Spelling suggestions: "subject:"4methylation"" "subject:"c5alkylation""
101 |
Quantitative proteomics identifies substrates of SUMO E3 ligase PIAS proteins involved in cell growth and motilityLi, Chongyang 12 1900 (has links)
Protein SUMOylation is a highly dynamic and reversible post-translational modification that targets lysine residues on a wide range of proteins involved in several essential cellular events, including protein translocation and degradation, mitotic chromosome segregation, DNA damage response, cell cycle progression, cell proliferation, and migration. Protein SUMOylation is an ATP-dependent enzymatic process that involves an E1 activating enzyme SAE1/2, a E2 conjugase UBC9, and usually facilitated by SUMO E3 ligases. The SP-RING family is the largest family of SUMO E3 ligases, encompassing seven mammalian protein inhibitor of activated STAT (PIAS) proteins. PIAS family was originally identified as specific inhibitors for signal transducer and activator of transcription (STAT), which involves gene transcriptional regulation. Recent studies showed that PIAS proteins also play important roles in the regulation of protein stability and signal transduction through the SUMOylation of target substrates. In addition, PIAS-mediated protein SUMOylation is also involved in several cellular processes, including DNA damage repair, immune response, cellular proliferation, and motility. Most notably, PIAS proteins are highly expressed in different cancer types and have been implicated in tumorigenesis. Several reports suggest that PIAS proteins could promote cancer cell growth and progression by regulating the SUMOylation of different substrates. To date, a number of substrates of PIAS ligases have been identified from several individual studies, and hundreds of specific SUMO E3 ligase substrates were identified from a human proteome microarray-based activity screen. However, how these substrates are selected, and which SUMOylation sites are targeted by these PIAS are still unknown.
To answer these questions, I started my investigation with PIAS1, one of the most well studied SUMO E3 ligases. By changing the expression level of PIAS1 in HeLa cells using gene overexpression or CRISPR/Cas9 gene knockout, I found PIAS1 had a physiological impact on cell proliferation and migration. I took advantage of the previously developed SUMO proteomics workflow to quantitatively profile global SUMOylome changes upon PIAS1 overexpression in a site-specific manner. I identified 983 SUMO sites on 544 proteins, of which 62 proteins were assigned as putative PIAS1 substrates. In particular, Vimentin (VIM), a type III intermediate filament protein involved in cytoskeleton organization and cell motility, was identified as PIAS1 substrates. Two SUMOylation sites mediated by PIAS1 at Lys-439 and Lys-445 residues were further evaluated and found to be necessary for dynamic disassembly and assembly of vimentin intermediate filaments, which further regulates cell migration and motility.
In the second study, I extended my investigation to all PIAS ligases and further found that all PIAS proteins impact cell proliferation and migration of breast cancer cell MDA-MB-231 after CRISPR/Cas9 gene knockout. I further optimized my SILAC-based quantitative SUMO proteomics approach and combined it with transcriptomics to gain a system-level understanding of the functional components involved in PIAS regulatory networks. A large subset of proteins/ genes involved in cell proliferation and migration were commonly regulated by all PIAS proteins, suggesting a redundancy of regulation within the PIAS family. In addition, each PIAS regulated a unique pool of substrates/genes involved in different cellular processes, such as DNA damage repair, chromatin remodeling, and SUMO chain formation, suggesting that each PIAS specifically regulates cellular functions. The trans-scale analyses between proteomics and transcriptomics shed light on the comprehensive pictures of the regulation networks by PIAS proteins beyond their direct enzymatic activity.
Overall, the quantitative SUMO proteomics approach provided a robust method for identifying substrates of PIAS SUMO E3 ligases. The combination of proteomic and transcriptomic analyzes made it possible to draw up a global portrait of the regulatory mechanisms governed by the PIAS proteins. / La SUMOylation des protéines est une modification post-traductionnelle se produisant sur
des lysines d’un large éventail de protéines cellulaires. Cette modification est dynamique et régit
plusieurs évènement cellulaires essentiels, dont la translocation et la dégradation des protéines,
la ségrégation chromosomique mitotique, la réparation de l'ADN, la progression du cycle
cellulaire, la prolifération cellulaire et la migration. La conjugaison de la protéine SUMO sur son
substrat se produit grâce à une triade enzymatique regroupant l’enzyme d’activation E1 SAE 1/2,
la conjugase E2 UBC9 et dans la plupart des cas une ligase SUMO E3. Cette cascade enzymatique
nécessite une source d’ATP pour son initiation. Parmi la famille des ligases SUMO E3, on retrouve
un domaine spécifique nommé SP-RING présent chez une sous population de celles-ci. Parmi ces
ligases on retrouve 7 protéines inhibitrices des protéines STAT activées regroupees sous le nom
de PIAS. Les ligases PIAS ont été identifiées à l'origine comme des inhibiteurs spécifiques des
protéines STAT responsable du signal de transduction et de l’activation de la transcription
génique. Des études récentes ont montré que les protéines PIAS jouent également un rôle
important sur la stabilité de leurs substrats et la transduction de leur signal. De plus, les substrats
SUMOylés par les PIAS sont impliqués dans plusieurs processus cellulaires, notamment la
réparation des dommages à l'ADN, la réponse immunitaire, la prolifération et la motilité
cellulaire. Ces divers processus cellulaires peuvent être déréglés et entrainer le développement
du cancer. Il s’avère que les protéines PIAS sont fortement exprimées dans divers types de cancer
et sont impliquées dans la tumorigenèse. Plusieurs rapports suggèrent que les protéines PIAS
pourraient favoriser la croissance et la progression des cellules cancéreuses en régulant le niveau
de SUMOylation de plusieurs substrats. Initialement, les substrats des ligases PIAS ont été
identifiés à partir de plusieurs études individuelles et plus récemment, des centaines de substrats
spécifiques de la SUMO E3 ligase ont été identifiés à partir de criblage de micropuces à protéines
interrogeant le protéome humain. Cependant, la manière dont ces substrats sont sélectionnés et
quels sont les sites de SUMOylation ciblés par ces PIAS demeurent encore méconnus.
Afin d’aborder ces questions, j’ai commencé mon étude avec PIAS1, l'une des ligases SUMO
E3 les plus étudiées. Pour ce faire, j’ai varié le niveau d'expression de PIAS1 dans des cellules
iv
HeLa selon l’approche CRISPR/Cas9. Ainsi, deux modèles ont été construit, soit via une
surexpression du gène ou via un knockout du gène. Ces mutants ont permis de constater que
PIAS1 avait un impact physiologique sur la prolifération et la migration des cellules. J’ai tiré
avantage d’une méthode protéomique précédemment développé sur les peptides SUMO pour
déterminer les changements de SUMOylation lors de la surexpression de PIAS1. J’ai identifié 983
sites SUMO sur 544 protéines, dont 62 protéines ont été identifiées comme substrats potentiels
de PIAS1. Parmi celles-ci, la vimentine (VIM), une protéine de la famille des filaments
intermédiaire de type III impliquée dans l'organisation du cytosquelette et la motilité cellulaire,
a été reconnu comme un substrat de PIAS1. Afin de valider le rôle de la SUMOylation des lysines
Lys-439 et Lys-445 de VIM j’ai effectué des études fonctionelles de motilité cellulaire avec les
mutants où ces sites ont été substitués en arginine. Ces expériences m’ont permis de constater
que la SUMOylation de VIM aux sites Lys-439 et Lys-445 est nécessaire à l’assemblage et
désassemblage dynamique des filaments intermédiaires de VIM, lesquels regulent la migration
et la motilité cellulaire.
Dans la deuxième étude, j’ai élargi mon recherche sur toutes les ligases PIAS et avons
découvert que ces dernières avaient toutes un impact sur la prolifération cellulaire et la migration
des cellules du cancer du sein MDA-MB-231 suite à un knockout de ces gènes par CRISPR / Cas9.
De plus, j’ai optimisé mon approche de protéomique quantitative SUMO via SILAC et l'avons
complémenté d’une analyse transcriptomique. Cette combinaison a permis d’acquérir une
compréhension des composants fonctionnels impliqués dans les réseaux de régulation PIAS. Il
s’avère qu’un grand sous-ensemble de gènes / protéines impliqués dans la migration et la
prolifération des cellules sont régulés par tous les membres de la famille PIAS, et suggère une
certaine redondance fonctionnelle parmi ces ligases. De plus, chaque PIAS régule un ensemble
unique de substrats / gènes impliqués dans plusieurs processus cellulaires différents, tels que la
réparation des dommages de l'ADN, le remodelage de la chromatine et la formation de la chaîne
SUMO. Ces résultats suggèrent que chacune des PIASs régule de façon spécifique les fonctions
cellulaires. La combinaison des analyses protéomiques et transcriptomiques ont permi de dresser
un portrait global des mécanismes de régulation régit par les protéines PIAS et ce au-delà de leur
activité enzymatique directe.
|
102 |
Caractérisation de la modulation de l’activité du récepteur nucléaire orphelin NUR77 (NR4A1) par ses modifications post-traductionnelles et son interactomeDodat, Fatéma 02 1900 (has links)
NUR77 est un récepteur nucléaire (RN) orphelin impliqué dans la régulation de processus biologiques dont la mort cellulaire, notamment dans la maladie de Parkinson (MP), découlant de la perte de neurones dopaminergiques, et dans le cancer du sein, résultant de la prolifération de cellules mammaires. NUR77 est impliqué dans le déclenchement et la protection de la mort cellulaire et son activité serait indépendante de la liaison d’un ligand. Nous avons émis l’hypothèse que l’activité de NUR77 est influencée par ses modifications post-traductionnelles (MPTs) et ses partenaires d’interactions. L’objectif général de cette thèse était de caractériser les MPTs et les partenaires d’interaction modulant l’activité de NUR77, dans des modèles de cellules en culture, afin de mieux comprendre ses fonctions biologiques - notamment dans la mort cellulaire.
Le premier objectif de ce doctorat était de caractériser le rôle de la SUMOylation, une modification modulant l’activité des RN, chez NUR77, par des essais rapporteurs dans les cellules Human Embryonic Kidney 293 (HEK293). La surexpression de la E3 SUMO ligase PIASγ et/ou de l’isoforme 2 de la SUMO, protéines importantes dans la régulation de la SUMOylation chez les RN, a engendré un effet répresseur sur l’activité transcriptionnelle de NUR77. L’effet de PIASγ sur l’activité de NUR77 est modulé par la Sentrin SUMO-specific protease 1, qui hydrolyse la liaison des SUMO. Les mutations des résidus lysine dans des sites consensus de SUMOylation, de NUR77 (K102 et K577), empêchant cette MPT, ont causé des effets opposés sur son activité transcriptionnelle, suggérant le recrutement différent de corégulateurs de la transcription. Ces résultats combinés indiquent que la SUMOylation et les PIASγ et SUMO2 sont, respectivement, une MPT et des corégulateurs importants dans l’activité de NUR77.
Le deuxième objectif de cette thèse était de caractériser l’interactome de NUR77 dans des HEK293 vivantes afin d’identifier les interacteurs pouvant moduler son activité, à l’aide d’une méthode de marquage des protéines proximales avec la biotine basée sur la peroxydase APEX2, combinée à la spectrométrie de masse. Ce procédé a identifié 336 potentiels interacteurs de NUR77, dont plusieurs connus. Des essais de coimmunoprécipitation et de coimmunofluorescence menés dans les HEK293 et dans les cellules du cancer du sein MCF-7 ont montré, respectivement, que la protéine régulatrice de l’apoptose Apoptosis Inhibitor 5 (API5), interagissait et colocalisait avec NUR77. La privation de sérum dans le milieu de culture des cellules et la diminution de l’expression de API5 a conduit à une augmentation des niveaux protéiques et de l’activité de NUR77 et à une diminution de la survie cellulaire. Ces données suggèrent que API5 constitue un régulateur de NUR77 dans les voies de signalisation associées à la mort cellulaire et que cette interaction pourrait constituer une cible pour moduler l’apoptose. Elles valident également l’approche d’identification d’interacteurs de NUR77.
Les travaux de cette thèse ont donc permis de générer des outils pour caractériser l’activité de NUR77 et ont révélé des corégulateurs de cette activité. La poursuite de ces projets pourrait révéler le caractère opportun de cibler NUR77 comme modulateur de la mort cellulaire, notamment dans la MP et le cancer du sein. / NUR77 is an orphan nuclear receptor (NR) involved in the regulation of multiple cell biology processes including cell death, in particular in Parkinson's disease (PD), which results of the loss of dopaminergic neurons, and in breast cancer (BC), which is caused by the proliferation of mammary epithelial cells. NUR77 is involved in triggering and inhibiting cell death and its activity is believed to be independent of a ligand binding. We hypothesized that the regulation of NUR77 activity does not occur through a ligand, but through the influence of its post-translational modifications (PTMs) and its interaction partners. The general objective of this PhD project was to characterize the PTMs and the interacting partners that modulate the activity of NUR77 in cultured cell models, to better understand its physiological roles, in particular in the regulation of cell death.
The first objective of this thesis was to characterize the role of SUMOylation, a modification that regulates NR activity, in regulating NUR77 transcriptional activity in reporter assays in Human Embryonic Kidney (HEK293) cells. Overexpression of the E3 SUMO ligase PIASγ or/and the isoform 2 of SUMO, both important regulators in SUMOylation of the NUR77 homolog NURR1, produced a repressive effect on the transcriptional activity of NUR77. The effect of PIASγ on the activity of NUR77 was shown to be modulated by the Sentrin SUMO-specific protease 1 protein, which removes SUMO tags on target proteins. In addition, mutations of lysine residues in SUMO consensus sites in NUR77 (K102 and K577) had opposite effects on its transcriptional activity, suggesting different recruitment of coregulators of transcription in the regions. The combination of these results indicates that SUMOylation is an important PTM for the regulation of NUR77 activity and that PIASγ and SUMO2 proteins are important transcriptional coregulators of NUR77.
The second objective of this thesis was to evaluate NUR77 interactome in HEK293 living cells to identify the interactors that can modulate its activity, using a biotin-labelling method for proximal proteins based on the APEX2 peroxidase combined with mass spectrometry. This approach identified 336 potential interactors of NUR77, some that are consistent with the literature. Coimmunoprecipitation and coimmunofluorescence assays carried out in HEK293 cells and in MCF-7 breast cancer cell line have shown that the regulator of apoptosis Apoptosis Inhibitor 5
vi
(API5), interacted and colocalized with NUR77. By depriving cells of serum and decreasing API5 expression, increased protein levels and activity of NUR77 was observed, as well as a decrease in cell viability. These data support that API5 is a regulator of NUR77 in its involvement in signalling pathways associated with cell death and that this interaction could be a target for modulating apoptosis. More generally, they validate the APEX2 tool which can be used to identify novel NUR77 interactors.
In conclusion, the work of this thesis resulted in the generation of tools to better understand the activity of NUR77 and revealed important coregulators in this activity. The continued characterization of these interactors may provide opportunities to target NUR77 as a regulator of cell death, particularly in PD and in breast cancer.
|
103 |
Optimisation d'antiœstrogènes dans le traitement du cancer du sein positif pour le récepteur des œstrogènesDiennet, Marine 10 1900 (has links)
Deux tiers des cancers du sein expriment le récepteur des œstrogènes alpha (ERα), un facteur de transcription ligand dépendant responsable de la prolifération oncogénique de ces cellules. Ces tumeurs, dites ER positives (ER+), bénéficient de thérapies endocrines comme les antiœstrogènes (AE).
Les AE sont des ligands compétitifs de ERα qui inhibent son activité transcriptionnelle. Le tamoxifène est l’antiœstrogène le plus utilisé en première ligne de traitement chez les patientes ayant un cancer du sein ER+. Malgré un bon pronostique initial, plus du tiers d’entre elles finiront par développer une résistance, parfois après de nombreuses années. L’absence de résistance croisée avec le tamoxifène place le fulvestrant comme seul dé-régulateur sélectif de ER (SERD) autorisé en clinique contre les tumeurs mammaires avancées résistantes. Malgré son profil antagoniste pur, le fulvestrant ne s’est pas révélé supérieur au tamoxifène en première ligne de traitement, cela étant attribué à sa faible biodisponibilité. D’autres SERD oralement disponibles sont en cours d’évaluation clinique.
Des mutations du gène ESR1 (ERα) sont retrouvées dans environ 20% des tumeurs avancées résistantes à l’hormonothérapie et contribuent à la résistance au fulvestrant. Les mutations sont toutes retrouvées dans le domaine de liaison au ligand. La maladie progressera éventuellement avec le développement de métastases qui sont incurables.
Il est donc crucial de (1) comprendre les mécanismes moléculaires médiant l’antiestrogénicité pure et l’impact des altérations génétiques impliquées dans la résistance aux AE pour (2) développer des thérapies ciblées plus efficaces qui pourraient lutter contre les tumeurs avancées résistantes.
Les résultats prometteurs de plusieurs études in vitro et en clinique combinant un AE avec un inhibiteur d’histones désacétylases (HDACi) ont mené à la création de molécules hybrides combinant les deux fonctionnalités en une seule molécule. Nos travaux montrent que ces molécules hybrides dérivées du tamoxifène démontrent des propriétés inhibitrices améliorées par l’ajout d’un groupe fonctionnel inhibiteur des HDAC sur le squelette du tamoxifène. Ces composés sont antagonistes contre ERα et plusieurs HDAC et l’un d’eux possède une activité antiproliférative accrue par rapport aux composés parentaux dans les cellules de cancer du sein ER+ MCF-7. Notre étude fournit une preuve de concept que la combinaison d’une fonction pharmacologique HDACi sur le noyau d’un AE est prometteuse.
Afin de mieux comprendre les déterminants moléculaires liés à l’induction de la SUMOylation de ERα et l’inhibition de son activité transcriptionnelle par le fulvestrant, nous avons testé l’impact de différentes mutations sur l’activité de plusieurs SERD, comprenant le fulvestrant. Nos résultats valident l’importance du résidu L536 dans la SUMOylation et la répression transcriptionnelle de ERα en réponse aux SERD. Les mutations ponctuelles L536P, Q et R, trouvées en clinique, compromettent la réponse au fulvestrant et à une sélection de SERD oraux in vitro.
En résumé, nos résultats participent à une meilleure compréhension des caractéristiques moléculaires liées au mécanisme d’action du fulvestrant et de plusieurs SERD oraux de nouvelle génération. L’ensemble de nos résultats devraient aider au développement de nouvelles molécules plus efficaces contre les tumeurs résistantes, y compris des composés avec une double fonction inhibitrice AE-HDACi. / Two thirds of breast tumors are classified as positive for estrogen receptor alpha (ERα), a ligand-dependent transcription factor driving breast cancer cell proliferation. ER-positive (ER+) tumors benefit from endocrine therapies such as antiestrogens (AE).
AE compete with ERα natural ligands and inhibit its transcriptional activity. Tamoxifen is the gold-standard for antiestrogenic therapy in patients with primary ER+ breast cancer. Despite a good initial prognosis, more than one-third will eventually develop resistance, sometimes after long periods of latency. Fulvestrant, known as a “pure” AE, is the only selective ER deregulator (SERD) approved in advanced breast cancer even after development of resistance to tamoxifen. Despite its pure antagonistic profile, fulvestrant has not proven superior to tamoxifen in first-line treatment, which is attributed to poor pharmacological properties. New generation SERDs with orally bioavailable properties are currently tested in the clinic.
Mutations of ERα are found in about 20% of hormone-resistant advanced tumors and contribute to resistance to fulvestrant. The mutations are all located in the ligand binding domain. Resistant tumors will eventually progress and develop metastases which are deadly.
It is therefore crucial to (1) understand the molecular determinants of pure antiestrogenicity and the impact of genetic alterations involved in AE resistance to (2) develop treatments with improved cytotoxic activities to achieve a more efficient suppression of advanced tumors.
Promising results from several in vitro and clinical studies combining an AE with a histone deacetylase inhibitor (HDACi) have led to the design of hybrid molecules combining both functionalities into a single molecule. Our work shows that tamoxifen-derived hybrids display properties by the addition of an HDAC inhibitory functional group (HDACi) on the tamoxifen backbone. These compounds have inhibitory activities against ERα and several HDACs. One hybrid exhibits an improved cytotoxic activity against ER+ MCF-7 breast cancer cells compared to parental molecules. Our study provides proof of concept that combining HDACi function to the core of an AE is promising.
To better understand the molecular determinants related to the induction of ERα SUMOylation and transcriptional repression by fulvestrant, we evaluated the impact of different mutations on the activity of several SERDs, including fulvestrant. Our results validate the importance of residue L536 in SUMOylation and transcriptional repression of ERα in response to SERDs. L536P, Q, and R point mutations are found in the clinic compromise the response to fulvestrant and to several oral SERDs in vitro.
In summary, our results give better insights into the mechanism of action of fulvestrant and new generation oral SERDs and on the impact of naturally occurring mutations on transcriptional responses to these AE. Taken together, our results should help in the design of more efficient molecules, including compounds with dual AE-HDACi inhibitory function.
|
104 |
Mécanismes d’action des anti-œstrogènes purs utilisés dans le traitement du cancer du seinVallet, Amandine 12 1900 (has links)
Plus de 70% des tumeurs mammaires expriment le récepteur des œstrogènes alpha (ERα), un facteur de transcription dépendant de ses ligands, les œstrogènes. Deux types d’anti-œstrogènes (AE) peuvent être utilisés en clinique pour traiter ces tumeurs : les SERM (Selective Estrogen Receptor Modulators) qui sont des agonistes partiels, tels que le tamoxifène, le SERM le plus communément utilisé en première ligne de traitement. Les SERD (Selective Estrogen Receptor Degraders) sont des AE purs et induisent la dégradation de ERα. Le fulvestrant a été le premier SERD utilisé en clinique, en seconde ligne de traitement après rechute ou dans un contexte métastatique. Cependant, il est très peu biodisponible oralement. ERα est ubiquitiné en présence de SERD, ce qui conduit à sa dégradation par la voie du protéasome. De plus, nous avons montré qu’ERα est également SUMOylé en présence de fulvestrant et d’autres AE purs. Cette SUMOylation contribue à supprimer ses propriétés transcriptionnelles. La SUMOylation et l’ubiquitination sont deux modifications post-traductionnelles similaires et consistent en la conjugaison d’une petite protéine (SUMO1/2/3 ou ubiquitine) sur des résidus d’une protéine cible lors d’une cascade de réactions impliquant trois enzymes : une enzyme activatrice E1, une enzyme de conjugaison E2 et une ligase E3. Ces processus peuvent être réversibles à l’aide de déSUMOylases (SENP) ou déubiquitinases (DUB).
Dans un premier temps, nous avons étudié les déterminants structuraux de ERα nécessaires pour sa SUMOylation. Nos analyses Western et nos tests BRET (Bioluminescence Resonance Energy Transfer), dans lesquels nous avons mesuré le transfert d’énergie entre un donneur luminescent (ERα ou ERβ fusionnés à la luciférase) et un accepteur fluorescent (SUMO1 ou SUMO3 fusionnée à la YFP), ont montré que ERα est SUMOylé en présence de fulvestrant, mais pas son paralogue ERβ. Nous avons ensuite créé des chimères dans lesquelles nous avons échangé les domaines de ERα et de ERβ et avons étudié le profil de SUMOylation de ces chimères à l’aide des mêmes essais. Nous avons ainsi mis en évidence que les séquences spécifiques à ERα dans les hélices H3-H4 du domaine de liaison au ligand sont nécessaires et suffisantes pour sa SUMOylation en présence de fulvestrant. Dans cette région, les acides aminés spécifiques à ERα ne sont pas de potentiels substrats de modification. De plus, ces hélices font partie du sillon de recrutement de cofacteurs de ERα, ce qui suggère qu’il y a un recrutement différentiel de la machinerie de SUMOylation par ERα et ERβ en présence de fulvestrant. Nous avons montré que la surexpression de PIAS1 et PIAS2 peut augmenter le signal de SUMOylation.
Nous avons ensuite étudié le lien entre la SUMOylation et l’ubiquitination de ERα induites par les AE. Nous avons adapté nos tests BRET pour mesurer l’ubiquitination de ERα, en réalisant des essais Ubi-BRET (Ubiquitine fusionnée à la YFP). Nous avons ainsi pu observer que la SUMOylation et l’ubiquitination de ERα sont affectées par les mêmes mutations en présence d’AE, suggérant un lien entre ces deux voies de modification de ERα induites par les AEs purs. Des essais en cinétique BRET ont montré que ces modifications se font en parallèle et que l’utilisation d’inhibiteurs de SUMOylation chimiques (ML-792 et TAK-981) ou protéiques (déSUMOylase SENP1/2) abrogent la SUMOylation de ERα. En revanche, l’ubiquitination de ERα par différents AE est partiellement diminuée lorsque ces inhibiteurs sont utilisés. La surexpression des protéines RNF4 et RNF111, qui sont des enzymes E3 ubiquitine ligases qui vont ubiquitiner spécifiquement les protéines SUMOylées (STUbL), augmente l’ubiquitination de ERα en présence de fulvestrant et d’autres SERD, de manière dépendante de la SUMOylation. Cependant, l’inhibition de la SUMOylation par les inhibiteurs ML-792 et TAK-781 n’a pas eu d’effet sur la dégradation de ERα par la voie du protéasome dans les cellules ER-positives MCF-7 et T47D. Ces résultats suggèrent que la SUMOylation et l’ubiquitination de ERα ont lieu en parallèle et nécessitent la même conformation de ERα induite par les AE. Enfin, ces deux modifications peuvent être reliées, grâce aux protéines STUbL de manière spécifique des cellules.
En résumé, ces projets nous ont permis de mieux comprendre les mécanismes d’action des anti-œstrogènes purs utilisés dans le cancer du sein ER-positif. Nos découvertes pourront contribuer à anticiper des mécanismes possibles de résistance à ces molécules et permettre d’optimiser le développement de nouveaux anti-œstrogènes plus efficaces dans l’induction de la SUMOylation. / More than 70% of mammary tumors are positives for the expression of the estrogen receptor alpha (ERα), a ligand-dependent transcription factor, activated by estrogens. Two types of antiestrogens (AE) are used in the clinic to treat these tumors: the SERMs (Selective Estrogen Receptor Modulators), which are partial agonists, with the tamoxifen, the most common SERM used in first line of treatment. The SERDs (Selective Estrogen Receptor Degraders) are pure antiestrogens that induced ERα degradation. Fulvestrant has been the first SERD used in the clinic, in second line of treatment after relapse or in a metastatic setting. However, fulvestrant is poorly orally bioavailable. ERα is ubiquitinated in the presence of SERDs and this induce its degradation via the proteasome pathway. In our lab, we have showed that ERα is also SUMOylated in the presence of fulvestrant and other pure antiestrogens. This SUMOylation suppresses its transcriptional properties. SUMOylation and ubiquitination are two similar post-translational modifications that consist in the conjugation of a small protein (SUMO1/2/3 or ubiquitin) on residues of a target protein during an enzymatic cascade implicating three enzymes: an E1 activating, an E2 conjugating and an E3 ligase. These processes are reversible thanks to deSUMOylases (SENPs) and deubiquitinases (DUBs).
First, we have studied the structural determinants of ERα required for its SUMOylation. Our Western and BRET (Bioluminescence Resonance Energy Transfer) analyses, where we measured the energy transfer between a luminescent donor (ERα or ERβ fused to the luciferase) to a fluorescent acceptor (SUMO1 or SUMO3 fused to the YFP), have showed that ERα is SUMOylated in the presence of fulvestrant but not its paralog ERβ. We have created chimeras by exchanging domains between ERα and ERβ et we have studied the SUMOylation profile of these chimeras with these assays. We showed that the specific sequence to ERα in the H3-H4 helices of the ligand binding domain are necessary and sufficient to induce its SUMOylation in the presence of fulvestrant. In this region, the amino acids that are specifics to ERα are not potential substrates of modification. Moreover, these helices are part of the cofactor binding groove of ERα, suggesting that there is a differential recruitment of the SUMOylation machinery by ERα compared to ERβ in the presence of fulvestrant. We have also showed that the overexpression of the E3 SUMO ligases PIAS1 and PIAS2 can increase the SUMOylation signal.
We then studied the parallel between SUMOylation and ubiquitination of ERα induced by AE. We adapted our BRET assays to measure the ubiquitination of ERα, by performing Ubi-BRET assays (ubiquitin fused to the YFP). We observed that SUMOylation and ubiquitination of ERα are affected by the same mutations in the presence of AE, suggesting that there is a crosstalk between these two modification pathways of ERα induced by AE. BRET kinetic assays showed that these modifications happened in parallel and that the use of SUMOylation inhibitors (chemicals ML-792 and TAK-981; or deSUMOylases SENP1/2) abrogated the SUMOylation of ERα. However, the ubiquitination of ERα by different AE is partially decreased when these inhibitors are used. The overexpression of RNF4 and RNF111, which are SUMO-targeted ubiquitin ligases (STUbLs), that will specifically ubiquitinate SUMOylated target proteins, increased the ubiquitination of ERα in the presence of fulvestrant and other SERDs, in a SUMO-dependent manner. However, the inhibition of SUMOylation by ML-792 and TAK-981 inhibitors did not impact the degradation of ERα induced by the proteasome in ER-positive breast cancer cells MCF7 and T47D. These results suggest that SUMOylation and ubiquitination of ERα happened in parallel and required the same conformation of ERα induced by AE. Finally, these two modifications can be linked thanks to STUbLs in a cell-specific manner.
These projects led us to better understand the mechanisms of action of pure AE used in the treatment of ER-positive breast cancer. Our findings will contribute to anticipate possible mechanisms of resistance to AE et will help for the optimization and the development of new AE, more efficient in inducing ERα SUMOylation.
|
105 |
SUMOylation and phosphorylation of GluK2 regulate kainate receptor trafficking and synaptic plasticityChamberlain, S.E., Gonzàlez-Gonzàlez, I.M., Wilkinson, K.A., Konopacki, F.A., Kantamneni, Sriharsha, Henley, J.M., Mellor, J.R. January 2012 (has links)
No / Phosphorylation or SUMOylation of the kainate receptor (KAR) subunit GluK2 have both individually been shown to regulate KAR surface expression. However, it is unknown whether phosphorylation and SUMOylation of GluK2 are important for activity-dependent KAR synaptic plasticity. We found that protein kinase C-mediated phosphorylation of GluK2 at serine 868 promotes GluK2 SUMOylation at lysine 886 and that both of these events are necessary for the internalization of GluK2-containing KARs that occurs during long-term depression of KAR-mediated synaptic transmission at rat hippocampal mossy fiber synapses. Conversely, phosphorylation of GluK2 at serine 868 in the absence of SUMOylation led to an increase in KAR surface expression by facilitating receptor recycling between endosomal compartments and the plasma membrane. Our results suggest a role for the dynamic control of synaptic SUMOylation in the regulation of KAR synaptic transmission and plasticity.
|
106 |
Agonist-induced PKC phosphorylation regulates GluK2 SUMOylation and kainate receptor endocytosisKonopacki, F.A., Jaafari, N., Rocca, D.L., Wilkinson, K.A., Chamberlain, S.E., Rubin, P., Kantamneni, Sriharsha, Mellor, J.R., Henley, J.M. January 2011 (has links)
No / The surface expression and regulated endocytosis of kainate (KA) receptors (KARs) plays a critical role in neuronal function. PKC can modulate KAR trafficking, but the sites of action and molecular consequences have not been fully characterized. Small ubiquitin-like modifier (SUMO) modification of the KAR subunit GluK2 mediates agonist-evoked internalization, but how KAR activation leads to GluK2 SUMOylation is unclear. Here we show that KA stimulation causes rapid phosphorylation of GluK2 by PKC, and that PKC activation increases GluK2 SUMOylation both in vitro and in neurons. The intracellular C-terminal domain of GluK2 contains two predicted PKC phosphorylation sites, S846 and S868, both of which are phosphorylated in response to KA. Phosphomimetic mutagenesis of S868 increased GluK2 SUMOylation, and mutation of S868 to a nonphosphorylatable alanine prevented KA-induced SUMOylation and endocytosis in neurons. Infusion of SUMO-1 dramatically reduced KAR-mediated currents in HEK293 cells expressing WT GluK2 or nonphosphorylatable S846A mutant, but had no effect on currents mediated by the S868A mutant. These data demonstrate that agonist activation of GluK2 promotes PKC-dependent phosphorylation of S846 and S868, but that only S868 phosphorylation is required to enhance GluK2 SUMOylation and promote endocytosis. Thus, direct phosphorylation by PKC and GluK2 SUMOylation are intimately linked in regulating the surface expression and function of GluK2-containing KARs.
|
107 |
Identifikation und Charakterisierung von Protein-Interaktionspartnern des Transkriptionsfaktors CCAAT/Enhancer Binding Protein betaPleß, Ole 14 January 2008 (has links)
Der Transkriptionsfaktor CCAAT/Enhancer Binding Protein beta (C/EBPbeta) reguliert die Genexpression, Proliferation und Differenzierung in verschiedenen Zelltypen. Die Funktion von C/EBPbeta wird durch Interaktionen mit einer Reihe von Kofaktoren moduliert, die Bestandteile von Chromatin-verŠndernden oder Transkriptions-regulierenden makromolekularen Maschinen sind. Die Identifikation und funktionelle Charakterisierung dieser Kofaktoren trŠgt ma§geblich zum VerstŠndnis der Biologie von C/EBPbeta bei. C/EBPbeta wird zudem in vielfŠltiger Weise posttranslational reguliert. Beispielsweise kann C/EBPbeta phosphoryliert, SUMOyliert, acetyliert und an mehreren Positionen an Arginin- und Lysinresten methyliert werden. Die SUMOylierung von C/EBPbeta gilt als SchlŸsselmodifikation, die nachfolgende Modifikationen steuert und zu einer VerŠnderung der genregulatorischen Eigenschaften von C/EBPbeta fŸhrt. C/EBPbeta bindet an zwei Enzyme der SUMOylierungsmaschinerie, Ubc9 und PIAS3. Es konnte gezeigt werden, dass PIAS3 nicht nur als E3-Ligase bei der SUMOylierungsreaktion dient, sondern auch mit SUMO-modifiziertem C/EBPbeta interagieren und als transkriptioneller Repressor wirken kann. Um weitere Interaktionspartner von C/EBPbeta zu identifizieren wurde ein System zur Proteom-weiten Identifikation von Bindungspartnern etabliert. Dazu wurden radioaktiv markierbare Proteinsonden hergestellt, welche die Identifikation von Bindungspartnern auf Protein-Macroarrays ermšglichten. Neben der transaktivierenden DomŠne (TAD) wurde die regulatorische Region in ihrer SUMOylierten und nicht-modifizierten Form in Screening-Experimenten eingesetzt. Eine Vielzahl von neuen C/EBPbeta-Bindungspartnern konnte identifiziert werden, wobei die konstitutive SUMOylierung C/EBPbeta-Interaktionen verŠndern kann. Bei den identifizierten Proteinen handelt es sich um Mitglieder der Polycomb Gruppe, Chromatin-modifizierende Enzyme, SignaltransduktionsmolekŸle und transkriptionelle Koregulatoren. Wissenschaftlich besonders interessant war die Identifikation der Lysin-Methyltransferase H3-K9-HMTase 3 (G9a) als Bindungspartner der transaktivierenden Region von C/EBPbeta. Diese Interaktion wurde durch GST-Bindungs- und KoimmunoprŠzipitationsstudien bestŠtigt. Durch massenspektrometrische Analysen konnte Monomethylierung der AminosŠuren K39 und K168 in C/EBPbeta nachgewiesen werden. Dadurch ergab sich die Vermutung, dass G9a nicht nur die Methylierung von Histon H3 katalysiert, sondern auch fŸr die Methylierung und Regulation von C/EBPbeta verantwortlich ist. Rekombinantes C/EBPbeta konnte durch G9a in vitro methyliert werden. Koexpression von C/EBPbeta und G9a fŸhrte zu einer Reduktion der transaktivierenden Eigenschaften von C/EBPbeta in AbhŠngigkeit von der katalytischen SET-DomŠne von G9a. Dieser Reduktion konnte durch Mutation der AminosŠuren K39 und K168 in Alanin entgegengewirkt werden. Als Bindungspartner der C/EBPbeta TAD konnte au§erdem die intrazellulŠre DomŠne von Notch1 (Notch1-ICD) identifiziert werden. Der Notch-Signalweg ist ein evolutionŠr konservierter Genschalter, der an vielen Entscheidungen in der Entwicklung sowie bei physiologischen und pathophysiologischen Prozessen im adulten Organismus, wie z. B. akuter lymphatischer T-Zell LeukŠmie (T-ALL), beteiligt ist. Die Interaktion zwischen Notch1-ICD und C/EBPbeta konnte in GST-Bindungsexperimenten und KoimmunoprŠzipitationsstudien verifiziert werden. In Reportergenstudien wurde eine Stimulation der C/EBPbeta-abhŠngigen Transkription durch Notch1-ICD beobachtet. C/EBPbeta ist demnach ein ZielmolekŸl des Notch1-Signalweges. / The transcription factor CCAAT/Enhancer Binding Protein beta (C/EBPbeta) regulates gene expression, proliferation and differentiation of various cell types. The function of C/EBPbeta is modulated by a number of co-factors which are components of macromolecular machines that alter the state of chromatin or that regulate gene transcription. Identification and functional characterisation of these co-factors is crucial for understanding the biology of C/EBPbeta. C/EBPbeta is regulated by a number of posttranslational modifications and can be found in phosphorylated, SUMOylated, acetylated and arginine- or lysine-methylated forms. SUMOylation of C/EBPbeta is considered a key modification which controls subsequent modifications. These modifications alter the gene regulatory functions of C/EBPbeta. C/EBPbeta binds two enzymes of the SUMOylation machinery, Ubc9 and PIAS3. This study shows that PIAS3 not only has E3-ligase activity during the SUMOylation of C/EBPbeta, but also interacts with SUMO-modified C/EBPbeta leading to repression of transcription. A proteome-wide screening procedure was established to identify novel interaction partners of C/EBPbeta. It was based on radioactively labelled proteins that can be utilized as probes to identify binding partners on solid phase protein-macroarrays. The C/EBPbeta transactivation domain (TAD) and its regulatory region in SUMOylated and non-SUMOylated form were used in different screening approaches. Using this procedure a number of novel C/EBPbeta interaction partners were identified, that depended in part on the SUMOylation status of C/EBPbeta. The major part of the C/EBPbeta-interacting proteins are members of the Polycomb group, chromatin-modifying enzymes, signal transduction molecules and transcriptional co-regulators. Interestingly, the lysine-methyltransferase H3-K9-HMTase 3 (G9a) was among the binding partners of C/EBPbeta that interacted with the TAD. This interaction was verified by GST-pulldown and co-immunoprecipitation studies. Mass spectrometrical analysis identified the amino acids K39 and K168 of C/EBPbeta to be mono-methylated. Therefore it was speculated that G9a not only catalyzes the methylation of Histone H3 but may also methylate and regulate C/EBPbeta. Indeed, recombinant C/EBPbeta could be methylated by G9a in vitro. Co-expression of C/EBPbeta and G9a resulted in a reduction of the transactivating potential of C/EBPbeta, which depended on the catalytical SET domain of G9a. This reduction could be counteracted by mutating the amino acids K39 and K168 to alanine. In addition to G9a, the Notch1 intracellular domain (Notch1-ICD) could also be identified as a novel binding partner of the C/EBPbeta TAD. Notch is a component of an evolutionary conserved pathway that acts on numerous physiological and pathophysiological processes during development and in the adult, e.g. T-cell acute lymphoblastic leukemia (T-ALL). The interaction between Notch1-ICD and C/EBPbeta could be verified in GST-pulldown studies and by co-immunoprecipitation. Reporter gene studies showed a stimulation of C/EBPbeta-dependent transcription through Notch1-ICD. C/EBPbeta is therefore a novel target molecule of the Notch1 signaling pathway.
|
108 |
Investigating the role of human cytomegalovirus protein LUNA in regulating viral gene expression during latencyLau, Jonathan January 2018 (has links)
Human cytomegalovirus (HCMV) is a widespread human herpesvirus pathogen and prototypical member of the β-herpesvirus subfamily. Like all herpesviruses, the virus establishes a lifelong latent infection following host exposure, which has the potential to reactivate periodically and contribute to recurrent disease processes. In individuals with weak or compromised immune systems, such reactivation can lead to profound pathology. Understanding how latent infections are maintained is important for uncovering how HCMV causes disease. The study of viral genes that are expressed during latent infection grants insight into how latency is regulated and how it could be therapeutically targeted. To that end, this project has sought to evaluate the functional significance of one such viral gene termed LUNA in the context of latency. In models of experimental latent infection based on primary myeloid cells, levels of viral gene transcription were found to be significantly reduced following infection with LUNA deletion mutant viruses, consistent with corresponding observable changes in post-translational histone modifications over the viral promoters of latency-associated genes. Additionally, using luciferase reporter systems, latency-associated viral gene promoters became activated in response to the expression of wild-type LUNA. Together, these findings argue for a role of LUNA in regulating viral gene expression during latent HCMV infection. One possible mechanism by which LUNA may fulfil its role is by targeting cellular ND10 structures, known intrinsic inhibitors of herpesvirus gene expression, for disruption. In support of this, latently infected cells were found to be devoid of ND10, a phenotype that was recapitulated by the direct expression of wild-type LUNA. Furthermore, mutation studies confirmed the identification of a novel deSUMOylase activity encoded by LUNA that was responsible for mediating ND10 disruption. Use of a catalytically inactive LUNA mutant in transcriptional analyses of latent infection also generated similar results as with the LUNA deletion viruses. Overall, these data support the hypothesis that LUNA serves as an important regulator of viral gene expression during latency, which is likely linked to its ability to target ND10 structures for disruption, thus raising the possibility that inhibition of deSUMOylation may serve as a novel therapeutic strategy to target latent HCMV infection.
|
109 |
Importancia de la metilación y sumoilación de la coilina y del factor de supervivencia de las motoneuronas en el ensamblaje del cuerpo nuclear de CajalTapia Martínez, Olga 08 October 2009 (has links)
Los cuerpos nucleares de Cajal (CBs) son estructuras nucleares implicadas en la biogénesis de ribonucleoproteínas nucleares y nucleolares de pequeño tamaño (snRNPs y snoRNPs) requeridas para el procesamiento nuclear de pre-mRNAs y pre-rRNAs, respectivamente. El CB concentra la proteína coilina, un marcador molecular de esta estructura, snRNPs, el factor de supervivencia de las neuronas motoras (SNM) y las proteínas que comparte con el nucleolo Nopp140 y fibrilarina. Los CB son estructuras dependientes de transcripción, pero los mecanismos de ensamblaje molecular de estos cuerpos nucleares son poco conocidos.En este estudio se utilizan métodos de inmunofluorescencia, expresión ectópica de proteínas del CB y métodos bioquímicos para analizar la importancia de dos modificaciones postraduccionales, la metilación de la coilina y la conjugación con SUMO1 del factor SMN para el ensamblaje molecular de los CBs. Se ha utilizado la línea celular MCF7 como un modelo de hipometilación endógena debido al déficit del gen MTAP. La hipometilación de la coilina conduce al desensamblaje de los CBs y a la relocalización nucleolar de la coilina no metilada. Este efecto revierte en células transfectadas que expresan el gen MTAPwt, indicando que el grado de metilación de la coilina marca su destino nuclear.Respecto a la importancia de la sumoilación en el ensamblaje de los CBs, hemos demostrado la existencia de un subtipo de CBs que concentran SUMO1 y la conjugasa de SUMO Ubc9. En neuronas, hemos detectado la presencia de SUMO durante la fase de reformación de CBs, en la respuesta al estrés. Los experimentos de inmunoprecipitación confirman la interacción de SUMO-1 con el factor SMN y demuestran que la lisina K119, portadora de una secuencia consenso de sumoilación, es esencial para la regulación del número de CBs. / Cajal bodies (CBs) are nuclear structures involved in the biogenesis of small nuclear and nucleolar ribonucleoproteins (snRNPs and snoRNPs) required for nuclear processing of pre-mRNAs and pre-rRNAs, respectively. CBs concentrate the protein coilin, a molecular marker of this structure, snRNPs, the survival of motor neurons factor (SMN) and proteins shared with the nucleolus Nopp140 and fibrillarin. CBs are transcription-dependent structures, but the mechanisms of molecular assembly of these structures are poorly understood.In this study we used inmunofluorescence, ectopic expresion of CB proteins and biochemical methods to analyze the importance of two posttranslational modifications, methylation of coilin and conjugation of SMN with SUMO1, for the molecular assembly of CBs. The cell line MCF7 has been used as a model of endogenous hypomethylation due to the lack of MTAP gene. Coilin hypomethylation leads to the disassembly of CBs and nucleolar relocation of unmethylated coilin. This effect reverses in transfected cells expressing the gene MTAPwt, indicating that the degree of methylation of coilin directs its nuclear destination.On the importance of sumoylation in the assembly of CBs, we have demonstrated the existence of a subset of CBs which concentrate SUMO1 and the SUMO1 conjugase Ubc9. In neurons, we detected the presence of SUMO1 during the reformation of CBs in response to stress. Immunoprecipitation experiments confirm the molecular interaction of SUMO1 with SMN and demonstrate that lysine 119, carrying the SMN sumoylation consensus sequence, is essential for regulating the number of CBs.
|
110 |
Mass Spectrometric Analyses of Post-Translationally Modified Proteins / Massenspektrometrische Analyse post-translational modifizierter ProteineHsiao, He-Hsuan 09 August 2010 (has links)
No description available.
|
Page generated in 0.1012 seconds