mathematical models can help in gaining insights on the processes occurring inside the fuel cell, and can also aid in the design and optimization of fuel cells by examining the effect of various operating and design conditions on performance. A multi-component and multi-dimensional mathematical model of SOFCs has been developed in this thesis research. One of the novelties of the present model is its treatment of electrodes. An electrode in the present model is treated as two distinct layers referred to as the backing layer and the reaction zone layer. Reaction zone layers are thin layers in the vicinity of the electrolyte layer where electrochemical reactions occur to produce oxide ions, electrons and water vapor. The other important feature of the present model is its flexibility in fuel choice, which implies not only pure hydrogen but also any reformate composition can be used as a fuel. The modified Stefan-Maxwell equations incorporating Knudsen diffusion are used to model multi-component diffusion in the porous backing and reaction zone layers. The coupled governing equations of species, charge and energy along with the constitutive equations in different layers of the cell are solved for numerical solution using the finite volume method and developed code written in the computer language of C++. In addition, the developed numerical model is validated with various experimental data sets published in the open literature. Moreover, it is verified that the electrode in an SOFC can be treated as two distinct layers referred to as the backing layer and the reaction zone layer. The numerical model not only predicts SOFC performance at different operating and design conditions but also provides insight on the phenomena occurring within the fuel cell. In an anode-supported SOFC, the ohmic overpotential is the single largest contributor to the cell potential loss. Also, the cathode and electrolyte overpotentials are not negligible even though their thicknesses are negligible relative to the anode thickness. Moreover, methane reforming and water-gas shift reactions aid in significantly reducing the anode concentration overpotential in the thick anode of an anode-supported SOFC. A worthwhile comparison of performance between anode-supported and self-supported SOFCs reveals that anode-supported design of SOFCs is the potential design for operating at reduced temperatures. A parametric study has also been carried out to investigate the effect of various key operating and design parameters on the performance of an anode-supported SOFC. Reducing the operating temperature below 1073 K results in a significant drop in the performance of an anode-supported SOFC; hence ionic conductivity of the ion-conducting particles in the reaction zone layers and electrolyte needs to be enhanced to operate anode-supported SOFCs below 1073 K. Further, increasing the anode reaction zone layer beyond certain thickness has no significant effect on the performance of an anode-supported SOFC. Moreover, there is a spatial limitation to the transport of oxide ions in the reaction zone layer, thereby reflecting the influence of reaction zone thickness on cell performance.
365

Entwicklung degradationsstabiler Glaslote für keramische Hochtemperaturbrennstoffzellen

Rost, Axel 25 September 2013 (has links) (PDF)
Planare keramische Hochtemperaturbrennstoffzellen liefern aufgrund ihres hohen Wirkungsgrades sowie einer hohen Variabilität geeigneter Brennstoffe einen wertvollen Beitrag zur ressourcenschonenden Stromproduktion. Für einen sicheren Betrieb dieser Brennstoffzellen sind hermetisch dichte und elektrisch isolierende Dichtungen unabdingbar. Aufgrund ihrer chemischen Stabilität sowie der Anpassung relevanter Fügeeigenschaften wie Viskosität und thermischem Ausdehnungsverhalten eignen sich insbesondere teilkristalline Glaslote als Dichtungs- und Fügewerkstoffe für diese Aufgabe. Für einen zuverlässigen Langzeitbetrieb von Brennstoffzellensystemen ist neben der Anpassung der Fügeparameter ein umfassendes Verständnis der Alterungsprozesse von Glasloten im Fügeverbund unter Betriebsbedingungen hinsichtlich Gasdichtheit und elektrischem Iso-lationsvermögen von entscheidender Bedeutung. In grundlegenden Untersuchungen zeigt diese Arbeit auf, welche vielschichtigen Degradationsprozesse in teilkristallinen Glasloten unter simulierten Einsatzbedingungen ablau-fen. Durch geeignete Versuchsabläufe gelang es, diese Einflüsse hinsichtlich ihrer Auswirkungen auf Degradationsprozesse zu separieren und zu bewerten. Die daraus gewonnenen Erkenntnisse flossen in eine Glaslotentwicklung ein, mit der die Degradationsstabilität teilkristalliner Glaslote unter den gegebenen Einsatzbedingungen deutlich erhöht werden konnte. Besondere Berücksichtigung fand hierbei der Einfluss der Glaszusammensetzung auf Degradationsprozesse im Verbund mit den metallischen Fügepartnern sowie die Porenbildung in gesinterten glaskeramischen Gefügen unter brennstoffzellentypischen Betriebsbedingungen. Im Gesamtergebnis zeigt die vorliegende Arbeit, dass zur Erfüllung von Fügeaufgaben neben der Anpassung intrinsischer Glasloteigenschaften auch das langfristige Verhalten teilkristalliner Glaslote im Fügeverbund Berücksichtigung finden muss.
366

Multi-Component and Multi-Dimensional Mathematical Modeling of Solid Oxide Fuel Cells

Hussain, Mohammed Mujtaba January 2008 (has links)
Solid oxide fuel cells (SOFCs) are solid-state ceramic cells, typically operating between 1073 K and 1273 K. Because of high operating temperature, SOFCs are mostly applicable in stationary power generation. Among various configurations in which SOFCs exist, the planar configuration of solid oxide fuel cell (SOFC) has the potential to offer high power density due to shorter current path. Moreover, the planar configuration of SOFC is simple to stack and closely resemble the stacking arrangement of polymer electrolyte membrane (PEM) fuel cells. However, due to high operating temperature, there are problems associated with the development and commercialization of planar SOFCs, such as requirement of high temperature gas seals, internal stresses in cell components, and high material and manufacturing costs. Mathematical modeling is an essential tool for the advancement of SOFC technology. Mathematical models can help in gaining insights on the processes occurring inside the fuel cell, and can also aid in the design and optimization of fuel cells by examining the effect of various operating and design conditions on performance. A multi-component and multi-dimensional mathematical model of SOFCs has been developed in this thesis research. One of the novelties of the present model is its treatment of electrodes. An electrode in the present model is treated as two distinct layers referred to as the backing layer and the reaction zone layer. Reaction zone layers are thin layers in the vicinity of the electrolyte layer where electrochemical reactions occur to produce oxide ions, electrons and water vapor. The other important feature of the present model is its flexibility in fuel choice, which implies not only pure hydrogen but also any reformate composition can be used as a fuel. The modified Stefan-Maxwell equations incorporating Knudsen diffusion are used to model multi-component diffusion in the porous backing and reaction zone layers. The coupled governing equations of species, charge and energy along with the constitutive equations in different layers of the cell are solved for numerical solution using the finite volume method and developed code written in the computer language of C++. In addition, the developed numerical model is validated with various experimental data sets published in the open literature. Moreover, it is verified that the electrode in an SOFC can be treated as two distinct layers referred to as the backing layer and the reaction zone layer. The numerical model not only predicts SOFC performance at different operating and design conditions but also provides insight on the phenomena occurring within the fuel cell. In an anode-supported SOFC, the ohmic overpotential is the single largest contributor to the cell potential loss. Also, the cathode and electrolyte overpotentials are not negligible even though their thicknesses are negligible relative to the anode thickness. Moreover, methane reforming and water-gas shift reactions aid in significantly reducing the anode concentration overpotential in the thick anode of an anode-supported SOFC. A worthwhile comparison of performance between anode-supported and self-supported SOFCs reveals that anode-supported design of SOFCs is the potential design for operating at reduced temperatures. A parametric study has also been carried out to investigate the effect of various key operating and design parameters on the performance of an anode-supported SOFC. Reducing the operating temperature below 1073 K results in a significant drop in the performance of an anode-supported SOFC; hence ionic conductivity of the ion-conducting particles in the reaction zone layers and electrolyte needs to be enhanced to operate anode-supported SOFCs below 1073 K. Further, increasing the anode reaction zone layer beyond certain thickness has no significant effect on the performance of an anode-supported SOFC. Moreover, there is a spatial limitation to the transport of oxide ions in the reaction zone layer, thereby reflecting the influence of reaction zone thickness on cell performance.
367

Fracture Failure of Solid Oxide Fuel Cells

Johnson, Janine B. 23 November 2004 (has links)
Among all existing fuel cell technologies, the planar solid oxide fuel cell (SOFC) is the most promising one for high power density applications. A planar SOFC consists of two porous ceramic layers (the anode and cathode) through which flows the fuel and oxidant. These ceramic layers are bonded to a solid electrolyte layer to form a tri-layer structure called PEN (positive-electrolyte-negative) across which the electrochemical reactions take place to generate electricity. Because SOFCs operate at high temperatures, the cell components (e.g., PEN and seals) are subjected to harsh environments and severe thermomechanical residual stresses. It has been reported repeatedly that, under combined thermomechanical, electrical and chemical driving forces, catastrophic failure often occurs suddenly due to material fracture or loss of adhesion at the material interfaces. Unfortunately, there have been very few thermomechanical modeling techniques that can be used for assessing the reliability and durability of SOFCs. Therefore, modeling techniques and simulation tools applicable to SOFC will need to be developed. Such techniques and tools enable us to analyze new cell designs, evaluate the performance of new materials, virtually simulate new stack configurations, as well as to assess the reliability and durability of stacks in operation. This research focuses on developing computational techniques for modeling fracture failure in SOFCs. The objectives are to investigate the failure modes and failure mechanisms due to fracture, and to develop a finite element based computational method to analyze and simulate fracture and crack growth in SOFCs. By using the commercial finite element software, ANSYS, as the basic computational tool, a MatLab based program has been developed. This MatLab program takes the displacement solutions from ANSYS as input to compute fracture parameters. The individual stress intensity factors are obtained by using the volume integrals in conjunction with the interaction integral technique. The software code developed here is the first of its kind capable of calculating stress intensity factors for three-dimensional cracks of curved front experiencing both mechanical and non-uniform temperature loading conditions. These results provide new scientific and engineering knowledge on SOFC failure, and enable us to analyze the performance, operations, and life characteristics of SOFCs.
368

Thermomechanical modeling of porous ceramic-metal composites accounting for the stochastic nature of their microstructure

Johnson, Janine 24 November 2009 (has links)
Porous ceramic-metal composites, or cermets, such as nickel zirconia (Ni-YSZ), are widely used as the anode material in solid oxide fuel cells (SOFC). These materials need to enable electrochemical reactions and provide the mechanical support for the layered cell structure. Thus, for the anode supported planar cells, the thermomechanical behavior of the porous cermet directly affects the reliability of the cell. Porous cermets can be viewed as three-phase composites with a random heterogeneous microstructure. While random in nature, the effective properties and overall behavior of such composites can still be linked to specific stochastic functions that describe the microstructure. The main objective of this research was to develop the relationship between the thermomechanical behavior of porous cermets and their random microstructure. The research consists of three components. First, a stochastic reconstruction scheme was developed for the three-phase composite. From this multiple realizations with identical statistical descriptors were constructed for analysis. Secondly, a finite element model was implemented to obtain the effective properties of interest including thermal expansion coefficient, thermal conductivity, and elastic modulus. Lastly, nonlinear material behaviors were investigated, such as damage, plasticity, and creep behavior. It was shown that the computational model linked the statistical features of the microstructure to its overall properties and behavior. Such a predictive computational tool will enable the design of SOFCs with higher reliability and lower costs.
369

Perovskite-related and trigonal RBaCo₄O₇-based oxide cathodes for intermediate temperature solid oxide fuel cells

Kim, Young Nam, 1974- 06 February 2012 (has links)
Solid oxide fuel cells (SOFCs) offer the advantages of (i) employing less expensive catalysts compared to the expensive Pt catalyst used in proton exchange membrane fuel cells and (ii) directly using hydrocarbon fuels without requiring external fuel reforming due to the high operating temperature. However, the conventional high operating temperatures of 800 - 1000 °C lead to interfacial reactions and thermal expansion mismatch among the components and limitations in the choice of electrode and interconnect materials. These problems have prompted a lowering of the operating temperature to an intermediate range of 500 - 800 °C, but the poor oxygen reduction reaction kinetics of the conventional La[subscript 1-x]Sr[subscript x]MnO₃ perovskite cathode remains a major obstacle for the intermediate temperature SOFC. In this regard, cobalt-containing oxides with perovskite or perovskite-related structures have been widely investigated, but they suffer from large thermal expansion coefficient (TEC) mismatch with the electrolytes. With an aim to lower the TEC and maximize the electrochemical performance, this dissertation focuses on perovskite-related and trigonal RBaCo₄O₇-based oxide cathode materials. First, the effect of M = Fe and Cu in the perovskite-related layered LnBaCo₂₋xMxO₊[delta] (Ln = Nd and Gd) oxides has been investigated. The Fe and Cu substitutions lower the polarization resistance and offer fuel cell performance comparable to that of La[subscript 1-x]Sr[subscript x]CoO₃₋[delta] perovskite due to improved chemical stability with the electrolyte and a better matching of the TEC with those of standard electrolytes. Second, the perovskite-related intergrowth oxides Ln(Sr,Ca)₃Fe₁.₅Co₁.₅O₀ and La₁.₈₅Sr₁.₁₅Cu[subscript 2-x]Co[subscript x]O[subscript 6 +delta] and their composites with gadolinia-doped ceria (GDC) have been investigated. The electrical conductivity, TEC, and catalytic activity increase with increasing Co content. The composite cathodes exhibit enhanced electrochemical performance due to lower TEC and increased triple-phase boundary. Third, RBa(Co,Zn)₄O₇ (R = Y, Ca, and In) oxides with a trigonal structure and tetrahedral-site Con+ ions have been investigated. The chemical instability normally encountered with this class of oxides has been overcome by appropriate cationic substitutions as in (Y₀.₅Ca₀.₅)Ba(Co₂.₅Zn₁.₅)O₇ and (Y₀.₅In₀.₅)BaCo₃ZnO₇. With an ideal matching of TEC with those of standard electrolytes, the RBa(Co,Zn)₄O₇ (R = Y, Ca, and In) + GDC composite cathodes exhibit low polarization resistance and electrochemical performance comparable to that of perovskite oxides. / text
370

Εναπόθεση υμενίων νανοδομημένης ζιρκόνιας για κυψελίδες καυσίμου στερεού ηλεκτρολύτη

Βογιατζής, Στυλιανός 13 January 2015 (has links)
H Ζιρκόνια σταθεροποιημένη με Ύττρια (Yttria Stabilized Zirconia (YSZ)) χρησιμοποιείται σήμερα ευρέως στη βιομηχανία μηχανών για αεριωθούμενα και στη οδοντιατρική. Τα τελευταία χρόνια υπάρχει έντονο ερευνητικό ενδιαφέρον για την εφαρμογή της σε κυψελίδες καυσίμου στερεού ηλεκτρολύτη (SOFCs) μιας και παρουσιάζει αγωγιμότητα ιόντων οξυγόνου σε μεγάλο θερμοκρασιακό εύρος, διαθέτει υψηλή μηχανική αντοχή, μεγάλη σκληρότητα και χημική σταθερότητα σε συνθήκες ηλεκτρικής φόρτισης και αντίδρασης. Σκοπός της παρούσας εργασίας είναι η ανάπτυξη μεθόδου για εναπόθεση υμενίων ζιρκονίας με την βοήθεια πλάσματος. Η εναπόθεση λεπτών υμενίων YSZ με τη χρήση πλάσματος χαμηλής πίεσης παρουσιάζει μερικά σημαντικά πλεονεκτήματα όπως εναπόθεση σε χαμηλές θερμοκρασίες (<400oC) και ομοιόμορφη κάλυψη της επιφάνειας με μεγάλη πυκνότητα. Από την άλλη πλευρά η ιδιαιτερότητα της εναπόθεσης μέσω πλάσματος έγκειται στο γεγονός ότι η δομή, οι ιδιότητες και η χημική σύσταση των παραγόμενων υμενίων εξαρτώνται σημαντικά από τις παραμέτρους της διεργασίας. Στο πρώτο μέρος της εργασίας αναπτύσσεται η εναπόθεση υμενίων YSZ με τη τεχνική πλάσματος χαμηλής πίεσης από μεταλλοργανικές πρόδρομες ενώσεις υττρίου και ζιρκονίου σε δύο διαφορετικούς αντιδραστήρες πλάσματος, ενός επαγωγικά και ενός χωρητικά συζευγμένου. Μελετήθηκε η επίδραση της παρεχόμενης στο πλάσμα ισχύος, των παροχών των πρόδρομων ενώσεων, του συνολικού χρόνου της διεργασίας και της θερμοκρασίας του υποστρώματος στα μορφολογικά χαρακτηριστικά, στην δομή και τη σύσταση των παραγόμενων υμενίων. Στην συνέχεια εξετάσθηκε πως η χρήση πλάσματος αργού-οξυγόνου, σε ήδη εναποτεθειμένα υμένια ζιρκονίου και υττρίου με τις τεχνικές φυσικής εναπόθεσης (spin και spray coating), ενισχύει την κρυστάλλωση του υμενίου σε κυβική YSZ. Γίνεται σύγκριση με τα αποτελέσματα που λαμβάνονται για την κρυστάλλωση των υμενίων με τη μέθοδο της θερμικής ανόπτησης ως προς τον χρόνο αλλά και τη θερμοκρασία κρυστάλλωσης που χρειάζεται ώστε να επιτευχθεί το ίδιο αποτέλεσμα. Τα υμένια χαρακτηρίσθηκαν με μια σειρά από τεχνικές όπως: φασματοσκοπία φοτοηλεκτρονίων ακτίνων Χ (XPS), ηλεκτρονιακή μικροσκοπία σάρωσης (SEM), περίθλαση ακτίνων Χ (XRD) και μικροσκοπία ατομικών δυνάμεων (AFM). Τα αποτελέσματα των πειραμάτων έδειξαν ότι η παρεχόμενη ισχύ, ο χρόνος της διεργασίας καθώς και η θερμοκρασία του υποστρώματος παίζουν σημαντικό ρόλο στην ανάπτυξη τη δομή και τη μορφολογία των υμενίων YSZ. Για την πλήρη κρυστάλλωση σε κυβική ζιρκονία σταθεροποιημένη με ύττρια αλλά και την πλήρη απομάκρυνση του άνθρακα από το υμένιο, απαιτήθηκε ένα στάδιο ανόπτησης του υμενίου σε φούρνο υψηλής θερμοκρασίας. Αντικατάσταση αυτού του βήματος με επεξεργασία με πλάσμα, οδήγησε σε σημαντική ελάττωση του χρόνου αλλά και της θερμοκρασία κρυστάλλωσης με αποτέλεσμα η συγκεκριμένη τεχνική χημικής ανόπτησης να είναι ενεργειακά συμφέρουσα σε σχέση με την θερμική. Βελτιστοποίηση της διεργασίας χημικής ανόπτησης με πλάσμα έδειξε ότι είναι εφικτή η κρυστάλλωση των υμενίων σε πολύ μικρούς χρόνους και σε θερμοκρασίες μικρότερες από 400°C. / Nowadays Yttria stabilized Zirconia (YSZ) are widely used in the industries of jet engines and also in dentistry. In recent years a lot of effort has been given for the use of YSZ in solid oxide fuel cells (SOFCs) because of its high ionic conductivity in a wide temperature range, its high mechanical strength, high hardness and chemical stability. The purpose of this study is to develop a method for deposition of zirconia films with the use of plasma. The YSZ thin films deposition using low pressure plasma has important advantages such as deposition at low temperatures (<400oC) and uniform coverage of the surface with high density films. On the other hand, the uniqueness of the deposition by plasma is that the structure, the properties and the chemical composition of the films depends on the parameters of the process. In the first part of the thesis, the process of depositing YSZ films is been developed from organometallic precursors of yttrium and zirconium in two different plasma reactors, an inductively and a capacitively coupled plasma reactor. It has been investigated how the plasma power, the amount of the precursors, the total time of the process and the substrate’s temperature affect the morphological characteristics, the structure and composition of the films. It has been also examined how Argon-Oxygen plasma enhances the crystallization to cubic YSZ of already deposited amorphous films of zirconium and yttrium, which have been prepared by physical deposition techniques like spin coating and spray pyrolysis. The results is been compared with the results which have been obtained for the crystallization of the same films by thermal annealing regarding the annealing time temperature in order to achieve the same final crystallization results. The films were characterized by a variety of techniques such as X-ray Photoelectron Spectroscopy (XPS), Scanning Electron Microscopy (SEM), X-ray Diffraction (XRD) and Atomic Force Microscopy (AFM). The results showed that the plasma power, the process time and the temperature of the substrate play an important role in the development of the structure and the morphology of the YSZ films. In order fully crystallization to be achieved in cubic yttria stabilized zirconia and complete removal of the organic character of the “as deposited” films, a final step of annealing the films in a high-temperature furnace is needed. Replacing this step by Argon-Oxygen plasma treatment resulted a significant reduction in time and crystallization temperature so that the chemical annealing is advantageous in energy consumption compared to thermal annealing. Optimization of the chemical plasma treatment process showed that it is possible to get fully crystallized films in shorter time and for values of temperatures less than 400°C.

Page generated in 0.0322 seconds