• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 335
  • 262
  • 67
  • 36
  • 14
  • 13
  • 5
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 896
  • 244
  • 147
  • 117
  • 76
  • 70
  • 63
  • 61
  • 57
  • 56
  • 56
  • 51
  • 50
  • 50
  • 48
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
371

Efeito da fonte de nitrog?nio na libera??o de OH-/H+ na rizosfera e a intera??o com toxidez de alum?nio, estresse de salinidade e associa??o com Trichoderma sp. / Effect of nitrogen supply in release of OH-/ H+in the rhizosphere and interaction with aluminum toxicity, salinity stress and association with Trichoderma sp

Silva, Aldir Carlos 19 December 2013 (has links)
Submitted by Celso Magalhaes (celsomagalhaes@ufrrj.br) on 2017-05-12T11:45:17Z No. of bitstreams: 1 2013 - Aldir Carlos da Silva.pdf: 2147745 bytes, checksum: 9bf6569c9f3905b19282cebf10a5b003 (MD5) / Made available in DSpace on 2017-05-12T11:45:17Z (GMT). No. of bitstreams: 1 2013 - Aldir Carlos da Silva.pdf: 2147745 bytes, checksum: 9bf6569c9f3905b19282cebf10a5b003 (MD5) Previous issue date: 2013-12-19 / Conselho Nacional de Desenvolvimento Cient?fico e Tecnol?gico - CNPq / The present study was conducted to evaluate if changes in rhizosphere pH of the growth media, controlled by the use of nitrogen sources could alleviate aluminum toxicity or effects caused by salinization. It is well documented that if a plant is absorbing and assimilating nitrate as a nitrogen source, it releases 0H - for growth substrate. If she is absorbing, assimilating, ammonia source releases H+. This occurs because the cells need to balance its electrochemical charge balance due to differential uptake of cations and anions. Despite being a general rule, scientific research directly use the nitrogen source in the growth medium, few have used other methods to add these sources, such as foliar application of nitrogen and its implications on load balancing. In this work, several alternative management of nitrogen application and its interactions with the toxicity caused by aluminum, excess salts and Trichoderma were studied. Sunflower (Helianthus annuus L.), Passionflower (Passiflora edulis f flavicarpa L.), Pineapple (Ananas comosus Merril), Coffee (Coffea arabica L), Almond (Terminalia catapa Linn) and Sombrero (Clitoria fairchildiana Howard). To conduct studies with plants Sunflower was initially performed a selection of more tolerant to acidity and salinity plants. The experiments were conducted on various substrates, soil and sand, simple and complete nutrient solution. The interaction between Trichoderma x nitrogen source for plants was conducted with Passion fruit and Sunflower. Were selected as moderately tolerant to aluminum to grow Sunflower Helium 360 , the other cultivars to toxicity occurred in contraction equal to or superior 160?M aluminum . Was selected as tolerant to salinity the H?lio 251 > 250 > 253, cultivars, with concentrations above 25 mM NaCl (1.90 dS.m?) plants were stop grown. After this step prior experiments cultivars tolerant or sensitive were used in accordance with the experimental needs. The experiments were divided into the following steps: In the first step, we evaluated the release of OH - / H + with application of nitrogen sources directly in the growth medium, and found that the nitrogen sources were unable to minimize the toxic effects of aluminum and salinity. In the second experiment, the effects of the release OH- /H+ with application of nitrogen sources in the association of the fungus Trichoderma sp. This fungus grown in petri dishes only at pH values above 5.0. The release of OH- / H+ did not influence the association of the fungus with the roots of plants of sunflower and Passion fruit. In the third step, we assessed whether foliar application of nitrogen sources could produce the same effects on efflux of loads in the rhizosphere. It was found that the nitrogen sources applied foliar increased the pH of the solution was applied when 10 % of nitrate and reduced the pH when applied 5 % and 10 % ammonium sulfate in plants of Coffee and 10 % of nitrate in Sunflower . The foliar application of nitrogen sources did not alter the toxicity of aluminum and not the salt effect on plants and Sunflower Coffee. / O presente trabalho foi realizado com o objetivo de estudar se varia??es do pH da rizosfera e do meio de crescimento, controladas pelo uso de fontes nitrogenadas, poderiam amenizar a toxidez de alum?nio ou os efeitos provocados pela saliniza??o. Na literatura cientifica ? bem documentado que se uma planta esta absorvendo e assimilando nitrato como uma fonte nitrogenada, ela libera 0H- para o substrato de crescimento. Se ela esta absorvendo e assimilando uma fonte amoniacal libera H+. Isto ocorre devido ?s c?lulas necessitarem equilibrar o seu balan?o eletroqu?mico de carga, devido ? assimila??o diferenciada de c?tions e anions. Apesar de ser uma regra geral, os trabalhos cient?ficos usam a fonte nitrogenada diretamente no meio de crescimento, poucos utilizaram outros m?todos de adicionar estas fontes, como por exemplo, a aplica??o foliar de nitrog?nio e suas implica??es no balan?o de carga. Neste trabalho foram estudadas diversas alternativas de aplica??o de nitrog?nio e as suas intera??es com a toxidez provocada por alum?nio, excesso de sais e com o fungo Trichoderma. Foram estudas diversas plantas: Girassol (Helianthus annuus L), Maracuj? (Passiflora edulis f. flavicarpa L.), Abacaxi (Ananas comosus Merril), Caf? (Coffea arabica L), Amendoeira (Terminalia catapa Linn) e Sombreiro (Clitoria fairchildiana Howard). Para realizar os estudos com plantas de Girassol foi realizada inicialmente uma sele??o de plantas mais tolerantes a acidez e a salinidade. Os experimentos foram realizados em diversos substratos, solo, areia, solu??o nutritiva simples e completa. A intera??o entre fungo Trichoderma x fonte nitrogenada foi realizado para plantas de Girassol e Maracuj?. Foram selecionadas como medianamente tolerantes ao alum?nio a cultivar de Girassol H?lio 360, as demais cultivares a toxidez ocorreu em contra??o igual ou superiora 160?M de alum?nio. Foi selecionada como tolerante a salinidade as cultivares H?lio 251>250>253, com concentra??es acima 25mM de NaCl (1,90 dS.m?) as plantas n?o cresceram.Ap?s esta etapa foram implantados experimentos com as cultivares previamente selecionas como sens?veis ou tolerantes e estas foram utilizadas de acordo com a necessidade experimental. Os experimentos foram divididos nas seguintes etapas: Na primeira etapa, avaliou-se a libera??o do OH-/H+ com aplica??o das fontes nitrogenadas diretamente no meio de crescimento, sendo verificado que as fontes nitrogenadas n?o conseguiram minimizar os efeitos t?xicos do alum?nio e da salinidade. Na segunda etapa, avaliou-se os efeitos libera??o do OH-/H+ com aplica??o das fontes nitrogenadas na associa??o do fungo Trichoderma. Este fungo cresceu em placas de petri somente em valores de pH acima de 5,0. A libera??o de OH-/H+ n?o influenciou a associa??o do fungo com as ra?zes de plantas de Girassol e Maracuj?. Na terceira etapa, foi avaliado se a aplica??o foliar das fontes nitrogenadas poderia produzir os mesmos os efeitos nos efluxos de cargas na rizosfera. Foi verificado que as fontes nitrogenadas aplicadas via foliar aumentaram o pH da solu??o quando foi aplicado 10% de nitrato e reduziram o pH quando foi aplicado 5% e 10% de sulfato de am?nia em plantas de Caf? e com 10% de nitrato em Girassol. A aplica??o foliar de fontes nitrogenadas n?o alteraram a toxidez de alum?nio e nem do efeito salino em plantas de Caf? e Girassol.
372

Estudo da a??o de Teredinidae (Mollusca, Bivalvia) no estu?rio da Marambaia, RJ / Survey of the effects of Teredinidae (Mollusca, Bivalvia) in the estuary of Marambaia, RJ

SANTOS, Rodrigo Abreu de Oliveira 28 February 2014 (has links)
Submitted by Jorge Silva (jorgelmsilva@ufrrj.br) on 2018-03-28T18:55:07Z No. of bitstreams: 1 2014 - Rodrigo Abreu de Oliveira Santos.pdf: 3274401 bytes, checksum: e90a6972ad50b4e274c0c019a74ee737 (MD5) / Made available in DSpace on 2018-03-28T18:55:07Z (GMT). No. of bitstreams: 1 2014 - Rodrigo Abreu de Oliveira Santos.pdf: 3274401 bytes, checksum: e90a6972ad50b4e274c0c019a74ee737 (MD5) Previous issue date: 2014-02-28 / CAPES / CNPq / Submerged structures composed of wood are deteriorated by the activity of molluscs and crustaceans borers. Among these, the teredinids (Mollusca, Bivalvia) are the most specialized marine borers, leading to huge economic losses. On the other hand, these wood-boring organisms are the most important decomposers agents of timber in estuarine regions. Comprehend the influence of environmental factors on the occurrence and dynamics of teredinids taxocenosis is critical to the zoological and ecological knowledge of the family. The present study was conducted in the estuary of Marambaia, Rio de Janeiro, RJ, aiming to conduct the survey of species of teredinids by using specialized test panels. The species distribution was correlated with levels of salinity along the estuary and monthly volumes of precipitation. Wood consumption was estimated by a novel method. Permanently flooded and periodically flooded regions (mangrove forests) were compared by the occurrence of teredinids and wood consumption, as well as test panels exposed to the environment for different periods of time. Five species of teredinids were identified: Bankia gouldi (Bartsch, 1908), Bankia fimbriatula (Mol; Roch, 1931), Lyrodus floridanus (Bartsch, 1922), Nototeredo knoxi (Bartsch, 1917) and Teredo furcifera (Linnaeus, 1758). The most abundant specie was B. fimbriatula (47.31%), followed by B. gouldi (41.15%). Only two individuals of N. knoxi were found. The nearest sea point and points on permanently flooded sites had higher numbers of species, higher abundances of individuals and higher rates of wood consumption. The different periods of exposure of the test panels to the environment did not change the configuration of teredinids? colonization, nor the rates of wood consumption. An inverse correlation was found between rainfall and the number of individuals throughout the experiment, but the effects of rainfall were felt belatedly by the organisms. No significant correlation between salinity and the distribution of the teredinids was found, however, the data pointed to the role of salinity as the determinant factor of the species? occurrence and of the taxocenosis? characteristics along the Marambaia estuary. / Estruturas submersas compostas por madeira s?o deterioradas pela atividade de moluscos e crust?ceos perfurantes. Entre estes, os teredos (Mollusca, Bivalvia) s?o os perfurantes marinhos mais especializados, causando enormes preju?zos econ?micos. Por outro lado, estes organismos s?o os mais importantes agentes decompositores de madeira em regi?es estuarinas. Compreender a influencia de fatores ambientais sobre a ocorr?ncia e din?mica da taxocenose de teredos ? fundamental para o conhecimento zool?gico e ecol?gico da fam?lia. O presente estudo foi realizado no estu?rio da Marambaia, Rio de Janeiro, RJ, com o objetivo de realizar o levantamento de esp?cies de teredo utilizando coletores especializados. A distribui??o das esp?cies foi correlacionada com os n?veis de salinidade ao longo do estu?rio e volumes mensais de precipita??o. O consumo de madeira foi estimado por um novo m?todo. Regi?es permanentemente alagadas e periodicamente alagadas (bosques de manguezal) foram comparadas quanto ? ocorr?ncia de teredos e consumo de madeira, assim como coletores expostos ao ambiente por diferentes per?odos de tempo. Cinco esp?cies de teredos foram identificadas: Bankia gouldi (Bartsch, 1908), Bankia fimbriatula (Moll; Roch, 1931), Lyrodus floridanus (Bartsch, 1922), Nototeredo knoxi (Bartsch, 1917) e Teredo furcifera (Linnaeus, 1758). A esp?cie mais abundante foi B. fimbriatula (47,31%), seguida de B. gouldi (41,15%). Somente dois indiv?duos de N. knoxi foram encontrados. O ponto mais pr?ximo do mar e os pontos em locais permanentemente alagados apresentaram maior ocorr?ncia de esp?cies, maiores abund?ncias de indiv?duos e de taxas de consumo de madeira. Os diferentes tempos de exposi??o dos coletores ao ambiente n?o alteraram a configura??o de coloniza??o dos teredos e nem o consumo de madeira. Foi encontrada uma correla??o inversa entre a precipita??o e o n?mero de indiv?duos ao longo do experimento, por?m os efeitos da precipita??o foram sentidos tardiamente pelos organismos. N?o foi encontrada uma correla??o expressiva entre a salinidade e a distribui??o dos teredos, por?m os dados apontam para seu papel como fator determinante da ocorr?ncia de esp?cies e das caracter?sticas da taxocenose ao longo do estu?rio da Marambaia.
373

Studies on myostatin expression in silver sea bream Sparus sarba.

January 2010 (has links)
Zhang, Chaoxiong. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2010. / Includes bibliographical references (leaves 115-132). / Abstracts in English and Chinese. / Chapter I --- Title page --- p.i / Chapter II --- Thesis committee --- p.ii / Chapter III --- Abstract --- p.iii / Chapter IV --- Abstract (Chinese version) --- p.v / Chapter V --- Acknowledgement --- p.vii / Chapter VI --- Table of content --- p.viii / Chapter VII --- List of figure --- p.xiii / Chapter Chapter 1 --- General introduction --- p.1 / Chapter Chapter 2 --- Literature review --- p.7 / Chapter 2.1 --- An introduction to myostatin --- p.8 / Chapter 2.1.1 --- A general introduction --- p.8 / Chapter 2.1.2 --- Myostatin identification --- p.9 / Chapter 2.1.3 --- Structural studies of myostatin --- p.10 / Chapter 2.1.4 --- Phenotype of myostatin-null animals or transgenic animal --- p.10 / Chapter 2.2 --- Regulation of myostatin --- p.12 / Chapter 2.2.1 --- Biosynthesis of myostatin --- p.12 / Chapter 2.2.2 --- Regulation of myostatin expression --- p.13 / Chapter 2.2.3 --- Regulation of myostatin protein --- p.16 / Chapter 2.3 --- Myostatin effect --- p.20 / Chapter 2.3.1 --- Myostatin Signaling Pathway --- p.20 / Chapter 2.3.2 --- Cellular Responses to Myostatin Signaling --- p.23 / Chapter 2.4 --- Possible functions in tissues other than muscle --- p.26 / Chapter 2.5 --- Myostatin in fishes --- p.27 / Chapter 2.5.1 --- Introduction of silver sea bream --- p.27 / Chapter 2.5.2 --- Studies carried out in fishes --- p.27 / Chapter 2.5.3 --- Possible novel functions of myostatin in fishes --- p.30 / Chapter Chapter 3 --- Characterization of myostatin gene in the silver seabream (Sparus sarba) --- p.31 / Chapter 3.1 --- Abstract --- p.32 / Chapter 3.2 --- Introduction --- p.33 / Chapter 3.3 --- Materials and methods --- p.35 / Chapter 3.3.1 --- Experimental fish --- p.35 / Chapter 3.3.2 --- Total RNA extraction and cDNA cloning of myostatin-1 and myostatin-2 in silver sea bream --- p.35 / Chapter 3.3.3 --- Multiple sequence alignment --- p.38 / Chapter 3.3.4 --- Real-time PCR for quantification of myostatin-1 and myostatin-2 mRNA expression --- p.38 / Chapter 3.3.5 --- 1 --- p.39 / Chapter 3.3.6 --- Data processing and statistical analysis --- p.40 / Chapter 3.4 --- Results --- p.40 / Chapter 3.4.1 --- Cloning of myostatin-l and myostatin-2 cDNA --- p.40 / Chapter 3.4.2 --- Myostatin tissue distribution and seasonal pattern --- p.42 / Chapter 3.5 --- Discussion --- p.55 / Chapter Chapter 4 --- "Effects of growth hormone, 11-ketotestosterone and cortisol on myostatin mRNA expression in silver sea bream (Sparus sarba)" --- p.61 / Chapter 4.1 --- Abstract --- p.62 / Chapter 4.2 --- Introduction --- p.63 / Chapter 4.3 --- Materials and methods --- p.65 / Chapter 4.3.1 --- Experimental fish --- p.65 / Chapter 4.3.2 --- Growth hormone injection --- p.65 / Chapter 4.3.3 --- 11-ketotestosterone and cortisol injection --- p.66 / Chapter 4.3.4 --- Muscle explants culture and hormone exposure --- p.67 / Chapter 4.3.5 --- Primary pituitary cell culture and cortisol exposure --- p.68 / Chapter 4.3.6 --- Measurement of growth hormone secretion by ELISA --- p.69 / Chapter 4.3.7 --- Data processing and statistical analysis --- p.70 / Chapter 4.4 --- Results --- p.71 / Chapter 4.4.1 --- Growth hormone injection --- p.71 / Chapter 4.4.2 --- 11-ketotestosterone injection --- p.71 / Chapter 4.4.3 --- Cortisol injection --- p.71 / Chapter 4.4.4 --- "In vitro hormone treatment-growth hormone, 11-ketotestosterone and cortisol" --- p.72 / Chapter 4.4.5 --- Pituitary cell growth hormone secretion under cortisol treatment --- p.72 / Chapter 4.5 --- Discussion --- p.81 / Chapter Chapter 5 --- Expression of myostatin mRNA in silver sea bream in different salinity --- p.87 / Chapter 5.1 --- Abstract --- p.88 / Chapter 5.2 --- Introduction --- p.89 / Chapter 5.3 --- Materials and Methods --- p.91 / Chapter 5.3.1 --- Experimental fish --- p.92 / Chapter 5.3.2 --- Long term salinity adaptation --- p.92 / Chapter 5.3.3 --- Abrupt transfer form seawater to freshwater --- p.92 / Chapter 5.3.4 --- Data processing and statistical analysis --- p.93 / Chapter 5.4 --- Results --- p.93 / Chapter 5.4.1 --- Long term adaptation to different salinities --- p.93 / Chapter 5.4.2 --- Abrupt transfer from 33ppt to 6ppt - 24 h --- p.93 / Chapter 5.4.3 --- Abrupt transfer from 33ppt to 6ppt - 72 h --- p.94 / Chapter 5.5 --- Discussion --- p.104 / Chapter Chapter 6 --- General discussion and conclusion --- p.108 / References --- p.115
374

Influence of salinity and hormones on the expression of cystic fibrosis transmembrane conductance regulator in a marine teleost Sparus sarba.

January 2009 (has links)
Yuen, Wing Sum. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2009. / Includes bibliographical references (leaves 136-155). / Abstract also in Chinese. / Chapter I --- Title page --- p.i / Chapter II --- Acknowledgements --- p.ii / Chapter III --- Abstract --- p.iii / Chapter IV --- Abstract (Chinese version) --- p.vi / Chapter V --- Table of contents --- p.viii / Chapter VI --- List of abbreviations --- p.xv / Chapter VII --- List of figures --- p.xvi / Chapter Chapter 1 --- General introduction --- p.1 / Chapter Chapter 2 --- Literature review --- p.5 / Chapter 2.1 --- Cystic fibrosis transmembrane conductance regulator in human --- p.5 / Chapter 2.1.1. --- Pathology of cystic fibrosis --- p.5 / Chapter 2.1.2. --- CFTR gene and the encoded protein --- p.6 / Chapter 2.1.3. --- Hypothetical model for CFTR function --- p.7 / Chapter 2.1.4. --- Functions of CFTR --- p.7 / Chapter 2.1.5. --- Regulation of CFTR gene expression --- p.8 / Chapter 2.1.6 --- Regulation of CFTR protein --- p.9 / Chapter 2.1.7. --- Discovery of CFTR homologues in other vertebrates --- p.10 / Chapter 2.2 --- Cystic fibrosis transmembrane conductance regulator in teleosts --- p.10 / Chapter 2.2.1. --- Evidence for the presence of CFTR homologue in teleosts --- p.10 / Chapter 2.2.2. --- Molecular cloning of teleost CFTR genes --- p.11 / Chapter 2.2.3. --- Role of teleost CFTR in osmoregulation --- p.13 / Chapter 2.2.3.1. --- Tissue distribution of CFTR --- p.13 / Chapter 2.2.3.2. --- Changes in CFTR expression in response to ambient salinities --- p.14 / Chapter 2.2.3.3. --- Immunocytochemical studies of CFTR --- p.15 / Chapter 2.2.3.4. --- Regulation of CFTR --- p.17 / Chapter 2.3 --- Osmoregulation in teleosts --- p.19 / Chapter 2.3.1. --- Importance of osmoregulation --- p.19 / Chapter 2.3.2. --- Major components of chloride cells in marine teleosts --- p.20 / Chapter 2.3.2.1. --- Overview --- p.20 / Chapter 2.3.2.2. --- Sodium-potassium adenosine triphosphatase (Na+,K+-ATPase) --- p.21 / Chapter 2.3.2.3. --- Cystic fibrosis transmembrane conductance regulator (CFTR) --- p.22 / Chapter 2.3.2.4. --- Na+/K+/2Cr cotransporter (NKCC) --- p.23 / Chapter 2.3.2.5. --- Potassium (K+) channel --- p.25 / Chapter 2.4 --- Endocrine control of osmoregulation --- p.26 / Chapter 2.4.1. --- Overview --- p.26 / Chapter 2.4.2. --- Growth hormone (GH) and insulin-like growth factor I (IGF-I) --- p.27 / Chapter 2.4.2.1. --- Role of GH in osmoregulation --- p.27 / Chapter 2.4.2.2. --- Mediation through IGF-I --- p.29 / Chapter 2.4.2.3. --- Synergic effect with cortisol --- p.30 / Chapter 2.4.3. --- Prolactin (PRL) --- p.30 / Chapter 2.4.3.1. --- Role of PRL in osmoregulation --- p.30 / Chapter 2.4.3.2. --- Synergic effect with cortisol --- p.33 / Chapter 2.4.4. --- Cortisol --- p.33 / Chapter 2.4.4.1. --- Role of cortisol in osmoregulation --- p.33 / Chapter 2.4.4.2. --- Dual functions of cortisol --- p.34 / Chapter Chapter 3 --- Cloning and tissue distribution of silver sea bream CFTR gene --- p.36 / Chapter 3.1 --- Introduction --- p.36 / Chapter 3.2 --- Materials and methods --- p.38 / Chapter 3.2.1. --- Part A: Cloning of silver sea bream CFTR gene --- p.38 / Chapter 3.2.1.1. --- Fish and culture conditions --- p.38 / Chapter 3.2.1.2. --- Sampling of fish --- p.38 / Chapter 3.2.1.3. --- Preparation of first strand cDNA --- p.38 / Chapter 3.2.1.4. --- Design of primers --- p.39 / Chapter 3.2.1.5. --- Semi-quantitative reverse transcriptase (RT)-PCR --- p.40 / Chapter 3.2.1.6 --- Cloning --- p.41 / Chapter 3.2.2. --- Part B: Tissue distribution of CFTR in silver sea bream --- p.41 / Chapter 3.2.2.1. --- Fish and culture conditions --- p.41 / Chapter 3.2.2.2. --- Tissue sampling --- p.42 / Chapter 3.2.2.3. --- Preparation of first strand cDNA --- p.42 / Chapter 3.2.2.4 --- Design of primers --- p.42 / Chapter 3.2.2.5. --- Semi-quantitative reverse transcriptase (RT)-PCR --- p.43 / Chapter 3.3 --- Results --- p.44 / Chapter 3.3.1. --- Part A: Cloning of silver sea bream CFTR gene --- p.44 / Chapter 3.3.2. --- Part B: Tissue distribution of CFTR in silver sea bream --- p.60 / Chapter 3.4 --- Discussion --- p.62 / Chapter 3.4.1. --- Part A: Cloning of silver sea bream CFTR --- p.62 / Chapter 3.4.2. --- Part B: Tissue distribution of CFTR in silver sea bream --- p.64 / Chapter Chapter 4 --- Effect of salinity on CFTR mRNA expression in gill and posterior intestine of silver sea bream --- p.68 / Chapter 4.1 --- Introduction --- p.68 / Chapter 4.2 --- Materials and methods --- p.70 / Chapter 4.2.1. --- Part A: Effect of long-term exposure to different salinities on CFTR expression --- p.70 / Chapter 4.2.1.1. --- Experimental fish and salinity adaptation --- p.70 / Chapter 4.2.1.2. --- Tissue sampling --- p.70 / Chapter 4.2.1.3. --- Serum ion levels --- p.71 / Chapter 4.2.1.4. --- Preparation of first strand cDNA --- p.71 / Chapter 4.2.1.5. --- Design of primers --- p.71 / Chapter 4.2.1.6. --- Semi-quantitative reverse transcriptase (RT)-PCR --- p.71 / Chapter 4.2.1.7. --- Statistical analysis --- p.72 / Chapter 4.2.2. --- Part B: Effect of abrupt transfer on CFTR expression --- p.73 / Chapter 4.2.2.1. --- Experimental fish --- p.73 / Chapter 4.2.2.2. --- Experimental design --- p.73 / Chapter 4.2.2.2.1 --- Experiment 1: Abrupt transfer from seawater (SW) to 6 ppt --- p.73 / Chapter 4.2.2.2.2. --- Experiment 2: Abrupt transfer from 6 ppt to SW --- p.73 / Chapter 4.2.2.3. --- Tissue sampling --- p.74 / Chapter 4.2.2.4. --- Serum ion levels --- p.74 / Chapter 4.2.2.5. --- Preparation of first strand cDNA --- p.74 / Chapter 4.2.2.6. --- Design of primers --- p.75 / Chapter 4.2.2.7. --- Semi-quantitative reverse transcriptase (RT)-PCR --- p.75 / Chapter 4.2.2.8. --- Statistical analysis --- p.75 / Chapter 4.3 --- Results --- p.76 / Chapter 4.3.1. --- Part A: Effect of long-term exposure to different salinities on CFTR expression --- p.76 / Chapter 4.3.1.1. --- Serum ion levels --- p.76 / Chapter 4.3.1.2. --- CFTR expression in gill --- p.76 / Chapter 4.3.1.3. --- CFTR expression in posterior intestine --- p.76 / Chapter 4.3.2. --- Part B: Effect of abrupt salinity transfer on CFTR expression --- p.83 / Chapter 4.3.2.1. --- Experiment 1: Abrupt transfer from SW to 6 ppt --- p.83 / Chapter 4.3.2.1.1. --- Serum ion levels --- p.83 / Chapter 4.3.2.1.2. --- CFTR in gill --- p.83 / Chapter 4.3.2.1.3. --- CFTR in posterior intestine --- p.83 / Chapter 4.3.2.2. --- Experiment 2: Abrupt transfer from 6 ppt to SW --- p.89 / Chapter 4.3.2.2.1. --- Serum ion levels --- p.89 / Chapter 4.3.2.2.2. --- CFTR in gill --- p.89 / Chapter 4.3.2.2.3. --- CFTR in posterior intestine --- p.89 / Chapter 4.4 --- Discussion --- p.95 / Chapter 4.4.1. --- Long-term exposure to various salinities --- p.95 / Chapter 4.4.2. --- Abrupt salinity transfer --- p.98 / Chapter 4.4.2.1. --- Abrupt hypo-osmotic transfer (33 ppt to 6 ppt) --- p.98 / Chapter 4.4.2.2. --- Abrupt seawater transfer (6 ppt to 33 ppt) --- p.99 / Chapter 4.4.3. --- CFTR mRNA expression in posterior intestine --- p.101 / Chapter 4.4.4. --- Conclusion --- p.101 / Chapter Chapter 5 --- Effect of hormones on CFTR expression in gill and posterior intestine of silver sea bream --- p.102 / Chapter 5.1 --- Introduction --- p.102 / Chapter 5.2 --- Materials and methods --- p.104 / Chapter 5.2.1. --- Part A: In vivo effect of hormones on CFTR expression --- p.104 / Chapter 5.2.1.1. --- Experimental fish and salinity adaptation --- p.104 / Chapter 5.2.1.2. --- Hormone treatment --- p.104 / Chapter 5.2.1.3. --- Tissue sampling --- p.105 / Chapter 5.2.1.4. --- "Serum ion levels, preparation of first strand cDNA, design of primers and semi-quantitative reverse transcriptase (RT)-PCR" --- p.105 / Chapter 5.2.1.5. --- Statistical analysis --- p.105 / Chapter 5.2.2. --- Part B: In vitro effect of hormones on CFTR expression --- p.106 / Chapter 5.2.2.1. --- Fish and culture conditions --- p.106 / Chapter 5.2.2.2. --- Gill and posterior intestine preparations --- p.106 / Chapter 5.2.2.3. --- Hormone treatment --- p.106 / Chapter 5.2.2.4. --- "Preparation of first strand cDNA, design of primers and semi-quantitative reverse transcriptase (RT)-PCR" --- p.107 / Chapter 5.2.2.5. --- Statistical analysis --- p.107 / Chapter 5.3 --- Results --- p.108 / Chapter 5.3.1. --- Part A: In vivo effect of hormones on CFTR expression --- p.108 / Chapter 5.3.1.1. --- Serum ion levels --- p.108 / Chapter 5.3.1.1.1. --- Serum [Na+] level --- p.108 / Chapter 5.3.1.1.2. --- Serum [K+] level --- p.108 / Chapter 5.3.1.1.3. --- Serum [Cl' ] level --- p.108 / Chapter 5.3.1.2. --- CFTR expression in gill --- p.109 / Chapter 5.3.1.3. --- CFTR expression in posterior intestine --- p.109 / Chapter 5.3.2. --- Part B: In vitro effect of hormones on CFTR expression --- p.115 / Chapter 5.3.2.1. --- CFTR expression in gill --- p.115 / Chapter 5.3.2.2. --- CFTR expression in posterior intestine --- p.115 / Chapter 5.4 --- Discussion --- p.122 / Chapter 5.4.1. --- Effects of cortisol on CFTR expression --- p.122 / Chapter 5.4.2. --- Effects of growth hormone on CFTR expression --- p.124 / Chapter 5.4.3. --- Effects of prolactin on CFTR expression --- p.127 / Chapter 5.4.4. --- "Overall effect of cortisol, growth hormone and prolactin on CFTR expression" --- p.128 / Chapter 5.4.5 --- Conclusion --- p.130 / Chapter Chapter 6 --- General discussion and conclusion --- p.132 / References --- p.136
375

Análise bioquímica do mutante hormonal de tomateiro Never ripe (Nr) submetido aos estresses por cádmio e salinidade / Biochemistry analyses of hormonal mutant Never ripe (Nr) to cadmium and salt stresses

Monteiro, Carolina Cristina 04 March 2010 (has links)
A exposição das plantas a estresses bióticos e abióticos pode levar ao aumento dos níveis de espécies ativas de oxigênio (EAOs) nas células, gerando estresse oxidativo. Dentre os causadores de estresses abióticos mais estudados, estão a salinidade e o cádmio (Cd). A salinidade pode causar um desequilíbrio de íons nas células, resultando estresse osmótico. Já o Cd gera distúrbios nutricionais, estruturais e bioquímicos, levando ao aumento de EAOs. Para combater este excesso, as plantas desenvolveram um complexo sistema de defesa que inclui mecanismos enzimáticos e não enzimáticos de desintoxicação. Os hormônios vegetais, como o etileno, controlam importantes vias do metabolismo celular, fazendo com que as plantas respondam de diferentes maneiras às condições de estresse. Fatores de estresse distintos podem resultar em respostas diferenciadas por parte das células e dos diferentes tecidos das plantas. O presente trabalho utilizou o tomateiro cv. Micro-Tom e seu mutante hormonal para etileno Never ripe (Nr) cultivados em solução nutritiva e submetidos aos estresses por 100 mM de NaCl e 0,5 mM de CdCl2 em coletas distintas (sete, 20 e 36 dias). Neste trabalho, as respostas das enzimas superóxido dismutase (SOD), catalase (CAT), glutationa redutase (GR), ascorbato peroxidase (APX) e guaiacol peroxidase (GPOX) foram analisadas. Além disso, outros parâmetros importantes como quantificação de Cd e Na, peroxidação lipídica, peróxido de hidrogênio (H2O2), análise do perfil protéico por SDS-PAGE e teor de clorofila foram avaliados. De acordo com os resultados, o Cd acumulou-se mais nas raízes, e o Na foi absorvido pela plantas e transportado até as folhas e frutos. O estresse provocado pelo Cd foi mais prejudicial ao desenvolvimento do MT, aumentando os níveis de H2O2 e MDA, assim como a atividade das enzimas antioxidantes. Alterações nos perfis protéicos dos tecidos submetidos aos tratamentos com Cd e Na também foram observadas. A absorção de Na pelos frutos foi elevada, alterando a atividade das enzimas antioxidantes. A enzima que mais apresentou aumento de atividade foi a GR, tanto em folhas quanto em raízes, nos três períodos analisados, sugerindo que essa enzima pode estar associada à síntese de fitoquelatinas (PCs) nos tecidos. Isso mostra que as enzimas antioxidantes agem de maneira particular, conforme o período de estresse ao qual as plantas estão submetidas, de maneira que a resposta antioxidante é dinâmica e particular a cada tecido da planta. / Plant exposure to abiotic and biotic stresses can lead to enhanced production of Reactive Oxygen Species (ROS) in cells, causing oxidative stress. Cadmium (Cd) and salt (NaCl) are among the most studied abiotic stresses. Salinity can cause ion disturb in the cell, resulting in osmotic stress. In the case of Cd, it can induce nutritional, structural and biochemistry changes, leading to increased ROS levels. Plants have developed efficient antioxidant systems to act against ROS, including a series of enzymatic and non-enzymatic detoxification mechanisms. Plant hormones, such as ethylene, can control important pathways, which may result in different manners for the plant to respond to stressful conditions. Different stress factors can result in different responses depending of plant cells and tissues. This work used the miniature tomato Micro-Tom and its hormonal mutant to ethylene counterpart, Never ripe (Nr), which were maintained in nutritional solution and submitted to 100 mM of Na Cl and 0.5 mM of CdCl2 for 7, 20 and 36 days. Antioxidant enzymes responses mainly by changes in activities of superoxide dismutase (SOD), catalase (CAT), gluthathione reductase (GR), ascorbate peroxidase (APX) and guaiacol peroxidase (GPOX) were analyzed. Moreover, others important evaluation parameters such as Cd and Na quantification, lipid peroxidation, level of H2O2, SDS-PAGE and chlorophyll amount, were assessed. According to the results, Cd accumulated in roots while Na was uptaked and translocated to the leaves and fruits. The stress caused by Cd was the most damaging to MT plant development, increasing H2O2 and lipid peroxidation, as well as antioxidant enzymes activities. Alterations in SDS-PAGE protein profiles were also observed. The uptake of Na in fruits was high, modifying antioxidant enzymes activities. GR was the enzyme that exhibited the highest increase in activity in leaves and roots during all periods analyzed, suggesting that this enzyme can be related to phytochelatin synthesis (PCs) in tissues and/or increased glutathione synthesis. The results confirmed that the enzymes may respond differently depending on the tissue, organ, time length of exposure and concentrations of the stressful agent.
376

Cultivo hidropônico de rúcula (Eruca sativa Mill) utilizando águas salinas / Hydroponic cultivation of rocket press (Eruca sativa Mill) using saline water

Silva, Francisco Valfisio da 11 February 2010 (has links)
A degradação ambiental dos últimos anos tem motivado a preocupação a respeito da sustentabilidade das atividades humanas. O manejo inadequado da irrigação e adubação, e baixas precipitações, para lixiviar o excesso de sais aplicados via água de irrigação, podem acarretar a salinização dos solos. A hidroponia se constitui em uma alternativa, para a conservação do solo e preservação dos mananciais de água. A rúcula (Eruca sativa Mill) foi a cultura escolhida para este estudo, pois a sua produção vem se destacando entre as hortaliças. O presente trabalho teve por objetivo determinar a tolerância da rúcula à salinidade da solução nutritiva. O experimento foi conduzido em ambiente protegido localizado na área experimental do Setor de Hidráulica do Departamento de Engenharia Rural da Escola Superior de Agricultura Luiz de Queiroz - ESALQ/USP, no município de Piracicaba-SP. O delineamento experimental foi blocos ao acaso. Avaliaram-se nove níveis de salinidade obtidos com a adição de NaCl sendo estes 1,8; 3,5; 4,5; 5,5; 6,5; 7,5; 8,5; 9,5; 10,5 dS m-1. Os resultado obtidos demonstram que o aumento nos níveis de salinidade proporcionou redução em todos os parâmetros avaliados, exceto o número de folhas que não sofreu influência significativa e a relação raiz/parte aérea foi influenciada de forma crescente. A salinidade limiar encontrada foi de 2,57 dS m-1, com redução de 5,57% na produção para cada aumento unitário na salinidade. A cultura da rúcula foi classificada, como moderadamente sensível à salinidade. É possível obter produções satisfatórias utilizando águas salinas no cultivo hidropônico da rúcula. / The environmental degradation in recent years has motivated the concern about the sustainability of human activities. The inadequate management of irrigation and low rainfall fertilization, to leach the excess salts applied through irrigation water, can lead to soil salinization. Hydroponics constitutes an alternative to soil conservation and preservation of water sources. The rocket (Eruca sativa Mill) was the culture chosen for this study because its production has been increasing among the vegetables. This study aimed to determine the tolerance of the rocket to the salinity of the nutrient solution. The experiment was carried out in protected enviroment on the experimental area of the Hydraulics Section of the University of São Paulo (ESALQ/USP), Piracicaba, State of São Paulo, Brazil. The experimental design was randomized blocks. It were evaluated nine levels of salinity obtained with the addition of NaCl and these 1.8, 3.5, 4.5, 5.5, 6.5, 7.5, 8.5, 9.5, 10.5 dS m-1. The results obtained show that the increased levels of salinity caused a reduction in all parameters except the number of leaves was not affected and the ratio root/shoot was influenced incrementally. The salinity threshold was found to be 2.57 dS m-1, a reduction of 5.57% in production for each unit increase in salinity. The rocket press was classified as moderately sensitive to salinity. It is possible to obtain satisfactory production using saline water for hydroponic cultivation rocket press.
377

Spatio-temporal coherence between spaceborne measurements of salinity and optical properties in the Amazon-Orinoco Plume Region / Signature des panaches des grands fleuves à la surface des océans : corrélation entre salinité et propriétés optiques déduites de mesures satellites

Fournier, Séverine 06 June 2014 (has links)
Avec les lancements réussis des missions ESA Soil Moisture and Ocean Salinity (SMOS) et NASA Aquarius/SAC-D, la salinité de surface des océans peut maintenant être déduite. De plus, les produits de couleur de l'eau, tels que les mesures d'absorption et d'atténuation de la lumière et de concentration en chlorophylle, peuvent être utilisés comme traceurs de la salinité. Les signatures des panaches des grands fleuves tropicaux tels que l'Amazone et l'Orénoque peuvent être étudiées en détail grâce à ces nouvelles méthodes. En particulier, les relations de corrélations entre SSS et propriétés optiques également déduites de mesures satellites peuvent maintenant être établies et analysées sur des échelles spatiales beaucoup plus grandes. Différents efforts de recherche sont envisagés dans le cadre de ce travail de thèse. Tout d'abord, nous étudions les corrélations entre salinité de surface et propriétés optiques dans le panache de l'Amazone durant la période 2010-2013. Ensuite, la relation de mélange est établie de façon robuste selon tout d'abord une approche régionale, puis selon une approche locale. Ensuite, une fois cette loi de dilution établie de façon robuste, nous l'utilisons pour estimer un produit de salinité de surface à partir des produits couleur de l'eau sur la période 1998-2013. Enfin, nous tentons d'envisager la relation de dilution suivant une approche lagrangienne. / We enter now in a new era of global Sea Surface Salinity (SSS) observing systems from Space with therecent successful launches of the ESA Soil Moisture and Ocean Salinity (SMOS) mission and the NASA Aquarius/SAC-D mission. These new satellite SSS observing systems are as well complemented by an increased number of devices deployed in situ. Finally, ocean color products can be used as well for tracking salinity via semi-conservative tracers such as dissolved organic matter absorption coefficient at 443 nm(acdm), light attenuation at 490 nm and chlorophyll concentration. With these new methods, we are now in an excellent position to revisit the SSS observed in the warm seas of the tropical Atlantic with multi-yeartime series of excellent remote sensing and concurrent in situ observations. The seasonal cycles in the spatial extent of low surface salinity waters of the major river plumes and freshwater pools of the tropical Atlantic oceans as the Amazon and Orinoco rivers can thus be analyzed in a new and original manner. In particular, the correlation between SSS and bio-optical properties measured from Space in the plume waters can now beestablished and analyzed over large spatial scales. In the frame of this PhD work, different major research topics were studied. First the correlations between sea surface salinity and absorption coefficient of colored detrital matter at 443 nm in the Amazon-Orinoco plume over 2010-2013 are studied. Then the conservative mixing relationship is robustely established based on two different approaches, a regional one over the whole Amazon plume and a local one. Once the SSS/acdm relationship established, it is used to retrieve a SSSproduct from 1998 to 2013 based on Ocean Color data. Finally, we attempt to explore the conservative mixing using a lagrangian approach.
378

Determining the physiological and behavioral aspects of salinity tolerance in the Asian clam, Corbicula fluminea

Roden, John 01 May 2018 (has links)
The Asian clam, Corbicula fluminea, is an invasive bivalve species that now occurs through most of the lower 48 United States. While a significant degree of salinity tolerance has been observed in C. fluminea, owing to its estuarine lineage, the physiological and behavioral responses to changes in salinity by these organisms are not completely understood. It was hypothesized that Corbicula would initially avoid elevated salinity levels (>1 g/L) behaviorally through valve closure, but would eventually have to open to dispel anaerobic waste products and deal with the salinity. To explore this, Corbicula were collected and put through a series of experiments at salinity exposures of 0, 2.5, and 5.0 g/L, with tissue water content and hemolymph osmolality being measured. After an initial 96-hour exposure, it was observed that the percent tissue water content of clams in 2.5 g/L and 5.0 g/L water dropped 3.29% and 4.18%, respectively, below that of the control groups in 0 g/L. After a 24-hour time-course experiment, this change in tissue water was found to largely occur within the first eight hours of exposure for the 2.5 g/L and 5.0 g/L groups. It was also noted that the hemolymph osmolality of both the 2.5 g/L and 5.0 g/L groups rose to approximately 78 mOsm/kg and 148 mOsm/kg, respectively, matching the osmolality of their exposure water in roughly the same time span and indicating that little behavioral avoidance of the elevated salinity was occurring. The osmolality of the control group did not match the osmolality of the 0 g/L water at 0.5 mOsm/kg, but was held at a constant level around 50 mOsm/kg. In a later experiment measuring the same variables for clams in 10.0 g/L, it was found that the tissue water and osmolality did not begin to change significantly until after 12 hours, indicating behavioral avoidance at this salinity level. A context study was also conducted comparing oxygen consumption and percent tissue water between various salinities in a light and dark exposure to determine if ambient light influenced siphoning of the clams and exposure to the salt. In this experiment, it was observed that clams held in salinities of 5.0 g/L for 24 hours consumed roughly 1.90 mg O2/L/g/h, whereas clams held in the control only consumed roughly 0.73 mg O2/L/g/h. These findings suggest that Corbicula osmoregulate in freshwater but osmoconform at salinities of 2.5 g/L and 5.0 g/L. The data from the context study also suggests that this conformation comes at a significant metabolic cost. Furthermore, and in contrast to the results of some previous studies, a significant level of behavioral avoidance of elevated salinity does not appear to commence until the clams are at a salinity above 5 g/L.
379

The Effect of Salinity Level upon the Yield, Root Growth, and Water Extraction of Contrasting Rooting Subpopulations of Alfalfa (Medicago sativa) Under Conditions of Zero Leaching

Vincent, Laura A. 01 May 1996 (has links)
A major problem in irrigated agriculture in the Western U.S. is the gradual accumulation of salinity in the plant root zone. These nonuniformly saline soils contain increasing amounts of salinity with depth, and salt accumulation is accelerated in situations where leaching is minimized. Root growth and thus plant yield is limited in these soils due to decreased water uptake. We studied the root growth of two subpopulations of alfalfa differing in their ability to produce fibrous roots to determine if altering root morphology would increase plant yield and water extraction, in an irrigated saline soil. Soil profiles for a control and three treatments with increasing salinity were packed in to PVC cylinders fitted with a flat window down one side for root measurements. A single alfalfa plant was grown from seed in each cylinder, and irrigated with water enriched primarily in sulfate salts. Alfalfa plants were grown for five successive harvests in a greenhouse, and water extraction was measured in the control and high Salinity treatment by time-domain reflectometry. Final electrical conductivities of the soil ranged from 3.0 to 23 dS m-1. The yield of the high fibrous root subpopulation was not reduced by the soil salinity by the fifth harvest, while that of the low fibrous subpopulation was reduced 22%. Root growth of the high fibrous subpopulation was significantly increased by as much as 54% in the upper 30 cm of the root zone, compared to that of the low fibrous subpopulation. Water extraction was higher in the upper, least saline portion of the root zone for the high fibrous root subpopulation. The results of this study support the use of alfalfa with increased fibrous root production under saline irrigation with minimal leaching.
380

Determining the Physiological and Behavioral Methods of Salinity Tolerance in Corbicula fluminea

Roden, John Warren, III 05 April 2018 (has links)
While a significant degree of salinity tolerance has been observed in the bivalve mollusk species Corbicula fluminea, the physiological and behavioral responses to changes in salinity by these organisms are not completely understood. It was hypothesized that Corbicula would initially avoid any salinity stress behaviorally through valve closure, but would eventually have to open to dispel anaerobic waste products and deal with the salinity. To explore this, Corbicula were collected and put through a series of experiments at salinity exposures of 0, 2.5, and 5.0ppt, with tissue water content and hemolymph osmolality being measured. After an initial 96-hour exposure period, it was observed that the tissue water content ratio of clams in 2.5ppt and 5.0ppt water dropped below that of the control groups in 0ppt. After a 24-hour time course experiment, it was observed that this change in tissue water largely occurred within the first eight hours of exposure for the 2.5ppt and 5.0ppt groups. It was also noted that the hemolymph osmolality of both the 2.5ppt and 5.0ppt groups rose to match the osmolality of the water in roughly the same time span. The osmolality of the control group did not match the osmolality of the 0ppt water, but was held at a constant level above it. In a later experiment measuring the same variables for clams in 10.0ppt, it was found that the tissue water and osmolality did not begin to change significantly until after 12 hours. The findings suggest that Corbicula osmoregulate at salinities lower than 2.5ppt, but osmoconform in salinities above that threshold. Furthermore, it seems that the clams are able and willing to tolerate conformation at 2.5ppt and 5.0ppt, but that they are reluctant to conform in 10.0ppt, behaviorally avoiding exposure for as long as possible.

Page generated in 0.0619 seconds