• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 540
  • 166
  • 107
  • 75
  • 55
  • 20
  • 18
  • 16
  • 13
  • 10
  • 9
  • 7
  • 5
  • 4
  • 3
  • Tagged with
  • 1185
  • 178
  • 169
  • 144
  • 125
  • 124
  • 118
  • 104
  • 91
  • 88
  • 77
  • 75
  • 74
  • 73
  • 66
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
531

Nichtlineare Kopplungsmechanismen akustischer Oszillatoren am Beispiel der Synchronisation von Orgelpfeifen / Nonlinear coupling mechanisms of acoustical oscillators using the example of synchronization of organ pipes

Fischer, Jost Leonhardt January 2014 (has links)
In dieser Arbeit werden nichtlineare Kopplungsmechanismen von akustischen Oszillatoren untersucht, die zu Synchronisation führen können. Aufbauend auf die Fragestellungen vorangegangener Arbeiten werden mit Hilfe theoretischer und experimenteller Studien sowie mit Hilfe numerischer Simulationen die Elemente der Tonentstehung in der Orgelpfeife und die Mechanismen der gegenseitigen Wechselwirkung von Orgelpfeifen identifiziert. Daraus wird erstmalig ein vollständig auf den aeroakustischen und fluiddynamischen Grundprinzipien basierendes nichtlinear gekoppeltes Modell selbst-erregter Oszillatoren für die Beschreibung des Verhaltens zweier wechselwirkender Orgelpfeifen entwickelt. Die durchgeführten Modellrechnungen werden mit den experimentellen Befunden verglichen. Es zeigt sich, dass die Tonentstehung und die Kopplungsmechanismen von Orgelpfeifen durch das entwickelte Oszillatormodell in weiten Teilen richtig beschrieben werden. Insbesondere kann damit die Ursache für den nichtlinearen Zusammenhang von Kopplungsstärke und Synchronisation des gekoppelten Zwei-Pfeifen Systems, welcher sich in einem nichtlinearen Verlauf der Arnoldzunge darstellt, geklärt werden. Mit den gewonnenen Erkenntnissen wird der Einfluss des Raumes auf die Tonentstehung bei Orgelpfeifen betrachtet. Dafür werden numerische Simulationen der Wechselwirkung einer Orgelpfeife mit verschiedenen Raumgeometrien, wie z. B. ebene, konvexe, konkave, und gezahnte Geometrien, exemplarisch untersucht. Auch der Einfluss von Schwellkästen auf die Tonentstehung und die Klangbildung der Orgelpfeife wird studiert. In weiteren, neuartigen Synchronisationsexperimenten mit identisch gestimmten Orgelpfeifen, sowie mit Mixturen wird die Synchronisation für verschiedene, horizontale und vertikale Pfeifenabstände in der Ebene der Schallabstrahlung, untersucht. Die dabei erstmalig beobachteten räumlich isotropen Unstetigkeiten im Schwingungsverhalten der gekoppelten Pfeifensysteme, deuten auf abstandsabhängige Wechsel zwischen gegen- und gleichphasigen Sychronisationsregimen hin. Abschließend wird die Möglichkeit dokumentiert, das Phänomen der Synchronisation zweier Orgelpfeifen durch numerische Simulationen, also der Behandlung der kompressiblen Navier-Stokes Gleichungen mit entsprechenden Rand- und Anfangsbedingungen, realitätsnah abzubilden. Auch dies stellt ein Novum dar. / In this work non-linear coupling mechanisms in acoustic oscillator systems are examined which can lead to synchronization phenomena. This mechanisms are investigated in particular on organ pipes. Building up on the questions of preceding works the elements of the sound generation are identified using detailed experimental and theoretical studies, as well as numerical simulations. Furthermore the organ pipes interaction mechanisms of the mutual coupling are developed. This leads to a non-linear coupled oscillator model which is developed on the aeroacoustical and fluiddynamical first principles. The carried out model calculations are compared to the experimental results from preceding works. It appears that the sound generation and the coupling mechanisms are properly described by the developed nonlinear coupled model of self-sustained oscillators. In particular the cause can be cleared with it for the non-linear edges of the Arnold tongue of the coupled two-pipe system. With the new knowledge the influence of various space geometries on the sound generation of organ pipes is investigated. With numerical simulations the interaction of an organ pipe and different space geometries, like plane, convex, concave, and ridged geometry is studied. Also the influence of so called swell boxes on the sound generation and the sound pattern of the organ pipe is studied. In further new synchronization experiments with precisely equally tuned pairs of organ pipes, as well as with mixtures the synchronization is examined for various grids of horizontal and vertical pipe distances in the 2D-plane of sound radiation. The spatial discontinuities observed in the oscillation behaviour of the coupled pipe systems, point to changes between anti-phase and in-phase regimes of sychronization depending on pipes distances. Finally the possibility is documented to describe the phenomenon of the synchronization of two organ pipes realisticaly by solving the compressible Navier-Stokes equations numerically.
532

Nested pessimistic transactions for both atomicity and synchronization in concurrent software

Chammah, Tarek January 2011 (has links)
Existing atomic section interface proposals, thus far, have tended to only isolate transactions from each other. Less considered is the coordination of threads performing transactions with respect to one another. Synchronization of nested sections is typically relegated to outside of and among the top-level flattened sections. However existing models do not permit the composition of even simple synchronization constructs such as barriers. The proposed model integrates synchronization as a first-class construct in a truly nested atomic block implementation. The implementation is evaluated on quantitative benchmarks, with qualitative examples of the atomic section interface???s expressive power compared with conventional transactional memory implementations.
533

Towards Design of Lightweight Spatio-Temporal Context Algorithms for Wireless Sensor Networks

Martirosyan, Anahit 29 March 2011 (has links)
Context represents any knowledge obtained from Wireless Sensor Networks (WSNs) about the object being monitored (such as time and location of the sensed events). Time and location are important constituents of context as the information about the events sensed in WSNs is comprehensive when it includes spatio-temporal knowledge. In this thesis, we first concentrate on the development of a suite of lightweight algorithms on temporal event ordering and time synchronization as well as localization for WSNs. Then, we propose an energy-efficient clustering routing protocol for WSNs that is used for message delivery in the former algorithm. The two problems - temporal event ordering and synchronization - are dealt with together as both are concerned with preserving temporal relationships of events in WSNs. The messages needed for synchronization are piggybacked onto the messages exchanged in underlying algorithms. The synchronization algorithm is tailored to the clustered topology in order to reduce the overhead of keeping WSNs synchronized. The proposed localization algorithm has an objective of lowering the overhead of DV-hop based algorithms by reducing the number of floods in the initial position estimation phase. It also randomizes iterative refinement phase to overcome the synchronicity of DV-hop based algorithms. The position estimates with higher confidences are emphasized to reduce the impact of erroneous estimates on the neighbouring nodes. The proposed clustering routing protocol is used for message delivery in the proposed temporal algorithm. Nearest neighbour nodes are employed for inter-cluster communication. The algorithm provides Quality of Service by forwarding high priority messages via the paths with the least cost. The algorithm is also extended for multiple Sink scenario. The suite of algorithms proposed in this thesis provides the necessary tool for providing spatio-temporal context for context-aware WSNs. The algorithms are lightweight as they aim at satisfying WSN's requirements primarily in terms of energy-efficiency, low latency and fault tolerance. This makes them suitable for emergency response applications and ubiquitous computing.
534

The assessment of waveform distortion in power systems : validation of methods based on single-point measurements / Duan Serfontein

Serfontein, Duan January 2011 (has links)
The portion of energy converted by non-linear loads in the modern power system is increasing due to the energy-efficiency and sophistication possible with power electronics. Higher voltage and energy ratings are continuously forthcoming. These devices draw non-linear currents resulting in voltage waveform distortion at the Point of Common Coupling due to non-zero supply impedances between voltage source and the PCC. With the increase in waveform distortion comes the demand for better Quality of Supply management. The verification and quantification of the origin of waveform distortion in a power system is a continuous field of study and forms a critical part of the mitigation design. Methods utilizing single-point measurements, usually taken at the Point of Common Coupling, for the assessment of the harmonic distortion generated by loads are continuously being published. It’s been proven by means of computer simulations and laboratory experiments that in an interconnected network where multiple sources of distortion exist that loads have the ability to exchange harmonic active power between each other. This project investigates the latter statement by conducting practical experiments to conclude that loads have the ability to exchange harmonic active power and that multiple synchronized measurements should be taken to assess the harmonic distortion due to a load. Laboratory experiments are carried utilizing an acknowledged single point measurement method. The results are compared to the direction of harmonic active power obtained from utilizing multiple synchronized measurements. To further the information obtained from the laboratory experiments, practical experiments were conducted utilizing the same methods. The results obtained coincided with the results of previously conducted experiments of which the results were published. From the results obtained it was concluded that in an interconnected network where multiple sources of distortion exist that loads have the ability to exchange harmonic active power between each other. Furthermore it was proven that the single point measurement method investigated presented inconsistent results. Ultimately it was concluded that the reason for the inconsistency was due to the fact that loads have the ability to exchange harmonic active power and that the single point measurement failed to acknowledge this. / Thesis (M.Ing. (Electrical and Electronic Engineering))--North-West University, Potchefstroom Campus, 2012
535

Effect of Distributed Delays in Systems of Coupled Phase Oscillators

Wetzel, Lucas 08 March 2013 (has links) (PDF)
Communication delays are common in many complex systems. It has been shown that these delays cannot be neglected when they are long enough compared to other timescales in the system. In systems of coupled phase oscillators discrete delays in the coupling give rise to effects such as multistability of steady states. However, variability in the communication times inherent to many processes suggests that the description with discrete delays maybe insufficient to capture all effects of delays. An interesting example of the effects of communication delays is found during embryonic development of vertebrates. A clock based on biochemical reactions inside cells provides the periodicity for the successive and robust formation of somites, the embryonic precursors of vertebrae, ribs and some skeletal muscle. Experiments show that these cellular clocks communicate in order to synchronize their behavior. However, in cellular systems, fluctuations and stochastic processes introduce a variability in the communication times. Here we account for such variability by considering the effects of distributed delays. Our approach takes into account entire intervals of past states, and weights them according to a delay distribution. We find that the stability of the fully synchronized steady state with zero phase lag does not depend on the shape of the delay distribution, but the dynamics when responding to small perturbations about this steady state do. Depending on the mean of the delay distribution, a change in its shape can enhance or reduce the ability of these systems to respond to small perturbations about the phase-locked steady state, as compared to a discrete delay with a value equal to this mean. For synchronized steady states with non-zero phase lag we find that the stability of the steady state can be altered by changing the shape of the delay distribution. We conclude that the response to a perturbation in systems of phase oscillators coupled with discrete delays has a sharper functional dependence on the mean delay than in systems with distributed delays in the coupling. The strong dependence of the coupling on the mean delay time is partially averaged out by distributed delays that take into account intervals of the past.
536

Timing and synchronization of low data rate ultra-wideband systems using data-aided auto-correlation method

Zhang, Rongrong 21 April 2008 (has links)
For low data rate ultra-wideband (UWB) communication systems employing non-coherent detection and autocorrelation detection schemes, timing of integration region significantly affects their error rate performance. Time-of-arrival (TOA) estimation of the first channel tap is also the foundation of the UWB based ranging applications. In this thesis, a data-aided, autocorrelation based timing and synchronization method is developed. First, estimation of the optimal integration region, i.e., the initial point and the length of the integration, using the new timing method is presented. It is shown that the proposed method enhances the error rate performance compared to non-optimal integration region-determining methods. After that, TOA estimation using the proposed timing method is studied for the dual pulse (DP) signal structure. The performance improvement of this approach over the conventional energy detection based method is demonstrated via simulation.
537

Optimizing synchronization cost for mobile devices: the Expedient Trickle Sync algorithm

Barclay, Brad 17 January 2009 (has links)
In this thesis, I propose an algorithm for optimizing the cost involved with synchronizing the data contained in mobile wireless devices, named Expedient Trickle Sync (ETS). In this thesis, I focus on two significant cost factors: firstly, that of the cost of transmitting information across the network, and secondly, the cost associated with user access to out-of-date information. The ETS algorithm attempts to balance these two cost factors via a simple set of heuristics which calculate at regular intervals a test value, based on a variety of observations, and a threshold value which is recalculated on a daily basis. Additionally, the ETS algorithm will prioritize records based on their probability of access and the cost associated with synchronizing them, thus possibly deferring the synchronization of records with a low probability of access until it is possible to resolve their replication in a lower-cost network environment. This thesis evaluates the ETS algorithm alongside other optimistic replication algorithms in a custom developed simulation environment, the results of which show that in many use scenarios, the ETS algorithm can indeed reduce the cost of data synchronization.
538

Performance Enhancement for Wireless Networks: Modulation, Clock Synchronization and Resource Management

Yang, Zhe 08 May 2013 (has links)
Wireless networks become more and more important in modern information systems as the last mile/meter solutions, thanks to the flexibility of mobile access to facilitate Internet access anytime, anywhere. Given the limited resources, e.g., spectrum and energy supplies, to meet the ever increasing demand for wireless data services, new approaches are beckoned to enhance the spectrum and energy efficiency. We investigate this problem from three important aspects, digital modulation, clock synchronization and concurrent transmission scheduling. The contributions of this dissertation are four-fold. First, we employ the cross-layer design to explore the spatial diversity and broadcast nature of wireless links and propose a novel network modulation scheme that can superpose the information bits of different priorities into one symbol. It offers a new dimension to improve the network throughput since we can flexibly configure the transmission according to the channels among transceivers. Moreover, it is compatible with the main-stream hardware and we just need a software upgrade to implement the idea. Second, we propose modulation schemes based on hexagonal tiling, which is known to be the most compact way of two-dimensional regular tiling. In order to fully utilize the advantage of hexagonal constellation, we employ the non-binary error controlcoding since the number of constellation points of hexagonal constellation is not necessarily to be an integer power-of-two. The feasibility of these new modulation schemes is verified by the prototype system based on the software defined radio platform USRP2 and GNU Radio. Third, to facilitate a wide range of wireless communications technologies and protocols, clock synchronization among several wireless devices is a fundamental requirement. We investigated this problem by tracing to the source of clock desynchronization, which is the clock skew. However, as shown by measurement results, the clock skew is not constant and related to the working temperature. We propose a novel clock skew estimation algorithm that can leverage the temperature information to accurately estimate the clock skew. Based on the estimation results, we propose a clock synchronization scheme that can directly remove the clock skew according to the working temperature. Fourth, the traditional time-sharing based scheduling schemes usually schedule one transmission within certain area. The emerging broadband wireless devices can dynamically adjust the transmitted data rate according to the received signal to interference and noise ratio (SINR). Allowing concurrent transmissions may be more efficient, while optimal scheduling problem for concurrent transmissions is an NP-hard problem. We propose simple yet effective heuristic algorithms that can significantly improve the system throughput with moderate computational complexity. / Graduate / 0544 / yangzhe2007@gmail.com
539

Wavelet Frequency-Temporal Relative Phase Pattern of the Surface Electromyogram for Investigation of Intramuscular Synchronization

CHAN, CALVIN WING YIU 13 September 2011 (has links)
Cross-correlation is often used as the primary technique to compare two biological signals. The cross-correlation technique is an effective means to measure the synchronization of two signals if the relative phases at all frequencies are distributed linearly, that is, there is a group delay. The group delay assumption of cross-correlation analysis imposes an unfavourable restriction on signals with relative phase correlation which varies at different frequencies. Traditional Fourier analysis applied to a short data segments, namely the Short Time Fourier Transform (STFT), provides phase information for each frequency component, but it is not suitable for biological signals with non-stationary statistics for which the ideal segment length is unknown. The application of a wavelet based phase analysis technique is discussed in this study. The frequency decomposition and temporally localized nature of the wavelet transform provides localized phase-frequency information for two signals. A wavelet frequency temporal relative phase pattern (WFT-RPP) technique to extract relative phase information at specific frequencies over the time course of a time-varying signal was developed. The technique was tested on simulated data and surface electromyographic (sEMG) data recorded from upper limb muscles in human subjects as they performed a series of dynamic push and pull tasks. Selected sEMG channel pairs are compared against each other using the WFT-RPP technique to extract the relative phase information and repetitive relative phase patterns for certain muscle pairs were observed. The properties of the WFT-RPP and the merits and weaknesses of using the technique for determining intermuscular sEMG synchronization is discussed. / Thesis (Master, Electrical & Computer Engineering) -- Queen's University, 2011-09-13 11:58:16.014
540

Model Synchronization for Software Evolution

Ivkovic, Igor 26 August 2011 (has links)
Software evolution refers to continuous change that a software system endures from inception to retirement. Each change must be efficiently and tractably propagated across models representing the system at different levels of abstraction. Model synchronization activities needed to support the systematic specification and analysis of evolution activities are still not adequately identified and formally defined. In our research, we first introduce a formal notation for the representation of domain models and model instances to form the theoretical basis for the proposed model synchronization framework. Besides conforming to a generic MOF metamodel, we consider that each software model also relates to an application domain context (e.g., operating systems, web services). Therefore, we are addressing the problems of model synchronization by focusing on domain-specific contexts. Secondly, we identify and formally define model dependencies that are needed to trace and propagate changes across system models at different levels of abstraction, such as from design to source code. The approach for extraction of these dependencies is based on Formal Concept Analysis (FCA) algorithms. We further model identified dependencies using Unified Modeling Language (UML) profiles and constraints, and utilize the extracted dependency relations in the context of coarse-grained model synchronization. Thirdly, we introduce modeling semantics that allow for more complex profile-based dependencies using Triple Graph Grammar (TGG) rules with corresponding Object Constraint Language (OCL) constraints. The TGG semantics provide for fine-grained model synchronization, and enable compliance with the Query/View/Transformation (QVT) standards. The introduced framework is assessed on a large, industrial case study of the IBM Commerce system. The dependency extraction framework is applied to repositories of business process models and related source code. The extracted dependencies were evaluated by IBM developers, and the corresponding precision and recall values calculated with results that match the scope and goals of the research. The grammar-based model synchronization and dependency modelling using profiles has also been applied to the IBM Commerce system, and evaluated by the developers and architects involved in development of the system. The results of this experiment have been found to be valuable by stakeholders, and a patent codifying the results has been filed by the IBM organization and has been granted. Finally, the results of this experiment have been formalized as TGG rules, and used in the context of fine-grained model synchronization.

Page generated in 0.0179 seconds