• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 22
  • 9
  • 8
  • 5
  • 4
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 69
  • 13
  • 10
  • 8
  • 8
  • 8
  • 7
  • 7
  • 7
  • 7
  • 5
  • 5
  • 5
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Advanced Methods, Materials, and Devices for Microfluidics

White, Celesta E. 26 November 2003 (has links)
Advanced Methods, Materials, and Devices for Microfluidics Celesta E. White 217 Pages Directed by Dr. Clifford L. Henderson Microfluidics is a rapidly growing research area that has the potential to influence a variety of industries from clinical diagnostics to drug discovery. Unlike the microelectronics industry, where the current emphasis is on reducing the size of transistors, the field of microfluidics is focusing on making more complex systems of channels with more sophisticated fluid-handling capabilities, rather than reducing the size of the channels. While lab-on-a-chip devices have shown commercial success in a variety of biological applications such as electrophoretic separations and DNA sequencing, there has not been a significant amount of progress made in other potential impact areas for microfluidics such as clinical diagnostics, portable sensors, and microchemical reactors. These applications can benefit greatly from miniaturization, but advancement in these and many other areas has been limited by the inability or extreme difficulty in fabricating devices with complex fluidic networks interfaced with a variety of active and passive electrical and mechanical components. Several techniques exist for the fabrication of microfluidic devices, but these methods have significant limitations, and alternative fabrication approaches are currently desperately needed. One such method that shows promise for its ability to integrate the desired high levels of functionality utilizes thermally sacrificial materials as place holders. An encapsulating overcoat material provides structural stability and becomes the microchannel walls when the sacrificial material is removed from the channel through thermal decomposition. Disadvantages of this method, however, include numerous processing steps required for sacrificial layer patterning and elevated temperatures needed for the decomposition of initial sacrificial materials. These limitations keep this method from becoming an economical alternative for microfluidic device fabrication. The materials needed for this method to reach its full potential as a valid fabrication technology for m-TAS are not currently available, and it was a major focus of this work to develop and characterize new sacrificial materials, particularly photosensitive polycarbonate systems. In addition to the development of new sacrificial polymers, the framework for a working microfluidic device was developed to show that this concept will indeed provide significant advancements in the development of future generations of microfluidic systems. Finally, novel fabrication methods for microfluidics through combined imprinting and photopatterning of photosensitive sacrificial materials was demonstrated.
22

Polymer-Based Wafer-Level Packaging of Micromachined HARPSS Devices

Monadgemi, Pezhman 18 May 2006 (has links)
This thesis reports on a new low-cost wafer-level packaging technology for microelectromechanical systems (MEMS). The MEMS process is based on a revised version of High Aspect Ratio Polysilicon and Single Crystal Silicon (HARPSS) technology. The packaging technique is based on thermal decomposition of a sacrificial polymer through a polymer overcoat followed by metal coating to create resizable MEMS packages. The sacrificial polymer is created on top of the active component including beams, seismic mass, and electrodes by photodefining, dispensing, etching, or molding. The low loss polymer overcoat is patterned by photodefinition to provide access to the bond pads. The sacrificial polymer decomposes at temperatures around 200-280aC and the volatile products permeate through the overcoat polymer leaving an embedded air-cavity. For MEMS devices that do not need hermetic packaging, the encapsulated device can then be handled and packaged like an integrated circuit. For devices that are sensitive to humidity or need vacuum environment, hermiticity is obtained by deposition and patterning thin-film metals such as aluminum, chromium, copper, or gold. To demonstrate the potential of this technology, different types of capacitive MEMS devices have been designed, fabricated, packaged, and characterized. These includes beam resonators, RF tunable capacitors, accelerometers, and gyroscopes. The MEMS design includes mechanical, thermal, and electromagnetic analysis. The device performance, before and after packaging is compared and the correlation to the model is presented. The following is a summary of the main contributions of this work to the extensive research focused on MEMS and their packaging: 1)A new low-cost wafer-level packaging method for bulk or surface micromachined devices including resonators, RF passives and mechanical sensors is reported. This technique utilizes thermal decomposition of a sacrificial polymer through an overcoat polymer to create buried channels on top of the resonant/movable parts of the micromachined device. It provides small interconnections together with resizable package dimensions. We report MEMS package thicknesses in the range of 10 mm to 1 mm, and package size from 0.0001 mm to 1 mm. 2)A revised version of the HARPSS technology is presented to implement high aspect ratio silicon capacitors, resonators and inertial sensors in the smallest area.
23

Digital representation and constructability of minimal surfaces in concrete

Keskin, Zeynep 21 September 2015 (has links)
This thesis investigates minimal surfaces in design and researches their potential for constructability in concrete through the creation of physical prototypes with the design of two mold making processes, one being sacrificial and the other reusable. The study starts by acknowledging that minimal surfaces have been extensively explored in the field of differential geometry for decades. In spite of the availability of geometric definitions which provide the basic background for digital model generation (which in this text is assumed to be equal to design itself), minimal surfaces inspired very few people in their architectural design. This study attempts to look into the wider implications of minimal surfaces for architecture by taking up the challenge of designing and realizing various processes of mold making for the fabrication of such surfaces in concrete. Throughout this study, a gradient of complexity in the definition and digital modeling of minimal surfaces will be included as well as a variety of production methods in a research and fabrication based process, in order to investigate the correlation between what can be designed and what can be produced. I shall begin with a historical survey of the constructability of surfaces in thin shell concrete to provide background information for the reader. This chapter on the evolution of concrete structures presents a compilation of selected projects to illustrate the progress of thin shell construction throughout the history of architecture. It is here that I review what happened, why, and who made it possible. I draw heavily on published scholarly studies as most of the selected projects are cornerstones of the evolution of architecture and have been discussed by many others. Here, I simply attempt to remind the reader of the achievements of these projects in order to justify why investigation of the constructability of minimal surfaces may be the next step in the evolutionary process. After this section, the mathematics of surfaces in the complex plane is discussed based on information retrieved from many excellent resources. Here, the intention is to acquire information related to descriptions of various minimal surface types in differential geometry in order to be able to generate their representations in the digital environment. It would have been impossible to generate digital representations of minimal surfaces without the knowledge acquired through these descriptions. The last section provides a comparison of ruled surfaces and minimal surfaces meant to reveal the similarities and differences of such surfaces with regard to the principles of digital representation and fabrication. It provides insight into various fabrication techniques and materials to illuminate the design of a making process in which the goal is to know and control every parameter regarding both the design and fabrication of an object. The discussion of the design of a making process for a complexly shaped object provided in this part is followed by discussion of casting prototypes in concrete. In that section, the subject matter is the design and testing of various mold making techniques for the production of concrete prototypes of a selected minimal surface geometry. This section presents an increasing complexity of mold making from a sacrificial mold to a reusable mold.
24

Measuring the effect of cathodic protection on the performance of thermally sprayed aluminium coatings at elevated temperature / Avaliação do efeito da proteção catódica no desempenho do revestimento de alumínio pulverizado termicamente submetido a altas temperaturas

Cé, Nataly Araújo January 2017 (has links)
Alumínio Pulverizado Termicamente (TSA) é amplamente utilizado em instalações offshore como revestimento de ânodo de sacrifício em tubulações de aço carbono. O transporte e a instalação desses componentes podem levar a pequenos danos no revestimento, o que pode expor a superfície do aço à água do mar. Sabe-se que o depósito calcário é formado na superfície do aço polarizado catodicamente. Assim, esta pesquisa avaliou o TSA aplicado por sistema de pulverização de arco duplo (TWAS) no aço ao carbono S355J2 + N quando ocorrem danos (holidays) para estudar a formação de depósitos calcários no aço e adquirir dados sobre o desempenho do TSA sob altas temperaturas. A aplicação de diferentes condições também foi considerada: presença de selantes; liga do revestimento (99,5% de Al e Al-5% de Mg) e condições enterradas/não enterradas. Dois tipos de experimentos foram realizados: i) testes em potencial livre sob temperaturas constantes (30, 60 e 90°C) e diferentes tamanhos de holidays (expondo 5, 10 e 20% da superfície do aço) e ii) testes sob gradient térmico onde óleo a ~125°C foi adicionado em uma torre polimérica e água externa a ~10°C ficou em contato com a superfície das amostras (tanto potencial livre como polarização de -950 mVAg/AgCl foram aplicados). Análises incluíram inspeção visual, microscópio eletrônico de varredura e difração de Raio-X. A partir dos testes em temperaturas constante, o TSA atingiu um bom potencial de proteção (-800 a -900 mVAg/AgCl) e pouca diferença nos resultados devido à diferença na composição doTSA e no tamanho do holiday foi observada. As taxas de corrosão foram mantidas entre 0,02 e 0,01 mm/ano. No ensaio sob gradiente térmico e potencial livre, a perda de revestimento e as taxas de corrosão foram de 0,4 a 0,002 mm/ano. Além disso, o potencial alcançado foi de uma faixa menor do que a obtida anteriormente (-745 a -835 mVAg/AgCl). No entanto, quando o TSA foi combinado com proteção catódica externa e gradiente térmico, a espessura do TSA foi satisfatório e as taxas de corrosão obtidas foram inferiores a 0,076 mm/ano. O depósito calcário formado no holiday protegeu o aço contra a corrosão e seu mecanismo de crescimento baseado nesta pesquisa foi construído. / Thermally Sprayed Aluminium (TSA) is widely used in offshore facilities as sacrificial anode coating for carbon-steel risers and pipelines. Transportation and installation of those components can lead to small damages in the coating, which can expose the steel surface to the seawater. It is known that calcareous deposit is formed on the cathodically polarised steel surface. Thus, this research evaluated the TSA applied by twin wire arc spray system (TWAS) on S355J2+N carbon-steel when damage (holidays) is present in order to study the calcareous deposit formation on steel and acquire data regarding the TSA performance at high temperatures. Application of different conditions was also considered: presence of sealing; coating alloy (99.5%Al and Al-5%Mg) and buried/unburied conditions. Generally, two types of experiment were conducted – i) tests at free potential at steady temperatures (30, 60 and 90°C) and different holiday sizes (exposing 5, 10 and 20% of the steel surface) and ii) tests under thermal gradient where oil at ~125°C was added in polymeric tower and external water at ~10°C was in contact with the samples surface (both free potential and polarisation of -950 mVAg/AgCl were applied). Methodology of analyses included visual inspection, scanning electron microscope and X-ray Diffraction. From the tests at steady temperatures, the TSA reached a very good protective potential (-800 to -900 mVAg/AgCl) and little difference in results due to difference in TSA composition and holiday size was observed. Corrosion rates were kept between 0.02 and 0.01 mm/year. From the thermal gradient test under free potential, the coating loss and corrosion rates were 0.4 to 0.002 mm/year. Also, the potential achieved was in a lower range than previously obtained (-745 to -835 mVAg/AgCl). However, when TSA was combined with external cathodic protection and thermal gradient, the thickness of the TSA was satisfactory and corrosion rates obtained were below 0.076 mm/year. The calcareous deposit formed within the holiday protected the steel substrate against corrosion and its growth mechanism based in this research was built.
25

Measuring the effect of cathodic protection on the performance of thermally sprayed aluminium coatings at elevated temperature / Avaliação do efeito da proteção catódica no desempenho do revestimento de alumínio pulverizado termicamente submetido a altas temperaturas

Cé, Nataly Araújo January 2017 (has links)
Alumínio Pulverizado Termicamente (TSA) é amplamente utilizado em instalações offshore como revestimento de ânodo de sacrifício em tubulações de aço carbono. O transporte e a instalação desses componentes podem levar a pequenos danos no revestimento, o que pode expor a superfície do aço à água do mar. Sabe-se que o depósito calcário é formado na superfície do aço polarizado catodicamente. Assim, esta pesquisa avaliou o TSA aplicado por sistema de pulverização de arco duplo (TWAS) no aço ao carbono S355J2 + N quando ocorrem danos (holidays) para estudar a formação de depósitos calcários no aço e adquirir dados sobre o desempenho do TSA sob altas temperaturas. A aplicação de diferentes condições também foi considerada: presença de selantes; liga do revestimento (99,5% de Al e Al-5% de Mg) e condições enterradas/não enterradas. Dois tipos de experimentos foram realizados: i) testes em potencial livre sob temperaturas constantes (30, 60 e 90°C) e diferentes tamanhos de holidays (expondo 5, 10 e 20% da superfície do aço) e ii) testes sob gradient térmico onde óleo a ~125°C foi adicionado em uma torre polimérica e água externa a ~10°C ficou em contato com a superfície das amostras (tanto potencial livre como polarização de -950 mVAg/AgCl foram aplicados). Análises incluíram inspeção visual, microscópio eletrônico de varredura e difração de Raio-X. A partir dos testes em temperaturas constante, o TSA atingiu um bom potencial de proteção (-800 a -900 mVAg/AgCl) e pouca diferença nos resultados devido à diferença na composição doTSA e no tamanho do holiday foi observada. As taxas de corrosão foram mantidas entre 0,02 e 0,01 mm/ano. No ensaio sob gradiente térmico e potencial livre, a perda de revestimento e as taxas de corrosão foram de 0,4 a 0,002 mm/ano. Além disso, o potencial alcançado foi de uma faixa menor do que a obtida anteriormente (-745 a -835 mVAg/AgCl). No entanto, quando o TSA foi combinado com proteção catódica externa e gradiente térmico, a espessura do TSA foi satisfatório e as taxas de corrosão obtidas foram inferiores a 0,076 mm/ano. O depósito calcário formado no holiday protegeu o aço contra a corrosão e seu mecanismo de crescimento baseado nesta pesquisa foi construído. / Thermally Sprayed Aluminium (TSA) is widely used in offshore facilities as sacrificial anode coating for carbon-steel risers and pipelines. Transportation and installation of those components can lead to small damages in the coating, which can expose the steel surface to the seawater. It is known that calcareous deposit is formed on the cathodically polarised steel surface. Thus, this research evaluated the TSA applied by twin wire arc spray system (TWAS) on S355J2+N carbon-steel when damage (holidays) is present in order to study the calcareous deposit formation on steel and acquire data regarding the TSA performance at high temperatures. Application of different conditions was also considered: presence of sealing; coating alloy (99.5%Al and Al-5%Mg) and buried/unburied conditions. Generally, two types of experiment were conducted – i) tests at free potential at steady temperatures (30, 60 and 90°C) and different holiday sizes (exposing 5, 10 and 20% of the steel surface) and ii) tests under thermal gradient where oil at ~125°C was added in polymeric tower and external water at ~10°C was in contact with the samples surface (both free potential and polarisation of -950 mVAg/AgCl were applied). Methodology of analyses included visual inspection, scanning electron microscope and X-ray Diffraction. From the tests at steady temperatures, the TSA reached a very good protective potential (-800 to -900 mVAg/AgCl) and little difference in results due to difference in TSA composition and holiday size was observed. Corrosion rates were kept between 0.02 and 0.01 mm/year. From the thermal gradient test under free potential, the coating loss and corrosion rates were 0.4 to 0.002 mm/year. Also, the potential achieved was in a lower range than previously obtained (-745 to -835 mVAg/AgCl). However, when TSA was combined with external cathodic protection and thermal gradient, the thickness of the TSA was satisfactory and corrosion rates obtained were below 0.076 mm/year. The calcareous deposit formed within the holiday protected the steel substrate against corrosion and its growth mechanism based in this research was built.
26

Influence de la nanostructuration sur le comportement à la corrosion de revêtements multicouches élaborés par PVD / Study on the nanostructuration influence on corrosion behavior of multilayer PVD coatings

Perez, Andréa 21 October 2011 (has links)
Cette thèse se place dans le cadre d’un projet ANR qui vise à remplacer des dépôts électrolytiques sacrificiels par des dépôts PVD à base d’aluminium, moins néfastes pour l’environnement. Trois critères ont été définis :un comportement sacrificiel avec de faibles cinétiques de dissolution, une bonne résistance au grippage et la possibilité d’élaboration du dépôt avant emboutissage du substrat acier. Des revêtements monocouches ont été élaborés pour étudier l’effet d’un élément d’alliage dans l’aluminium. Certains éléments (Mo, Mn) améliorent les propriétés mécaniques et d’autres (Mg, Zn) les propriétés sacrificielles des revêtements. Cette étude a permis de mettre en évidence qu’il est difficile de combiner de bonnes propriétés mécaniques et sacrificielles. Pour pallier à ce problème, deux voies peuvent être explorées. L’élaboration d’alliages ternaires et celle d’architectures multicouches.Ce travail s’est focalisé de manière plus approfondie sur la deuxième voie. Des architectures multicouches ont été élaborées avec deux types de couches, chaque type de couche possédant l’une des deux propriétés souhaitées pour le revêtement. Les configurations étudiées sont les suivantes : Al-Mo/Al-Zn, Al-Mo/Al-Mg et Al-Mn/Al-Mg, avec différentes périodes. Cette étude a permis de trouver une architecture multicouche qui répond tout à fait aux deux premiers critères :Al-Mn/Al-Mg 15 nm.Une étude préliminaire en corrosion après déformation a été réalisée sur cette dernière. Elle perd son caractère sacrificiel en immersions salines de 48h à partir de 1% de déformation. L’optimisation des paramètres de dépôt pour améliorer la tenue mécanique de cette architecture est une prochaine étape. / This work is part of an ANR project which purpose is to find an alternative to sacrificial electrolytic coatingsusing aluminium-based PVD coatings, which are more environmental friendly. Three main parameters weredefined : a sacrificial behavior, good tribological properties and the possibility to elaborate the coatings before shaping the steel substrate. Monolayer coatings were elaborated to study the impact of an alloying element on aluminium properties. Some alloying elements increase mechanical properties (Mo, Mn) while others enhance the electrochemical behavior (Mg, Zn). To combine both properties, two methods can be used. Either the elaboration ofternary alloys or the elaboration of multilayer coatings. This work is focused on the second way. Some multilayercoatings were proposed with two types of layers, each type presenting one interesting property. This study permitted to find a multilayer architecture fitting very well two parameters required for the project.A preliminary study on this architecture was lead with electrochemical characterization after strain. The architecture loses its sacrificial behavior after 1% strain in 48h immersion. Two of the three requested criteria are found.The next step of this work would be the optimization of the process parameters to enhance the adhesion of the coating so the third parameter is achieved.
27

Stabilisation of arsenic in contaminated soil using iron distributed by electricity

Engström, Kajsa January 2021 (has links)
In Boden, northern part of Sweden, there is a site called Solgårdarna which has been used for wood impregnation. The activities on the site have led to soil contamination with chrome (Cr), copper (Cu) and arsenic (As), where the arsenic contamination is the most problematic. This master’s thesis has studied the possibility to stabilise As in-situ with iron (Fe). The aim of the thesis was to investigate how well the distribution of Fe in the soil with the help of electrokinetics occurs. The work was divided into 3 parts, where part 1 and part 2 were performed in the laboratory and part 3 was performed in field. Part 1 investigated how Fe can distribute depending on how the electrodes were connected. This was done using quartz sand so visual assessment of the distribution could be done. Part 2 used the results from part 1 for a similar experiment performed on soil from Solgårdarna to see how stabilisation of As in the soil will work. Part 3 was a field test at Solgårdarna where it was tested on a pilot scale. Part 1 of was performed in two sets, 7 days each. It showed that it is possible to spread iron in the sand with the help of this method. The sand experiments achieved a covering area of 27 % respectively 28 % of rust over the entire profile during one week. Measurement with the XRF showed that where the electrode had been located the concentration of Fe increased up to 0.21-0.29 % and the concentration of Fe between the electrodes were 0.04-0.06 %. Part 2 of the experiment was performed in one setup over a 51-day period, after day 35 the experimental setup was changed due to highly fluctuating pH. The results from the experiment with soil showed that the pH is highly affected by how long the electrodes close to the sampling points were anodes or cathodes. During the experiment, a general trend for increasing As concentration in the different locations in the cell were seen. After the experiment the leachable amounts of As decreased down to 0.8-1.7 mg/kg TS compared to the untreated soil, 2.9 mg/kg TS. Part 3 of the experiment represent a 2-month field pilot test period during the autumn. Towards the end of the sampling period there was a general decrease in dissolved As and Fe in the groundwater, during the same time the groundwater level decreased, the redox potential increased and the electrical conductivity decreased. The laboratory experiments with the sand showed a removal rate around 90 % or higher, which is a good result. Those experiments were however performed using a clean inert material which is not comparable with real conditions. The field experiment was done over a short period of time due to time limitations of this thesis, while follow up of the pilot test was done within the scope of a continued research project at LTU. The given results showed a decrease in dissolved arsenic in groundwater which is a positive result. To determine whether the decrease is due to the natural adsorption of As to soil or due to the impact of provided Fe oxides requires longer monitoring of the experiment.
28

Příprava nadeutektických slitin hliníku s využitím obětovatelných povlaků / Formation of Hypereutectic Aluminium Alloys Using Sacrificial Coatings

Gregor, Martin January 2014 (has links)
Master‘s thesis deals with the forming of hypereutectic aluminium alloys using sacrificial coatings. Literature research is focused on analysing the characteristics of aluminium and its alloys. Attention is also focused to the heat treatment of aluminium alloys and the influence of alloying elements on these alloys. Analysis of characteristics and increase the useful properties of Al - Ni alloys is another object of literary research. Attention is also focused to the analysis of thermal spraying methods by focusing on the principle of individual methods and the characteristics of the coatings made by these methods. The object of experimental part is to prepare the hypereutectic aluminium alloys using sacrificial nickel based coatings. This is an unconventional manufacturing process comprising coating the surface of the aluminium substrate with using HVOF technology and subsequent thermal exposure. Furthermore, the work deals with the metallographic evaluation of prepared samples with a particular focus on the influence of temperature and time of heat treatment on the final structure of the experimental samples.
29

Development of Alternating Current Scanning Electrochemical Methods to Map Chemical Species

Kaumal, Migelhewa Nidarsha 12 May 2012 (has links)
This dissertation focuses on developing new methods using the scanning electrochemical microscope (SECM) to produce chemical concentration maps of different chemical species on various surfaces. Reactive oxygen species (ROS) and transition metal ion maps were generated, indicating the presence or absence of relative types of chemical species on the surface. Imaging of both species was based on a modified scanning UME tip and monitoring the change in the tip impedance. 4-Nitrobenzenediazonium tetrafluoroborate was used as the main modifier, and resultant nitrophenyl groups on the modified electrodes were electrochemically converted to aniline to yield the two types of modified electrodes. In the presence of ROS, a permanent change in the impedance accompanies reaction of the surface layer with the ROS, and this change can be used to map the localized reactive species. The spot scanning method was introduced over continuous scanning to enhance the sensitivity. This enhanced method generated a more effective method to map ROS compared to the diAC/dxmajor image in the continuous scanning method. Images obtained by this sacrificial method show that alternating current SECM (AC-SECM) can be used to map ROS on a surface. The capacitive change gives direct indication of the concentration of these highly reactive species. Transition metal ions showed a partially reversible adsorption with aniline-modified electrodes. Localized concentrations of buffered copper and nickel divalent cations were generated by pumping through a micro-capillary embedded in a substrate. Copper and nickel ions on these substrates were mapped successfully. A solution of calcium ions was used as the negative control. Biased nickel, copper, and lead wire-embedded substrates were line scanned to validate these results. An aniline-modified electrode was placed away from the metal wire and the time taken for metal ions to reach the electrode tip was measured after a voltage pulse. These data were compared with calculated diffusion times. Both systems were optimized using the medium pH, scan rates, and tip potentials. AC-SECM coupled with modified electrodes showed the capability of mapping both ROS and some transition metal ions semi-quantitatively.
30

Microfabrication and Evaluation of Planar Thin-Film Microfluidic Devices

Peeni, Bridget Ann 05 October 2006 (has links) (PDF)
Over the past 15 years, research in the field of microfluidics has rapidly gained popularity. By seeking to miniaturize and automate separation-based analysis, microfluidic research seeks to improve current methods through decreased cost, analysis time, and sources of contamination. My work has focused on developing a novel fabrication method, based on standard microfabrication techniques, to create thin-film microfluidic devices. This microfabrication format makes it possible to generate devices that provide high efficiencies, enable mass fabrication, and provide a platform capable of integrating the microfluidic and electronic components necessary for a micro-total analysis system (μ-TAS). Device fabrication combines the processes of photolithography, thermal evaporation, plasma enhanced chemical vapor deposition (PECVD), and wet chemical etching to ultimately provide hollow-core channels. When these microcapillaries are filled with buffer and potentials are applied across them, control of the flow in the channels can be established. By designing intersecting microchannels having an offset “T†geometry, I have been able to inject and electrophoretically separate three fluorescently labeled amino acids and obtain efficiencies of over 2500 theoretical plates. Through the addition of commercially available electroosmotic flow reducing coatings, I have been able to improve the separation of these amino acids, decreasing the run time by approximately 6 fold and increasing the efficiency by as much as 10 fold. Through the use of these coatings I have also been able to carry out electrophoretic separations of three peptides. My most recent work has focused on the polymerization of acrylamide gels in these channels. A method for the selective placement of a gel has been developed using a prepolymer solution with a light-sensitive initiator. Further work to adjust the polymer pore size and interface with ampholyte-containing gels should allow methods such as capillary gel electrophoresis (CGE), preconcentration, and two dimensional (isolectric focusing and CGE) separations to be performed. The development of gel-based analysis methods, along with other fluidic and electrical capacities, should move thin-film microdevices toward the realization of the lab-on-a-chip concept.

Page generated in 0.0329 seconds