41 |
Low-Power, Low-Voltage SRAM Circuits Design For Nanometric CMOS TechnologiesShakir, Tahseen 29 August 2011 (has links)
Embedded SRAM memory is a vital component in modern SoCs. More than 80% of the System-on-Chip (SoC) die area is often occupied by SRAM arrays. As such, system reliability and yield is largely governed by the SRAM's performance and robustness. The aggressive scaling trend in CMOS device minimum feature size, coupled with the growing demand in high-capacity memory integration, has imposed the use of minimal size devices to realize a memory bitcell. The smallest 6T SRAM bitcell to date occupies a 0.1um2 in silicon area. SRAM bitcells continue to benefit from an aggressive scaling trend in CMOS technologies. Unfortunately, other system components, such as interconnects, experience a slower scaling trend. This has resulted in dramatic deterioration in a cell's ability to drive a heavily-loaded interconnects. Moreover, the growing fluctuation in device properties due to Process, Voltage, and Temperature (PVT) variations has added more uncertainty to SRAM operation. Thus ensuring the ability of a miniaturized cell to drive heavily-loaded bitlines and to generate adequate voltage swing is becoming challenging. A large percentage of state-of-the-art SoC system failures are attributed to the inability of SRAM cells to generate the targeted bitline voltage swing within a given access time.
The use of read-assist mechanisms and current mode sense amplifiers are the two key strategies used to surmount bitline loading effects. On the other hand, new bitcell topologies and cell supply voltage management are used to overcome fluctuations in device properties. In this research we tackled conventional 6T SRAM bitcell limited drivability by introducing new integrated voltage sensing schemes and current-mode sense amplifiers. The proposed schemes feature a read-assist mechanism. The proposed schemes' functionality and superiority over existing schemes are verified using transient and statistical SPICE simulations. Post-layout extracted views of the devices are used for realistic simulation results.
Low-voltage operated SRAM reliability and yield enhancement is investigated and a
wordline boost technique is proposed as a means to manage the cell's WL operating voltage. The proposed wordline driver design shows a significant improvement in reliability and yield in a 400-mV 6T SRAM cell. The proposed wordline driver design exploit the cell's Dynamic Noise Margin (DNM), therefore boost peak level and boost decay rate programmability features are added. SPICE transient and statistical simulations are used to verify the proposed design's functionality.
Finally, at a bitcell-level, we proposed a new five-transistor (5T) SRAM bitcell which shows competitive performance and reliability figures of merit compared to the conventional 6T bitcell. The functionality of the proposed cell is verified by post-layout SPICE simulations. The proposed bitcell topology is designed, implemented and fabricated in a standard ST CMOS 65nm technology process. A 1.2_ 1.2 mm2 multi-design project test chip consisting of four 32-Kbit (256-row x 128-column) SRAM macros with the required peripheral and timing control units is fabricated. Two of the designed SRAM macros are dedicated for this work, namely, a 32-Kbit 5T macro and a 32-Kbit 6T macro which is used as a comparison reference. Other macros belong to other projects and are not discussed in this document.
|
42 |
Ultra low-power fault-tolerant SRAM design in 90nm CMOS technologyWang, Kuande 15 July 2010 (has links)
With the increment of mobile, biomedical and space applications, digital systems with
low-power consumption are required. As a main part in digital systems, low-power memories are
especially desired. Reducing the power supply voltages to sub-threshold region is one of the
effective approaches for ultra low-power applications. However, the reduced Static Noise
Margin (SNM) of Static Random Access Memory (SRAM) imposes great challenges to the subthreshold SRAM design. The conventional 6-transistor SRAM cell does not function properly at sub-threshold supply voltage range because it has no enough noise margin for reliable operation. In order to achieve ultra low-power at sub-threshold operation, previous research work has demonstrated that the read and write decoupled scheme is a good solution to the reduced SNM problem. A Dual Interlocked Storage Cell (DICE) based SRAM cell was proposed to eliminate the drawback of conventional DICE cell during read operation. This cell can mitigate the singleevent effects, improve the stability and also maintain the low-power characteristic of subthreshold SRAM, In order to make the proposed SRAM cell work under different power supply voltages from 0.3 V to 0.6 V, an improved replica sense scheme was applied to produce a reference control signal, with which the optimal read time could be achieved. In this thesis, a 2K~8 bits SRAM test chip was designed, simulated and fabricated in 90nm CMOS technology provided by ST Microelectronics. Simulation results suggest that the operating frequency at VDD = 0.3 V is up to 4.7 MHz with power dissipation 6.0 ÊW, while it is 45.5 MHz at VDD = 0.6 V dissipating 140 ÊW. However, the area occupied by a single cell is larger than that by conventional SRAM due to additional transistors used. The main contribution of this thesis project is that we proposed a new design that could simultaneously solve the ultra low-power and radiation-tolerance problem in large capacity memory design.
|
43 |
Statistical Performance Modeling of SRAMsZhao, Chang 2009 December 1900 (has links)
Yield analysis is a critical step in memory designs considering a variety of performance constraints. Traditional circuit level Monte-Carlo simulations for yield estimation of Static Random Access Memory (SRAM) cell is quite time consuming due to their characteristic of low failure rate, while statistical method of yield sensitivity analysis is meaningful for its high efficiency.
This thesis proposes a novel statistical model to conduct yield sensitivity prediction on SRAM cells at the simulation level, which excels regular circuit simulations in a significant runtime speedup. Based on the theory of Kriging method that is widely used in geostatistics, we develop a series of statistical model building and updating strategies to obtain satisfactory accuracy and efficiency in SRAM yield sensitivity analysis.
Generally, this model applies to the yield and sensitivity evaluation with varying design parameters, under the constraints of most SRAM performance metric. Moreover, it is potentially suitable for any designated distribution of the process variation regardless of the sampling method.
|
44 |
A CMOS SRAM Using Dynamic Threshold Voltage Wordline TransistorsChen, Tian-Hau 23 June 2003 (has links)
This thesis includes two topics. The first topic is a CMOS SRAM using dynamic threshold voltage wordline-transistors, which is focused on high speed applications. The second one is a high voltage generator for FLASH memories. The generated high voltages are applied to the wordline controlled transistors during access and verification operations.
By taking advantage of the large current provided by low Vth and low leakage current provided by high Vth, a CMOS SRAM using dynamic threshold voltage wordline transistors is presented. The design of a 4-Kb SRAM is measured to possess a 2.2 ns access time, and consume 43.6 mW in the standby mode. The highest operating clock rate is estimated to be 667 MHz.
A high voltage generator using 4 clocks with two phases is presented to provide a high voltage supply required by FLASH memories during programming mode and erase mode operations. The circuit is implemented by TSMC 0.25um 1P5M CMOS process. It can provide as high as +11.7 V and -11.6 V by given VDD=2.5 V.
|
45 |
Design and Evaluation of A Low-Voltage, Process-Variation-Tolerant SRAM Cache in 90nm CMOS TechnologyFazli Yeknami, Ali January 2008 (has links)
<p>This thesis presents a novel six-transistor SRAM intended for advanced</p><p>microprocessor cache application. The objectives are to reduce power</p><p>consumption through scaling the supply voltage and to design a SRAM that is fully process-variation-tolerant, utilizing separate read and write access ports as well as exploiting asymmetry. Traditional six-transistor SRAM is designed and its strengths and weaknesses are discussed in detail. Afterwards, a new SRAM technology developed in the division of Electronic Devices, Linköping University is proposed and its capabilities and drawbacks are illustrated deeply. Subsequently, the impact of mismatch and process variation on both standard 6T and proposed asymmetric 6T SRAM cells is investigated. Eventually, the cells are compared regarding the voltage scalability, stability, and tolerability to variations in process parameters. It is shown that the new cell functions in 430mV while maintaining acceptable SNM margin in all process corners. It is also demonstrated that the proposed SRAM is fully process-variation-tolerant.</p><p>Additionally, a dual-V t asymmetric 6T cell is introduced having wide SNM margin comparable with that of conventional 6T cell such that it is capable of functioning in 580mV.</p>
|
46 |
Adaptive low-energy techniques in memory and digital signal processing designHe, Ku, 1982- 12 July 2012 (has links)
As semiconductor technology continues to scale, energy-efficiency and power consumption have become the dominant design limitations, especially, for embedded and portable systems. Conventional worst-case design is highly inefficient from an energy perspective. In this dissertation, we propose techniques for adaptivity at the architecture and circuit levels in order to remove some of these inefficiencies. Specifically, this dissertation focuses on research contributions in two areas: 1) the development of SRAM models and circuitry to enable an intra-array voltage island approach for dealing with large random process variation; and 2) the development of low-energy digital signal processing (DSP) techniques based on controlled timing error acceptance.
In the presence of increased process variation, which characterizes nanometer scale CMOS technology, traditional design strategies result in designs that are overly conservative in terms of area, power consumption, and design effort. Memory arrays, such as SRAM-based cache, are especially vulnerable to process variation, where the penalty is a power and bit-cell increase needed to satisfy a variety of noise margins. To improve yield and reduce power consumption in large SRAM arrays, we propose an intra-array voltage island technique and develop circuits that allow for a cost-effective deployment of this technique to reduce the impact of process variation. The voltage tuning architecture makes it possible to obtain, on average, power consumption reduction of 24% iso-area in the active mode, and the leakage power reduction up to 52%, and, on average, of 44% iso-area in the sleep mode. Alternatively, bitcell area can be reduced up to 50% iso-power compared to the existing design strategy.
In many portable and embedded systems, signal processing (SP) applications are dominant energy consumers. In this dissertation we investigate the potential of error-permissive design strategies to reduce energy consumption in such SP applications. Conventional design strategies are aimed at guaranteeing timing correctness for the input data that triggers the worst-case delay, even if such data occurs infrequently. We notice that an intrinsic notion of quality floor characterizes SP applications. This provides the opportunity to significantly reduce energy consumption in exchange for a limited signal quality reduction by strategically accepting small and infrequent timing errors. We propose both design-time and run-time techniques to carefully control the quality-energy tradeoff under scaled VDD. The basic philosophy is to prevent signal quality from severe degradation, on average, by using data statistics. We introduce techniques for: 1) static and dynamic adjustment of datapath bitwidths, 2) design-time and run-time reordering of computations, 3) protection of important algorithm steps, and 4) exploiting the specific patterns of errors for low-cost post-processing to minimize signal quality degradation. We demonstrate the effectiveness of the proposed techniques on a 2D-IDCT/DCT design, as well as several digital filters for audio and image processing applications. The designs were synthesized using a 45nm standard cell library with energy and delay evaluated using NanoSim and VCS. Experiments show that the introduced techniques enable 40~70% energy savings while only adding less than 6% area overhead when applied to image processing and filtering applications. / text
|
47 |
SRAM Reliability Improvement Using ECC and Circuit TechniquesMcCartney, Mark 01 December 2014 (has links)
Reliability is of the utmost importance for safety of electronic systems built for the automotive, industrial, and medical sectors. In these systems, the embedded memory is especially sensitive due to the large number of minimum-sized devices in the cell arrays. Memory failures which occur after the manufacture-time burnin testing phase are particularly difficult to address since redundancy allocation is no longer available and fault detection schemes currently used in industry generally focus on the cell array while leaving the peripheral logic vulnerable to faults. Even in the cell array, conventional error control coding (ECC) has been limited in its ability to detect and correct failures greater than a few bits, due to the high latency or area overhead of correction [43]. Consequently, improvements to conventional memory resilience techniques are of great importance to continued reliable operation and to counter the raw bit error rate of the memory arrays in future technologies at economically feasible design points [11, 36, 37, 53, 56, 70]. In this thesis we examine the landscape of design techniques for reliability, and introduce two novel contributions for improving reliability with low overhead. To address failures occurring in the cell array, we have implemented an erasurebased ECC scheme (EB-ECC) that can extend conventional ECC already used in memory to correct and detect multiple erroneous bits with low overhead. An important component of this scheme is the method for detecting erasures at runtime; we propose a novel ternary-output sense amplifier design which can reduce the risk of undetected read latency failures in small-swing bitline designs. While most study has focused on the static random access memory (SRAM) cell array, for high-reliability products, it is important to examine the effects of failures on the peripheral logic as well. We have designed a wordline assertion comparator (WLAC) which has lower area overhead in large cache designs than competing techniques in the literature to detect address decoder failure.
|
48 |
Design and Evaluation of A Low-Voltage, Process-Variation-Tolerant SRAM Cache in 90nm CMOS TechnologyFazli Yeknami, Ali January 2008 (has links)
This thesis presents a novel six-transistor SRAM intended for advanced microprocessor cache application. The objectives are to reduce power consumption through scaling the supply voltage and to design a SRAM that is fully process-variation-tolerant, utilizing separate read and write access ports as well as exploiting asymmetry. Traditional six-transistor SRAM is designed and its strengths and weaknesses are discussed in detail. Afterwards, a new SRAM technology developed in the division of Electronic Devices, Linköping University is proposed and its capabilities and drawbacks are illustrated deeply. Subsequently, the impact of mismatch and process variation on both standard 6T and proposed asymmetric 6T SRAM cells is investigated. Eventually, the cells are compared regarding the voltage scalability, stability, and tolerability to variations in process parameters. It is shown that the new cell functions in 430mV while maintaining acceptable SNM margin in all process corners. It is also demonstrated that the proposed SRAM is fully process-variation-tolerant. Additionally, a dual-V t asymmetric 6T cell is introduced having wide SNM margin comparable with that of conventional 6T cell such that it is capable of functioning in 580mV.
|
49 |
Supply Voltage Dependence of Heavy Ion Induced SEEs on 65nm CMOS Bulk SRAMs2015 June 1900 (has links)
The power consumption of Static Random Access Memory (SRAM) has become an important issue for modern integrated circuit design, considering the fact that they occupy large area and consume significant portion of power consumption in modern nanometer chips. SRAM operating in low power supply voltages has become an effective approach in reducing power consumption. Therefore, it is essential to experimentally characterize the single event effects (SEE) of hardened and unhardened SRAM cells to determine their appropriate applications, especially when a low supply voltage is preferred. In this thesis, a SRAM test chip was designed and fabricated with four cell arrays sharing the same peripheral circuits, including two types of unhardened cells (standard 6T and sub-threshold 10T) and two types of hardened cells (Quatro and DICE). The systems for functional and radiation tests were built up with power supply voltages that ranged from near threshold 0.4 V to normal supply 1 V. The test chip was irradiated with alpha particles and heavy ions with various linear energy transfers (LETs) at different core supply voltages, ranging from 1 V to 0.4 V. Experimental results of the alpha test and heavy ion test were consistent with the results of the simulation. The cross sections of 6T and 10T cells present much more significant sensitivities than Quatro and DICE cells for all tested supply voltages and LET. The 10T cell demonstrates a more optimal radiation performance than the 6T cell when LET is small (0.44 MeV·cm2/mg), yet no significant advantage is evident when LET is larger than this. In regards to the Quatro and DICE cells, one does not consistently show superior performance over the other in terms of soft error rates (SERs). Multi-bit upsets (MBUs) occupy a larger portion of total SEUs in DICE cell when relatively larger LET and smaller supply voltage are applied. It explains the loss in radiation tolerance competition with Quatro cell when LET is bigger than 9.1 MeV·cm2/mg and supply voltage is smaller than 0.6 V. In addition, the analysis of test results also demonstrated that the error amount distributions follow a Poisson distribution very well for each type of cell array.
|
50 |
Improved Fault Tolerant SRAM Cell Design & Layout in 130nm Technology2014 August 1900 (has links)
Technology scaling of CMOS devices has made the integrated circuits vulnerable to single event radiation effects. Scaling of CMOS Static RAM (SRAM) has led to denser packing architectures by reducing the size and spacing of diffusion nodes. However, this trend has led to the increase in charge collection and sharing effects between devices during an ion strike, making the circuit even more vulnerable to a specific single event effect called the single event multiple-node upset (SEMU). In nanometer technologies, SEMU can easily disrupt the data stored in the memory and can be more hazardous than a single event single-node upset.
During the last decade, most of the research efforts were mainly focused on improving the single event single-node upset tolerance of SRAM cells by using novel circuit techniques, but recent studies relating to angular radiation sensitivity has revealed the importance of SEMU and Multi Bit Upset (MBU) tolerance for SRAM cells. The research focuses on improving SEMU tolerance of CMOS SRAM cells by using novel circuit and layout level techniques. A novel SRAM cell circuit & layout technique is proposed to improve the SEMU tolerance of 6T SRAM cells with decreasing feature size, making it an ideal candidate for future technologies. The layout is based on strategically positioning diffusion nodes in such a way as to provide charge cancellation among nodes during SEMU radiation strikes, instead of charge build-up. The new design & layout technique can improve the SEMU tolerance levels by up to 20 times without sacrificing on area overhead and hence is suitable for high density SRAM designs in commercial applications. Finally, laser testing of SRAM based configuration memory of a Xilinx Virtex-5 FPGA is performed to analyze the behavior of SRAM based systems towards radiation strikes.
|
Page generated in 0.0174 seconds