• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 17
  • 8
  • Tagged with
  • 25
  • 12
  • 12
  • 11
  • 8
  • 6
  • 6
  • 6
  • 6
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Modélisation des ceintures de radiations de Saturne / A physical model for electron radiation belts of Saturn

Lorenzato, Lise 24 September 2012 (has links)
Les ceintures de radiation provoquent des dégâts irréversibles sur les satellites les traversant, détériorant ainsi les instruments de mesure embarqués. Les étudier est utile au développement de matériaux adaptés et résistants. Depuis les années 90, l'ONERA-DESP étudie les ceintures de radiations des planètes magnétisées, telle que la Terre ou Jupiter, grâce au modèle Salammbô. Salammbô prend en compte les processus physiques de l'environnement radiatif pour recréer les populations d'électrons peuplant les ceintures. Dans cette étude, il s'agit de développer un modèle des ceintures de radiations internes de Saturne, basé sur les travaux précédents. Avant les années 2000, Pioneer 11 et Voyager 2 ne permettaient pas un développement suffisamment avancé d'un modèle de ceintures de radiations de Saturne. La mission Cassini apporte ensuite quantités d'observations et de données pour mener une étude plus approfondie de ces ceintures. Cette thèse débute par l'analyse de la magnétosphère interne de Saturne : anneaux, satellites, nuages de neutres...L'interaction des particules des ceintures de radiations avec ces différents paramètres se traduit par le calcul de coefficients de diffusion. Ces coefficients sont intégrés à l'équation de transport et permettent de comprendre les mécanismes perturbant la distribution des électrons au sein des ceintures de radiations. Les résultats obtenus sont comparés aux mesures faites par les sondes Pioneer 11, Voyager 2 et Cassini. / Radiation belts cause irreversible damages to on-board instrument materials. Studies about radiation belts can be useful for development of materials that will stand such environment. Since the 1990's, ONERA develops models of radiation belts of magnetized planets, such as the Earth or Jupiter. These previous work lead to a physical model, named Salammbô. Salammbô is based on physical processes that dominate the planetary magnetosphere in order to recreate electron populations of radiation belts. ONERA is now able to develop an electron radiation belt model for Saturn's environment, i.e., a new version of Salammbô. Before the 2000's, Pioneer 11 and Voyager 2 did not allow a good development of a Salammbô model in the case of Saturn. Nowadays, the Cassini mission gives a lot of information about Saturn, its magnetosphere and its environment to start a study about radiation belts of Saturn. This thesis begins with the analyse of the kronian magnetosphere : rings, satellites, neutral clouds, etc. Interaction between radiation belt particle and these different parameters lead to diffusion coefficients. Diffusion coefficients are integrated into the Salammbô code and imply a better comprehension of mechanisms that can interfere with the electron distribution of radiation belts. Results have been compared with observations of Pioneer 11, Voyager 2 and Cassini spacecrafts.
12

Propriétés physiques des anneaux de Saturne : de CAMIRAS à la mission CASSINI.

Leyrat, Cedric 20 March 2006 (has links) (PDF)
Cette thèse présente une étude des propriétés rotationnelles des particules dans les anneaux A et C de Saturne. La rotation des particules sur elles mêmes est un des paramètres dynamiques clé qui entre en jeu au cours des collisions mutuelles. La distribution du spin w dépend en effet des vitesses relatives mais aussi de l'état de surface du régolite (porosité et rugosité) et donc de la structure interne des particules. La contrainte de w passe par l'interprétation de l'émission thermique (fonction de l'inertie thermique Tau et de w) du disque en fonction de l'angle de phase et de la longitude planétocentrique, car il n'est pas encore possible d'observer les particules individuellement. Les variations azimutales de température observées à différents angles de phase sont modulées par le refroidissement des particules à chaque orbite, lorsqu'elles traversent l'ombre de la planète. Les vitesses de réchauffement et de refroidissement permettent de mesurer l'inertie thermique, alors que les différences de température en fonction de l'angle de phase nous informent sur l'anisotropie d'émission associée au spin.<br>Ces variations de température ont été observées dans l'infrarouge, à faible angle de phase avec les caméras CAMIRAS (CFHT) et VISIR (VLT), et à de multiples angles de phase avec les spectromètres IRIS (Voyager) et CIRS (Cassini), offrant respectivement une couverture azimutale totale ou partielle. Un modèle thermique d'anneau planétaire constitué de particules de glace sphériques en rotation et réparties suivant une structure monocouche a été développé pour interpréter les températures observées. Il permet de déterminer comment la température du disque, soumis aux multiples sources de chauffage (Soleil, Saturne...etc), varie avec l'angle de phase et la longitude en fonction des propriétés thermiques des particules.<br>L'importante asymétrie d'émission à faible ou fort angle de phase montre que les plus grosses particules, qui contiennent une fraction importante de la masse de l'anneau C, ont une vitesse moyenne de rotation proche de la rotation Keplerienne Omega(w/Omega =0.5±0.4). Ce résultat, obtenu avec les hypothèses d'une distribution mono taille des particules, et suivant une structure monocouche, est compatible avec les résultats des simulations dynamiques. L'inertie thermique du régolite de l'anneau C (Tau = 6.0 ± 4Jm-2K-1s-1/2) est 3 ordres de grandeur plus faible que celle de la glace d'eau cristalline, et confirme une structure très poreuse, probablement engendrée par des fissures à la surface des particules. Elles sont probablement la conséquence du resurfaçage permanent dû aux collisions mutuelles, ou aux forces de tensions liées aux importantes variations de température à chaque orbite.<br>Aux variations de température azimutales de l'anneau A liées au spin et au refroidissement des particules dans l'ombre de la planète, s'ajoute une modulation de température de brillance, corrélée avec la variation de profondeur optique. Cette variation a pu être mise en évidence par les observations de CIRS à de multiples angles de phase et s'explique par la présence d'instabilit és gravitationnelles connues sous le nom de " wakes ". L'émission thermique de l'anneau A observée avec VISIR, après la prise en compte des observations de CIRS, est similaire à celle provenant de structures planes dans lesquelles les particules forment des agrégats. La haute résolution angulaire accessible au VLT nous a permis, pour la première fois, de mesurer les variations azimutales de température dans cette région et d'en déduire son inertie thermique. La valeur trouvée (Tau = 4 ± 3Jm-2K-1s-1/2), sous l'hypothèse d'une structure plane monocouche, est sensiblement identique à celle des anneaux C et B, indiquant un état de surface probablement similaire.
13

Modélisation numérique de la dynamique atmosphérique de Saturne contrainte par les données Cassini-Huygens / Numerical modelling of the atmospheric dynamics of Saturn constrained by Cassini-Huygens data

Sylvestre, Mélody 21 September 2015 (has links)
L'atmosphère de Saturne subit d'importantes variations saisonnières d'insolation, à cause de son obliquité, de son excentricité et de l'ombre de ses anneaux. Dans la stratosphère (de 20 hPa à 10-4 hPa), les échelles de temps photochimiques et radiatives sont du même ordre de grandeur que la période de révolution de Saturne (29,5 ans). On s'attend donc à mesurer des variations saisonnières et méridiennes significatives de la température et des espèces produites par la photochimie (en particulier C2H6, C2H2 et C3H8) dans cette région. Grâce à sa durée (2004-2017), la mission Cassini est l'occasion inédite de suivre l'évolution saisonnière de l'atmosphère de Saturne.Au cours de ma thèse, j'ai analysé des observations au limbe Cassini/CIRS car elles permettent de sonder à la fois la structure méridienne et verticale de la stratosphère de Saturne. Ainsi, j'ai mesuré les variations saisonnières de la température et des abondances de C2H6, C2H2 et C3H8. J'ai également contribué au développement d'un modèle radiatif-convectif et d'un GCM (Global Climate Model) de l'atmosphère de Saturne. Les prédictions de ces modèles sont comparées avec les températures mesurées avec CIRS, de façon à étudier les processus radiatifs et dynamiques qui contribuent à l'évolution saisonnière. Les simulations numériques réalisées avec ce GCM m'ont également permis d'étudier la propagation des ondes atmosphérique ainsi que les effets de l'ombre des anneaux sur l'atmosphère de Saturne. Par ailleurs, la comparaison entre les distributions de C2H6, C2H2 et C3H8 et des modèles photochimiques (Moses et Greathouse 2005, Hue et al. 2015) donne des indications sur le transport méridien. / Saturn's atmosphere undergoes important seasonal variations of insolation, due to its obliquity, its eccentricity and the shadow of its rings. In the stratosphere (from 20 hPa to 10-4 hPa), radiative and photochemical timescales are in the same order as Saturn's revolution period (29.5 ans). Hence, significative seasonal and meridional variations of temperature and photochemical by-products (especially C2H6, C2H2, and C3H8) are expected. Because of its duration (2004-2017), the Cassini mission is an unprecedented opportunity to monitor the seasonal evolution of Saturn's atmosphere. During my PhD, I analysed Cassini/CIRS limb observations as they probe the meridional and vertical structure of Saturn's stratosphere. Hence, I measured seasonal variations of temperature and abundances of C2H6, C2H2, and C3H8. I also contributed to the development of a radiative-convective model and a GCM (Global Climate Model) of Saturn's atmosphere. The predictions of these models are compared with the temperatures measured from CIRS observations, in order to study the radiative and dynamical processes which contribute to the seasonal evolution. Numerical simulations performed with the GCM also allowed me to study atmospheric waves propagation and the effects of rings shadowing in Saturn's atmosphere. Besides, comparison between C2H6, C2H2, and C3H8 distributions and photochemical models (Moses and Greathouse 2005, Hue et al., 2015) give insights on meridional transport.
14

Techniques de calcul du transport de particules chargées de haute énergie et leur application à la magnétosphère de Saturne / Energetic charged particles tracing techniques and their applications in the magnetosphere of Saturn

Kotova, Anna 16 September 2016 (has links)
Dans la magnétosphère de Saturne les ceintures de radiation de protons de haute énergie (de l'ordre de quelques MeV) s'avèrent être isolées de la magnétosphère moyenne et externe, et la source de ces protons de haute énergie devraient être liée aux rayons cosmiques galactiques (GCR). Pour valider cette hypothèse il est d'abord nécessaire de détenniner le flux de GCR accédant à Saturne de manière réaliste. Auparavant, seulement des tentatives théoriques ont été effectuées afm de vérifier cette idée. Dans cette thèse, pour la première est développée nne solution numérique pour la détermination de l'accès des GCR à l'atmosphère et aux anneaux de Saturne. La méthode proposée est basée sur le traçage de particules chargées et le code a été développé spécifiquement pour la magnétosphère de Saturne. Lors de la validation de la méthode les observations de Cassini MIMI1 LEMMS acquises pendant les survols de Rbéa et de Dioné ont été modélisées à l'aide du traceur et les résultats obtenus ont été comparés aux observations. TI a été découvert que le << draping >> des lignes de champ magnétique autour de ces satellites de glace, même si il produit des perturbations locales de seulement quelques pour cent du champ magnétique ambient, peut produire des changements mesurables dans la distribution spatiale et l'énergie des flux des ions énergétiques mesurés par MIMI1 LEMMS. Ces résultats sont importants pour l'interprétation correcte des données MIMI 1 LEMMS, et offrent des fonctionnalités pour l'étalonnage croisé précis en vol des instruments. Après cette validation du traceur de particules il a été appliqué pour un calcul à rebours dans le temps des GCR accédant à Saturne. L'énergie d'accès des GCR a été obtenue, les spectres des GCR ont été reconstruits et le flux intégré de GCR autour de Saturne et de ses anneaux a été calculé. Les résultats obtenus sont essentiels pour la compréhension de la formation des ceintures de radiation de protons, ainsi que pour la future investigation du processus CRAND sur Saturne, pour l'évaluation de l'intensité de la ceinture de radiation intérieure et pour d'autres projets, discutés dans cette thèse. / The MeV proton radiation belts of Saturn are isolated from the middle and outer magnetosphere and the source of these high energy protons should be related to the access of Galactic Cosmic Rays (GCRs) in the system. To validate this hypothesis it is first of all necessary to determine the realistic spectrum of GCRs at Saturn. Previously only theoretical attempts were performed in order to calculate the GCR spectra. In this thesis I provide for the first time the numerical solution for the determination of the GCR access to the upper atmosphere and rings of Saturn. The proposed method is based on the charged particle tracing technique and a code that was developed specifically for this purpose. For the validation of the code, the Cassini MIMI/LEMMS observations during the Rhea and Dione flybys were modeled using the tracer and the obtained results were compared to the observations. It was demonstrated that even a weak perturbation of the magnetic field lines can produce measurable changes in the spatial and energy distribution of fluxes measured by MIMI/LEMMS that can be accurately simulated by particle tracing. These results are important for the correct interpretation of the MIMI/LEMMS data, and offer capabilities for a precise in-flight instruments' cross-calibration besides the validation of our simulation code. After this validation the particle tracer was applied for simulating the access of the GCRs. The GCRs access to the rings and atmosphere was obtained, the GCRs spectra were reconstructed and were in part also validated using additional Cassini observations. Dependencies of the spectral parameters on the time, incidence direction, etc., were also obtained offering all necessary information for simulating the interaction of GCRs with the Saturnian system during different phases of the Cassini mission. That includes also the Proximal orbits of 2017, during which Cassini will sample for the first time the radiation belts inside the D-ring of the planet, a region which is likely populated only by GCR secondaries.
15

Etude de l'équilibre et de la circulation des populations d'électrons dans la magnétosphère de Saturne à l'aide des données multi-instrumentales de la sonde Cassini-Huygens.

Schippers, Patricia 03 April 2009 (has links) (PDF)
Ce travail de thèse est une étude originale de l'équilibre et de la circulation des populations d'électrons dans la magnétosphère de Saturne à l'aide des données multi-instrumentales de la sonde Cassini-Huygens. A partir de spectres inter-étalonnés des instruments particules de basse énergie (de 0.6 eV à 26 keV) et de haute énergie (de 12keV à 1 MeV), j'ai identifié les populations électroniques présentes dans la magnétosphère de Saturne : une population thermique (quelques eV), une population suprathermique (100-1000 eV), une population d'électrons énergétiques (MeV), et une population de photoélectrons issus de la photo-ionisation du tore de gaz neutre, observée pour la première fois dans la magnétosphère interne (< 5 Rayons saturniens). A partir des profils radiaux des moments fluides des populations électroniques dominantes, j'ai identifié la présence de 3 grandes régions magnétosphériques caractérisées par des régimes plasma différents, séparées par deux frontières localisées à 9 et à 15 Rayons saturniens. L'analyse statistique des profils de moments a révélé une dynamique importante de la couche de plasma et une asymétrie de la distribution des électrons thermiques et suprathermiques en longitude. L'analyse de l'évolution des moments fluides à l'intérieur de chacune des régions magnétosphériques et entre ces régions m'a permis d'identifier d'une part les régions de source, de perte et de transport des populations électroniques, et d'autre part les processus physiques dominants dans ces régions. Sur base de cette analyse, un schéma de circulation des populations d'électrons dans la magnétosphère de Saturne est enfin proposé.
16

Température et composition de la stratosphère de Saturne à partir des données de Cassini/CIRS

Guerlet, Sandrine 16 September 2010 (has links) (PDF)
L'objectif de cette thèse est de mesurer les champs de température et de composition de la stratosphère de Saturne. Pour cela, j'ai analysé des spectres de l'émission thermique de la planète acquis au limbe par CIRS, un spectromètre infrarouge à bord de la sonde Cassini. L'analyse de ces signatures spectrales à l'aide d'un code de transfert de rayonnement et d'une méthode d'inversion permet de mesurer les profils verticaux de la température et de l'abondance des constituants. J'ai ainsi réalisé les premières cartographies, de 70° N à 80° S, et sur plusieurs échelles de hauteur, de la température et de l'abondance de cinq hydrocarbures: l'éthane, l'acétylène, le propane, le méthylacétylène et le diacétylène. La carte de température obtenue permet de quantifier la réponse de l'atmosphère aux variations saisonnières de l'ensoleillement. Les gradients mesurés sont comparés au modèle radiatif saisonnier de Greathouse et al., 2008. Je montre également la découverte d'une oscillation équatoriale de température et de vent zonal dans la stratosphère de Saturne, analogue à l'oscillation quasi-biennale terrestre, et je présente ses variations temporelles entre 2005 et 2010. L'analyse de la distribution des hydrocarbures et la comparaison à un modèle de photochimie saisonnier (Moses et al., 2005) met en évidence des indices de transport méridien dans la basse stratosphère et de transport vertical dans la haute stratosphère. L'abondance du CO2 est également déterminée à 4 latitudes et présente un enrichissement à l'équateur. Enfin, je présente un travail d'analyse des échanges radiatifs dans la stratosphère à l'aide d'une formulation en puissances nettes échangées. Ce travail servira de base à une future paramétrisation du transfert de rayonnement, étape nécessaire au développement d'un modèle de circulation générale de la stratosphère de Saturne.
17

Dynamique des anneaux de Saturne : ondes de densité et distribution en taille des particules dans les anneaux

Longaretti, Pierre-Yves 21 May 1987 (has links) (PDF)
La première partie de cette thèse est motivèe par un problème important soulevé par la théorie linéaire des ondes de densité, Celle-ci prévoit en effet un transfert de moment cinétique entre une onde et le satellite qui l'excite.Ce transfert devrait créer l'effondrement des anneaux sur la planète, en particulier de l'anneau A, et l'éloignement des satellites en des temps caractéristiques très courts devant l'âge du système solaire , ce qui contredit l'hypothèse de l'origine primordiale des anneaux, qui semblait a priori la plus simple pour expliquer leur existence, Plusieurs hypothèses ont été avancées pour résoudre cette question: soit bien sür les anneaux sont jeunes, soit le calcul du transfert de moment cinétique par la théorie linéaire est largement surestimé, soit encore la physique qui permet la survivance des anneaux n'est pas comprise. Le but de mon travail est de tester la deuxième hypothèse, en utilisant une représentation non-linéaire des ondes de densité, Dans un premier temps, j'expliquerai les bases du formalisme non-linéaire utilisé, qui a été développé par Borderies, Goldreich et Tremaine et appliqué par ce groupe à une grande variété de problèmes de dynamique des anneaux de planètes. Je présenterai également un travail théorique formulant ce formalisme dans le cas où le corps central ne possède pas la symétrie sphérique. J'expliquerai ensuite comment je l'ai utilisé dans l'étude d'un des profils d'onde enregistré par Voyager, et je montrerai les implications de cette étude sur notre connaissance des caractéristiques physiques des anneaux et de leur dynamique. La seconde partie de cette thèse se rattache au premier des axes de recherche mentionné ci-dessus. Les études statistiques des anneaux portent en quasi-totalité sur la détermination de la dispersion de vitesse des particules, qui dans la plupart des cas sont supposées toutes identiques. A l'inverse, je me suis intéressé à un problème encore peu étudié: la distribution en taille des particules dans les anneaux. J'exposerai un modèle analytique que j'ai développé en vue d'expliquer les caractéristiques de la distribution dans les anneaux de Saturne, qui a pu être déterminée à l'aide des données de l'expérience d'occultation radio des anneaux réalisée par Voyager. L'un des buts d'une telle étude est d'entreprendre un premier pas dans l'élaboration d'une théorie statistique des anneaux plus complète que celles dont on dispose actuellement (en vue par exemple, d'une détermination couplée de la dispersion de vitesse et de la distribution en taille des particules) .
18

Modélisation du transfert radiatif dans les atmosphères de Jupiter et Saturne : application à l'étude des chevauchements des raies Lyman alpha, beta et gamma de l'hydrogène atomique avec des raies des systèmes de Lyman et Werner de l'hydrogène moléculaire

Barthelemy, Mathieu 17 December 2003 (has links) (PDF)
L'étude du rayonnement UV de la haute atmosphère des planètes géantes ne peut se faire qu'à l'aide de techniques de transfert radiatif. Ces hautes atmosphères étant constituées essentiellement d'hydrogène, il convient d'étudier les raies de la série de Lyman de l'hydrogène atomique. Cependant, la présence dans ces atmosphères, de H et de H2, génère des chevauchements, entre les raies de la série de Lyman et les bandes de l'hydrogène moléculaire. Nous avons modélisé les effets de ces chevauchements pour les raies Lyman alpha, beta et gamma. On constate que ces effets sont souvent importants surtout à cause de l'auto-absorption des raies dues à H2 à la fois sur Jupiter et Saturne. On peut obtenir via cette méthode, des informations sur l'état et les concentrations de l'hydrogène moléculaire et atomique, en particulier les températures vibrationnelles de l'hydrogène moléculaire. Cette technique pourra être étendue aux zones aurorales et éventuellement aux planètes extrasolaires.
19

Reactivity of C₃N and C₂H at low temperature : applications for the Interstellar Medium and Titan / Réactivité de C₃N et C₂H à basse température : applications pour le milieu interstellaire et Titan

Fournier, Martin 20 November 2014 (has links)
Le milieu interstellaire ainsi que certaines atmosphères de corps planétaires, en particulier Titan, un des plus grands satellites du système solaire, présentent une grande diversité d'espèces chimiques. Cette chimie complexe est très différente de celle que nous connaissons sur Terre. Pour comprendre les phénomènes globaux qui s'y déroulent, une connaissance des réactions chimiques, de leur vitesse et de leurs produits est requise. A l'aide de la technique CRESU, nous sommes capables de reproduire certaines conditions des milieux les plus froids de l'espace et d'étudier ces réactions. / The interstellar medium and some atmospheres of planetary bodies, in particular Titan, one of the largest satellites of Saturn, present a large variety of chemical species. This complex chemistry is very different from the one we know on Earth. To understand the global phenomenon that happen in these environments, we need to understand the chemical reactions, their reaction rate and their products. With the CRESU technique, we are able to reproduce partially the coldest environments of space to study these reactions.
20

Observations in-situ de la turbulence compressible dans les magnétogaines planétaires et le vent solaire / In-situ observations of compressible turbulence in planetary magnetosheaths and solar wind

Hadid, Lina 20 September 2016 (has links)
Parmi les différents plasmas spatiaux, le vent solaire et les magnétogaines planétaires représentent les meilleurs laboratoires pour l’étude des propriétés de la turbulence. Les fluctuations de densité dans le vent solaire étant faibles, à basses fréquences ces dernières sont généralement décrites par la théorie de la MHD incompressible. Malgré son incompressibilité, l’effet de la compressibilité dans le vent solaire a fait l’objet de nombreux travaux depuis des décennies, à la fois théoriques,numériques et observationnels.Le but de ma thèse est d’étudier le rôle de la compressibilité dans les magnétogaines planétaires(de la Terre et de Saturne) en comparaison avec un milieu beaucoup plus étudié et moins compressible (quasi incompressible), le vent solaire. Ce travail a été réalisé en utilisant des données in-situ de trois sondes spatiales, Cassini, Cluster et THEMIS B/ARTEMIS P1.La première partie de mon travail a été consacrée à l’étude des propriétés de la turbulence dans la magnétogaine de Saturne aux échelles MHD et sub-ionique, en comparaison avec celle de la Terre en utilisant les données Cassini et Cluster respectivement. Ensuite j’ai appliqué la loiexacte de la turbulence isotherme et compressible dans le vent rapide et lent en utilisant les données THEMIS B/ARTEMIS P1, afin d’étudier l’effet et le rôle de la compressibilité sur le taux de transfert de l’énergie dans la zone inertielle. Enfin, une première application de ce modèle dans la magnétogaine de la Terre est présentée en utilisant les données Cluster. / Among the different astrophysical plasmas, the solar wind and the planetary magnetosheathsrepresent the best laboratories for studying the properties of fully developed plasma turbulence.Because of the relatively weak density fluctuations (∼ 10%) in the solar wind, the low frequencyfluctuations are usually described using the incompressible MHD theory. Nevertheless, the effectof the compressibility (in particular in the fast wind) has been a subject of active research withinthe space physics community over the last three decades.My thesis is essentially dedicated to the study of compressible turbulence in different plasma environments,the planetary magnetosheaths (of Saturn and Earth) and the fast and slow solar wind.This was done using in-situ spacecraft data from the Cassini, Cluster and THEMIS/ARTEMISsatellites.I first investigated the properties of MHD and kinetic scale turbulence in the magnetosheathof Saturn using Cassini data at the MHD scales and compared them to known features of thesolar wind turbulence. This work was completed with a more detailed analysis performed in themagnetosheath of Earth using the Cluster data. Then, by applying the recently derived exactlaw of compressible isothermal MHD turbulence to the in-situ observations from THEMIS andCLUSTER spacecrafts, a detailed study regarding the effect of the compressibility on the energycascade (dissipation) rate in the fast and the slow wind is presented. Several new empirical lawsare obtained, which include the power-law scaling of the energy cascade rate as function of theturbulent Mach number. Eventually, an application of this exact model to a more compressiblemedium, the magnetosheath of Earth, using the Cluster data provides the first estimation of theenergy dissipation rate in the magnetosheath, which is found to be up to two orders of magnitudehigher than that observed in the solar wind.

Page generated in 0.0264 seconds