• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 36
  • 7
  • 6
  • 6
  • 2
  • 2
  • Tagged with
  • 73
  • 73
  • 24
  • 13
  • 12
  • 12
  • 9
  • 9
  • 9
  • 9
  • 8
  • 8
  • 8
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

The formalism of non-commutative quantum mechanics and its extension to many-particle systems

Hafver, Andreas 12 1900 (has links)
Thesis (MSc (Physics))--University of Stellenbosch, 2010. / ENGLISH ABSTRACT: Non-commutative quantum mechanics is a generalisation of quantum mechanics which incorporates the notion of a fundamental shortest length scale by introducing non-commuting position coordinates. Various theories of quantum gravity indicate the existence of such a shortest length scale in nature. It has furthermore been realised that certain condensed matter systems allow effective descriptions in terms of non-commuting coordinates. As a result, non-commutative quantum mechanics has received increasing attention recently. A consistent formulation and interpretation of non-commutative quantum mechanics, which unambiguously defines position measurement within the existing framework of quantum mechanics, was recently presented by Scholtz et al. This thesis builds on the latter formalism, extends it to many-particle systems and links it up with non-commutative quantum field theory via second quantisation. It is shown that interactions of particles, among themselves and with external potentials, are altered as a result of the fuzziness induced by non-commutativity. For potential scattering, generic increases are found for the differential and total scattering cross sections. Furthermore, the recovery of a scattering potential from scattering data is shown to involve a suppression of high energy contributions, disallowing divergent interaction forces. Likewise, the effective statistical interaction among fermions and bosons is modified, leading to an apparent violation of Pauli’s exclusion principle and foretelling implications for thermodynamics at high densities. / AFRIKAANSE OPSOMMING: Nie-kommutatiewe kwantummeganika is ’n veralgemening van kwantummeganika wat die idee van ’n fundamentele kortste lengteskaal invoer d.m.v. nie-kommuterende ko¨ordinate. Verskeie teorie¨e van kwantum-grawitasie dui op die bestaan van so ’n kortste lengteskaal in die natuur. Dit is verder uitgewys dat sekere gekondenseerde materie sisteme effektiewe beskrywings in terme van nie-kommuterende koordinate toelaat. Gevolglik het die veld van nie-kommutatiewe kwantummeganika onlangs toenemende aandag geniet. ’n Konsistente formulering en interpretasie van nie-kommutatiewe kwantummeganika, wat posisiemetings eenduidig binne bestaande kwantummeganika raamwerke defineer, is onlangs voorgestel deur Scholtz et al. Hierdie tesis brei uit op hierdie formalisme, veralgemeen dit tot veeldeeltjiesisteme en koppel dit aan nie-kommutatiewe kwantumveldeteorie d.m.v. tweede kwantisering. Daar word gewys dat interaksies tussen deeltjies en met eksterne potensiale verander word as gevolg van nie-kommutatiwiteit. Vir potensiale verstrooi ¨ıng verskyn generiese toenames vir die differensi¨ele and totale verstroi¨ıngskanvlak. Verder word gewys dat die herkonstruksie van ’n verstrooi¨ıngspotensiaal vanaf verstrooi¨ıngsdata ’n onderdrukking van ho¨e-energiebydrae behels, wat divergente interaksiekragte verbied. Soortgelyk word die effektiewe statistiese interaksie tussen fermione en bosone verander, wat ly tot ’n skynbare verbreking van Pauli se uitsluitingsbeginsel en dui op verdere gevolge vir termodinamika by ho¨e digthede.
42

Théorie spectrale et de la diffusion pour les réseaux cristallins / Spectral and scattering theory for crystal lattices

Parra Vogel, Daniel Alejandro 09 January 2017 (has links)
Dans cette thèse les théories spectrale et de la diffusion sur des graphes périodiques sont investigué. Le chapitre 1 présente des résultats de préservation de la nature fine du spectre pour des opérateurs de Schrödinger perturbés dans le cadre de cristaux topologiques perturbés. Le chapitre 2 étend ses résultats à des opérateurs du première ordre connu sous le nom de opérateurs de Gauss-Bonnet discrets. Finalement, le chapitre 3 présente des résultats de continuité de composantes spectrales pour des familles de opérateurs de Schrödinger magnétiques sur Z^d / In this thesis we investigate the spectral and scattering theories for crystal lattices. In chapter one we present results concerning the preservation of the nature of the spectrum for perturbed Schrödinger operators acting con perturbed topological crystals. In Chapter 2 we extend this results to some first order operators knowns as discrete Gauss-Bonnet operators. Finally, in chapter 3 we give some results dealing with the continuity of the spectrum for a family of magnetic Schrödinger operators acting on Z^d
43

Parametric Investigation Of Spray Characteristics Using Interferometric Particle Imaging Technique

Ocer, Nuri Erkin 01 December 2009 (has links) (PDF)
Spray is an efficient tool in the usage whose primary objectives are to obtain droplets with increased liquid surface area and more dispersed liquid over a larger volume. The determination of spray characteristics has been a topic of extensive research recently. In the present investigation, the flow structure of a spray issuing from an oil burner nozzle was determined in a parametrical manner. The main tool in the experimental research is the Interferometric Particle Imaging (IPI) configuration. This method exploits the interference between light reflected from and refracted through individual transparent spray droplets which are illuminated by a laser light sheet in a wide angle forward-scatter region. Based on a scattering theory, the droplet diameter of spray particles can be related to the light pattern scattered from that particle. In addition, using double-framed images also enables the calculation of velocities associated with these particles. In this way, as a representation of spray structure, the droplet size and velocity distributions were obtained prior to a change in the primary parameters of liquid flow e.g. surface tension, viscosity, density and the injection pressure. The evolution of spray characteristics in space were also examined by conducting measurements in different radial and axial locations relative to spray centerline.
44

Elastic and inelastic scattering effects in conductance measurements at the nanoscale : A theoretical treatise

Berggren, Peter January 2015 (has links)
Elastic and inelastic interactions are studied in tunnel junctions of a superconducting nanoelectromechanical setup and in response to resent experimental superconducting scanning tunneling microscope findings on a paramagnetic molecule. In addition, the electron density of molecular graphene is modeled by a scattering theory approach in very good agreement with experiment. All studies where conducted through the use of model Hamiltonians and a Green function formalism. The nanoelectromechanical system comprise two fixed superconducting leads in-between which a cantilever suspended superconducting island oscillates in an asymmetric fashion with respect to both fixed leads. The Josephson current is found to modulate the island motion which in turn affects the current, such that parameter regions of periodic, quasi periodic and chaotic behavior arise. Our modeled STM setup reproduces the experimentally obtained spin excitations of the paramagnetic molecule and we show a probable cause for the increased uniaxial anisotropy observed when closing the gap distance of tip and substrate. A wider parameter space is also investigated including effects of external magnetic fields, temperature and transverse anisotropy. Molecular graphene turns out to be well described by our adopted scattering theory, producing results that are in good agreement with experiment. Several point like scattering centers are therefore well suited to describe a continuously decaying potential and effects of impurities are easily calculated.
45

Quantitative off-axis Electron Holography and (multi-)ferroic interfaces

Lubk, Axel 07 May 2010 (has links)
A particularly interesting class of modern materials is ferroic ceramics. Their characteristic order parameter is a result of quantum chemistry taking place on a sub-Å length scale and long-range couplings, e.g. mediated by electrostatic or stress fields. Furthermore, the particular subclass of multiferroics possesses more than one order parameter and exhibits an intriguing coupling between them, which is interesting both from the fundamental physics point of view as well as from a technological vantage point. While on a more fundamental level it is desirable to elucidate the physical details of the coupling mechanism, this knowledge could subsequently lead to new and technologically interesting multiferroic materials, which overcome their current drawback that only one of the multiple order parameters is appreciably large while the others stay small. Due to the short and long range nature of the driving forces, one challenge for thoroughly understanding ferroic ceramics is the characterization of material properties within a large interval of length scales from several tens of µm to sub-Å. To that end, it is useful to exploit that all order parameters can be described as macroscopic fields, e.g. electric polarization or strain, which, in turn, can be either directly or indirectly probed with an electron beam such as used in Transmission Electron Microscopy (TEM). Consequently, TEM is excellently suited for investigating ferroic materials, i.e., state-of-the-art instruments facilitate aberration corrected imaging within a large magnification interval covering the length scales of interest, in particular the atomic regime. A general drawback of conventional TEM techniques is the loss of phase information originally contained in the scattered electron wave introduced by recording only the electron density. Electron Holography is an advanced TEM technique that facilitates the complete evaluation of the complex electron wave, which, in combination with the manifold possibilities of TEM, provides rather straightforward access to static electromagnetic fields within the ceramic. Nevertheless, quantification of order parameters such as the electric polarization or minute details in electromagnetic fields still require to correlate the experimentally gained observations to physical models, which combine the details of the microscopic imaging process, the electron-specimen scattering, and solid state physics of the specimen. The goal of this work is to investigate and advance the limits of Electron Holography as a truly quantitative TEM technique and apply the findings in, e.g., the investigation of ferroic ceramics. In the light of the previously mentioned difficulties, the problem has to be tackled from different directions: Firstly, the whole holographic imaging process is reviewed and extended, if necessary, in order to provide quantitative measures for systematic and statistical errors inherent to reconstructed waves. In the course of that process, two previously not recognized holography-specific aberrations are identified, firstly, a resolution limiting spatial envelope and secondly, a spatial distortion to the reconstructed wave. Furthermore, several correction strategies have been developed, in order to correct the aforementioned two and other well-known disturbances, e.g. Fresnel fringes from the biprism filament. The previous holographic noise model has been extended to incorporate the important contribution from the detector and consequently to provide realistic statistic error bars of the holographically reconstructed amplitude and phase. Secondly, an investigation of the electron-specimen scattering process itself is conducted, leading to a density matrix description of the holographic measurement. The general laws of quantum electrodynamics provide the framework of that description. Relativistic phenomena such as retardation of electromagnetic fields exchanged between beam electron and specimen and spin-orbit coupling of the beam electron are quantified, where the latter is found to be negligible within TEM. The decoherence of the electron wave by statistical coupling to the thermally moving crystal lattice of ceramics is treated by a newly developed algorithm facilitating in particular the accurate quantification of elastic scattering on heavy elements. Inelastic excitations in the ceramic, e.g. bulk plasmons or core electrons, are treated in combination with elastic scattering to identify their role in the holographic reconstruction process and to develop methods for an accurate calculation. A new scattering algorithm combining elastic and inelastic scattering is developed and applied to predict peculiar scattering contrasts of dipole transitions and to discuss the long-standing problem of contrast mismatch between scattering simulations and conventional imaging. To provide a user-friendly and continuing use of the findings, a software package SEMI (Simulation of Electron Microscopy Imaging) has been written, which facilitates the simulation of elastic and inelastic scattering processes and the subsequent imaging within different approximations, incorporating the newly developed algorithms. Thirdly, Density Function Theory (DFT) solid state calculations have been employed to identify and quantify structural modifications and characteristic electromagnetic fields, such as occurring at domain boundaries, within typical ferroic ceramics like BaTiO3 or BiFeO3, and concomitantly provide models correlating observables of the (holographic) experiment to characteristics of the materials, e.g. the order parameters. This is particularly important when static electromagnetic fields provide no direct information about the order parameter, e.g. the electric polarization, i.e., it is possible to correlate the measurable atomic positions to the electric polarization within linear response theory. A software package ATA (AuTomated Atomic contrast fitting) has been developed facilitating an automated fitting of atomic positions and a subsequent determination of local polarization. In a fourth step, electron holographic experiments analyzed with the help of the revised imaging process in combination with the knowledge gained from scattering theory are used as an input to the models established from solid state physics to yield quantitative information about bulk ferroelectric materials such as BaTiO3 and PbTiO3 and more complicated configurations such as domain walls in BiFeO3 and KnbO3. It is found that particular atomic shifts characteristic for ferroelectrics provide the most reliable quantitative information about the polarization down to nm length scales, whereas minute wave modification due to characteristic electron distributions within the ceramic are currently insufficiently quantitatively interpretable within Electron Holography. The linear response program, correlating atomic positions to ferroelectric polarization with the help of ab-initio calculated Born effective charges, has been successfully applied to determine finite size effects, screening layer widths and polarization charges in non-ferroelectric/ferroelectric layered systems. Finally, a special section considers the evaluation of 3D electromagnetic fields by Electron Holographic Tomography, which provides the means to characterize even more complex 3D domain wall configurations. As the capabilities of the technique are still limited by holographic reconstruction errors and particular tomographic issues such as incomplete projection data, the main focus of that section is put on the characterization and improvement of the tomographic reconstruction process. A Singular Value based reconstruction method is developed, which facilitates a quantification and control of the tomographic reconstruction error. Furthermore, vector field reconstruction is extended in order to treat magnetic vector fields leaking out from the reconstruction volume. / Ferroische Keramiken bilden eine besonders interessante Klasse moderner funktionaler Werkstoffe. Ihr charakteristischer Ordnungsparameter ist das Ergebnis quantenchemischer Prozesse innerhalb einer sub- Å Längenskala und spezifischer langreichweitiger Kopplungen, welche beispielsweise durch elektromagnetische oder Spannungsfelder vermittelt werden. Des Weiteren besitzt die besondere Unterklasse der Multiferroika mehr als einen Ordnungsparameter und zeigt eine faszinierende Kopplung zwischen ihnen, was sowohl vom Standpunkt physikalischer Grundlagenforschung als auch aus technologischer Sicht von Interesse ist. Während es vom fundamentalen Standpunkt erstrebenswert ist, die physikalischen Details des Kopplungsmechanismus aufzuklären, könnte in der Folge dieses Wissen zu neuen und technologisch interessanten multiferroischen Materialien führen, welche den derzeit bestehenden Nachteil, dass nur ein Ordnungsparameter genügend groß ist, während die jeweils anderen klein bleiben, hinter sich lassen. Aufgrund der kurz- und langreichweitigen Natur der Antriebskräfte besteht eine Herausforderung für das umfassende Verständnis ferroischer Keramiken aus der Charakterisierung von Materialeigenschaften innerhalb eines breiten Intervalls von Längenskalen, welches von einigen 10 µm bis unterhalb eines Å reicht. Um dieses Ziel zu erreichen ist es zweckmäßig auszunutzen, dass alle Ordnungsparameter als makroskopische, beispielsweise elektrostatische oder Verzerrungs-, Felder beschrieben werden können, welche wiederum direkt oder indirekt mit einem Elektronenstrahl, wie er im Transmissionselektronenmikrokop (TEM) zur Anwendung kommt, gemessen werden können. Folglich ist die Transmissionselektronenmikroskopie hervorragend geeignet um ferroische Materialien zu untersuchen, das heißt, modernste Geräte ermöglichen aberrationskorrigierte Aufnahmen innerhalb eines großen Vergrößerungsbereiches, welche die interessanten Längenskalen und insbesondere den atomaren Bereich abdecken. Ein allgemeiner Nachteil der konventionellen TEM Techniken ist der Verlust der Phaseninformationen, welche ursprünglich in der Elektronenwelle vorhanden sind und durch die Aufzeichnung der Elektronenintensität zerstört werden. Elektronenholographie ist eine weiterentwickelte TEM Technik, welche die vollständige Auswertung der komplexen Elektronenwelle ermöglicht, was wiederum in Verbindung mit den vielfältigen Möglichkeiten der TEM einen vergleichsweise direkten Zugang zu elektromagnetischen Feldern in der Keramik ermöglicht. Nichtsdestotrotz erfordert die Quantifizierung von Ordnungsparametern, wie der elektrische Polarisierung, oder von kleinsten Details elektromagnetischer Felder die Korrelation experimenteller Daten mit physikalischen Modellen, welche die Details des mikroskopischen Bildgebungsprozesses mit der Elektronen-Objekt Streuung und der Festkörperphysik des Objektes kombinieren. Das Ziel dieser Arbeit besteht aus der Untersuchung und Erweiterung der Möglichkeiten von Elektronenholographie als quantitative TEM Messmethode und der Anwendung dieser Ergebnisse bei der Untersuchung ferroischer Keramiken. Im Lichte der eben erwähnten Schwierigkeiten muss das Problem von verschiedenen Richtungen bearbeitet werden: Erstens wird der komplette holographische Bildgebungsprozess mit dem Ziel einer quantitativen Bewertung systematischer und statistischer Fehler der rekonstruierten Welle analysiert und gegebenenfalls erweitert. Im diesem Zuge wurden zwei bisher nicht erkannte holographiespezifische Fehler identifiziert, erstens eine auflösungsbegrenzende räumliche Enveloppe und zweitens eine räumliche Verzerrung der rekonstruierten Welle. Außerdem wurden verschiedene Korrekturmöglichkeiten entwickelt, um die zwei eben genannten und andere wohlbekannte Störungen, wie zum Beispiel die Fresnelstreifen des Biprismafadens, zu korrigieren. Das bisherige holographische Rauschmodel wurde erweitert um den beträchtlichen Einfluss des Detektors zu berücksichtigen und damit realistische Fehlerbalken für die holographisch rekonstruierte Amplitude und Phase zu erhalten. Zum Zweiten wird der Streuprozess selber untersucht, was zu einer Dichtematrixbeschreibung der holographischen Messung führt. Den Rahmen dieser Untersuchungen liefern die Gesetze der Quantenelektrodynamik. Relativistische Phänomene wie die Retardierung elektromagnetischer Felder, welche zwischen Strahlelektron und Objekt ausgetauscht werden, oder Spin-Bahn Kopplung des Strahlelektrons werden quantifiziert, wobei letzteres als unwichtig für TEM eingestuft werden konnte. Die Dekohärenz der Elektronenwelle durch die statistische Kopplung an das thermisch bewegte Kristallgitter der Keramik wird mit einem neu entwickelten Algorithmus beschrieben, welcher insbesondere die genaue Quantifizierung der elastischen Streuung an schweren Elementen erlaubt. Ein weiterer neuer Streualgorithmus, welcher elastische und inelastische Streuung kombiniert, wird entwickelt und angewendet, um spezifische Streukontraste von Dipolübergängen vorauszusagen und das altbekannte Problem der Kontrastdiskrepanz zwischen simulierten und experimentellen Bildkontrasten zu diskutieren. Um eine anwenderfreundliche und fortdauernde Anwendung der Erkenntnisse zu ermöglichen, wurde das Softwarepaket SEMI geschrieben, welches die Simulation elastischer und inelastischer Streuprozesse und des nachfolgenden Bildgebungsprozesses innerhalb verschiedener Näherungen ermöglicht und die neu entwickelten Algorithmen beinhaltet. Zum Dritten kommen dichtefunktionalbasierte Festkörperrechenmethoden zur Anwendung um charakteristische elektromagnetische Felder, wie sie beispielsweise an Domänengrenzen entstehen, innerhalb typischer ferroischer Keramiken wie BaTiO3 oder BiFeO3 zu identifizieren und zu quantifizieren und gleichzeitig Modelle zu entwickeln, welche Observablen des (holographischen) Experiments mit Charakteristika des Materials, beispielsweise den Ordnungsparamtern, korrelieren. Dies ist besonders wichtig, wenn statische elektromagnetische Felder keinen direkten Zugang zu den Ordnungsparametern, wie zum Beispiel die ferroelektrische Polarisation, liefern; beispielsweise besteht innerhalb linearer Antworttheorie die Möglichkeit, atomare Positionen mit der elektrischen Polarisation zu korrelieren. Ein Softwarepaket wurde entwickelt, welches die automatische Bestimmung der Atompositionen und der daraus resultierenden lokalen Polarisation ermöglicht. In einem vierten Schritt wurden mit Hilfe des überarbeiteten holographischen Bildgebungsprozesses in Kombination mit den aus der Streutheorie gewonnenen Erkenntnissen holographische Experimente analysiert und als Input für die mit Hilfe der Festkörpertheorie entwickelten Modelle genutzt, um quantitative Informationen über raumferroische Materialien wie BaTiO3 und PbTiO3 und kompliziertere Anordnungen wie Domänengrenzen in BiFeO3 und KnbO3 zu gewinnen. Es konnte festgestellt werden, dass spezifische atomare Verschiebungen, welche charakteristisch für Ferroelektrika sind, die zuverlässigste quantitative Information über die Polarisation bis in den Längenbereich einiger nm liefern, wogegen kleinste Wellenmodifikationen aufgrund charakteristischer Elektronenverteilungen innerhalb der Keramik mit Hilfe von Elektronenholographie nur unzureichend interpretierbar sind. Das lineare Antwortprogramm, welches die Atompositionen über Bornsche effektive Ladungen mit ferroelektrischer Polarisation korreliert, wurde erfolgreich angewendet, um Größeneffekte und Ausdehnungen von Abschirmschichten und Polarisationladungen in nichtferroelektrisch/ferroelektrischen Schichtsystemen zu bestimmen. Abschließend widmet sich ein spezieller Abschnitt der Auswertung 3D elektromagnetischer Felder mit Hilfe der elektronenholographischen Tomographie, was die Voraussetzung für die Charakterisierung von noch komplizierteren 3D Domänenwandanordnungen liefert. Da die Möglichkeiten dieser Technik durch den holographischen Rekonstruktionsfehler und spezifisch tomographische Probleme noch beschränkt sind, liegt der Schwerpunkt dieses Abschnitts in der Charakterisierung und Verbesserung des tomographischen Rekonstruktionsprozesses. Es wird eine singulärwertbasierte Rekonstruktionsmethode entwickelt, welche die Quantifizierung und Kontrolle des Rekonstruktionsfehlers ermöglicht. Außerdem wird die Vektorfeldrekonstruktion erweitert, um magnetische Vektorfelder, welche über das Rekonstruktionsvolumen hinausragen, zu behandeln.
46

A seção de choque total de reação de íons pesados e a transparência nuclear / Total cross-section of heavy ion reactions and nuclear transparency

Rego, Ricardo Affonso do 12 December 1984 (has links)
Foi calculado microscopicamente a seção de choque total de reação para os sistemas ANTPOT. 12 C + ANTPOT. 12 C, ANTPOT. 1-2 C+ ANTPOT. 40 Ca, ANTPOT. 12 C + ANTPOT. 90 Zr, ANTPOT. 12 C + ANTPOT. 208 Pb, ANTPOT. 40 Ca + ANTPOT. 40 Ca, ANTPOT. 40 Ca + ANTPOT. 208 Pb, ANTPOT. 90 Zr + ANTPOT. 90 Zr, ANTPOT. 90 Zr + ANTPOT. 208 Pb e ANTPOT. 208 Pb + ANTPOT. 208 Pb numa ampla faixa de energia. Foi usada a expressão WKB para a defasagem imaginária, na representação do parâmetro do impacto. A parte imaginária do potencial óptico foi construída, usando o primeiro termo da teoria de espalhamento múltiplo, incorporando na sua expressão o principio de Pauli. A inclusão da interação nuclear e coulombiana mostrou ser importante. Os resultados teóricos não se apresentam em bom acordo com os poucos dados experimentais existentes, a baixas energias. Este resultado foi atribuído a fraca absorção contida no potencial imaginário, que contém o processo de knock-out quase-livre como mecanismo dominante de reação. / The total reaction cross section of the systems 12C +12C, 12C + 40Ca, 12C + 90Zr, 12C + 208 Pb, 40Ca + 40Ca, 40Ca + 208Pb, 90Zr + 90Zr, 90 Zr + 208 Pb and 20B Pb + 208 Pb for a wide range of energies has been calculated microscopically. A WKB expression for the imaginary part of the optical potential has been constructed by using the first term of multiple scattering theory with the effect of Pauli blocking incorporated into it. The inclusion of the nuclear and Coulomb interactions is shown to be important. The theoretical results do not show very good agreement with the experimental data at lower energies. This is attributed to the weak absorption contained in the imaginary potential of the tpApB interaction, wich contained only quasi-free knock-out as the dominant reaction mechanism.
47

A matriz S em teoria quântica de campos em espaços curvos / The S-Matrix for Quantum Field Theory in Curved Space-times

Villaverde-Custódio, Felipe Augusto 13 April 2012 (has links)
O objeto de estudo desta dissertação é o efeito de criação de partículas pela curvatura sob o escopo de uma teoria de espalhamento, discutindo quando que a interpretação a partir de uma matriz S é tangível e obtendo sua expressão nesses casos. O capítulo de introdução aborda superficialmente conceitos de relatividade geral e de teoria quântica de campos em espaços planos e curvos, necessários para a construção da matriz S. O conteúdo deste capítulo segue as apresentações feitas por Wald, Parker e Birrell em geral, tendo como guia as obras de Bar, Wald e Hawking no que se trata especificamente de relatividade geral, e de Penrose e Rindler no que se trata da estrutura espinorial. A construção da matriz S se dá no capítulo 2, tendo como guia o trabalho de Wald. O capítulo 3 apresenta exemplos que permitem a contextualização da criação de partículas em casos específicos de espaços-tempos em expansão. Este estudo nos permite verificar que as condições que precisam ser satisfeitas em um espaço-tempo globalmente hiperbólico e assintoticamente estacionário para que a formulação da matriz S possa ser feita são que as teorias no passado e futuro distantes devem ser unitariamente equivalentes, que a relação entre as regiões se dá através de transformações de Bogolyubov dadas por operadores limitados definidos em toda a parte e que tais operadores satisfaçam a condição de Hilbert-Schmidt. Nestes casos obtemos uma expressão para a matriz $S$ que descreve a criação de partículas pela curvatura do espaço-tempo para o campo de Klein-Gordon e de Dirac, além de outras relações úteis, como número médio de partículas criadas e probabilidade de se encontrar partículas em determinado modo, o que permite uma analogia com a radiação de corpo negro, passo fundamental para se entender fenômenos de grande interesse na física, como a radiação de Hawking e a criação de partículas no período inflacionário. / This master\'s thesis deals with the effect of particle creation by the curvature of space-time according to the point of view of scattering theory, discussing when such interpretation is possible by means of an S-matrix and obtaining its expression in those cases. The first chapter treats, superficially, some concepts of general relativity and quantum field theory in plane and curved space-times that are imperative to understand the construction of the S-matrix. The subject of this chapter is covered in the work of Wald, Parker, and Birrell, and follows closely the work of Bar, Wald and Hawking, when treats concepts specifically from general relativity, and from Penrose and Rindler, when talking about the spinor structure of space-time. The construction of the S-matrix is made in the second chapter, along the lines of the work of Wald. The third chapter presents some examples that bring some light on the creation of particles in specific cases of expanding space-times. This study let us verify that an S-matrix formulation is tenable, on globally hyperbolic asymptotic stationary curved space-times, if both quantum theories in the distant past and distant future are unitary equivalent, the relation of both regions is made by Bogolyubov transformations by means of everywhere defined bounded operators and that those operators satisfy the Hilbert-Schmidt condition. In those cases we derive the expression of the S-matrix for the Klein-Gordon and Dirac fields. Also we obtain the number of particles created and the probability of find particles in a particular mode, with let one make an analogy with the black body radiation, which is a fundamental step in the direction of understanding interesting phenomena in quantum field theory in curved space-times, like the Hawking radiation and particle creation in the early universe.
48

Transport local et non-local : Percolation dans les systèmes à effet Hallquantique corrélations croisées dans les structures hybrides supraconductrices / From Local to Non-Local Transport : Percolation in Quantum Hall Systems, Cross-Correlations in Superconducting Hybrid Structures

Flöser, Martina 01 October 2012 (has links)
Cette thèse est constituée de deux parties indépendantes. La première partie traite du transport dans des gaz d'électrons bidimensionnels dans le régime de l'effet Hall quantique. Dans la deuxième partie, le courant et les corrélations croisées en courant sont étudiées pour des structures hybrides conducteur normal- supraconducteur- conducteur normal (NSN). Dans le régime de haute température de l'effet Hall quantique, la conductance longitudinale est calculée par un formalisme diagrammatique basé sur une approche de conductivité locale. Ce calcul prend en compte l'effet de dérive des électrons sur les lignes équipotentielles du potentiel de désordre et permet la dérivation microscopique de l'exposant critique de transport qui était auparavant seulement conjecturé à partir d'arguments géométriques qualitatifs. Des expressions microscopiques pour la dépendance en température et en champ magnétique de la conductance longitudinale sont dérivées et comparées avec des expériences récentes. Dans le régime de basse température de l'effet Hall quantique, le passage du courant par effet tunnel sur des points selles est étudié à partir de la diffusion de paquets d'onde d'états semi-cohérents. Nous dérivons analytiquement le coefficient de transmission d'un point selle pour le potentiel scalaire dans le graphène et trouvons que les points selles asymétriques brisent la symétrie particule-trou de la conductance. Dans des structures hybrides NSN, nous étudions l'influence de barrières additionnelles sur la conductance (non-locale) et sur les corrélations croisées en courant avec la théorie de diffusion. Dans les systèmes métalliques, où la phase est moyennée, des barrières additionnelles augmentent les processus locaux par réflexion Andreev résonante (reflectionless tunneling), mais ont peu d'influence sur les processus non-locaux et sur les corrélations croisées en courant. Dans les systèmes balistiques, des barrières additionnelles causent des oscillations Fabry-Pérot et permettent de distinguer les différents processus contribuant à la conductance et aux corrélations croisées en courant. / This thesis consists of two independent parts. The first one deals with transport in two dimensional electron gases in the regime of the quantum Hall effect. In the second part, current and current cross-correlations are studied in normal conductor-superconductor-normal conductor (NSN) hybrid structures. In the high temperature regime of the quantum Hall effect, the longitudinal conductance is calculated in a diagrammatic formalism based on a local conductivity approach. It takes the interplay between electron-phonon scattering and the drift motion along equipotential lines of the disorder potential into account and provides a microscopic derivation of the universal transport critical exponent that was up to now only conjectured from qualitative geometrical arguments. Microscopic expressions for the dependence in temperature and magnetic field of the longitudinal conductance are derived and compared to recent experiments. In the low temperature regime of the quantum Hall effect, tunneling over saddle points is studied from the scattering of semi-coherent state wave packets. We derive analytically the transmission coefficient of saddle-points in the scalar potential in graphene and find that asymmetric saddle-points break particle-hole symmetry in the conductance. In three-terminal NSN hybrid structures the influence of additional barriers on the (non-local) conductance and on current cross-correlations is studied with scattering theory. In metallic, phase averaged systems additional barriers lead to an enhancement of local processes by reflectionless tunneling but have little influence on non-local processes and on current cross-correlations. In ballistic systems, additional barriers lead to Fabry-Perot oscillations and allow to distinguish the different contributions to the conductance and to the current cross-correlations.
49

Valeurs propres de transmission et leur utilisation dans l'identification d'inclusions à partir de mesures électromagnétiques. / Transmission eigenvalues and their use in the identification of inclusions form electromagnetic measurements

Cossonnière, Anne 08 December 2011 (has links)
La théorie des problèmes de diffraction inverses pour les ondes acoustiques et électromagnétiques est un domaine de recherche très actif qui a connu des avancées significatives ces dernières années. La Linear Sampling Method (LSM), permettant de reconstituer la forme d’un objet à partir de sa réponse acoustique ou électromagnétique avec peu de données a priori sur les propriétés physiques de l’objet, a révélé l’existence de fréquences de résonance appelées valeurs propres de transmission, pour lesquelles cette méthode échoue dans le cas d’objets diffractants pénétrables. Ces fréquences particulières peuvent être étudiées à partir d’un nouveau type de problème appelé problème de transmission intérieur. Ces valeurs propres s’avèrent utiles dans le problème d’identification puisqu’elles peuvent aussi être calculées à partir des mesures à l’infini et quelles apportent des informations qualitatives sur les propriétés physiques de l’objet. Dans cette thèse, nous prouvons l’existence et le caractère discret de l’ensemble des valeurs propres de transmission pour deux nouvelles configurations, correspondant aux cas où l’objet diffractant pénétrable contient une cavité ou un conducteur parfait. De plus, nous proposons une nouvelle approche utilisant les équations intégrales permettant de calculer numériquement les valeurs propres de transmission / The theory of inverse scattering for acoustic or electromagnetic waves is an active area of research with significant developments in the past few years. The Linear Sampling Method (LSM) is a method that allows the reconstruction of the shape of an object from its acoustic or electromagnetic response with a few a priori knowledge on the physical properties of the scatterer. However, this method fails for resonance frequencies called transmission eigenvalues in the case of penetrable objects. These transmission eigenvalues are the eigenvalues of a new type of problem called the interior transmission problem. Their main feature is that not only they can give information on the physical properties of the scatterer but they can also be computed from far field measurements. In this thesis, we prove the existence and the discreteness of the set of transmission eigenvalues for two new configurations corresponding to the cases of a scatterer containing a cavity or a perfect conductor. A new approach using surface integral equations is also developed to compute numerically transmission eigenvalues for general geometries
50

A matriz S em teoria quântica de campos em espaços curvos / The S-Matrix for Quantum Field Theory in Curved Space-times

Felipe Augusto Villaverde-Custódio 13 April 2012 (has links)
O objeto de estudo desta dissertação é o efeito de criação de partículas pela curvatura sob o escopo de uma teoria de espalhamento, discutindo quando que a interpretação a partir de uma matriz S é tangível e obtendo sua expressão nesses casos. O capítulo de introdução aborda superficialmente conceitos de relatividade geral e de teoria quântica de campos em espaços planos e curvos, necessários para a construção da matriz S. O conteúdo deste capítulo segue as apresentações feitas por Wald, Parker e Birrell em geral, tendo como guia as obras de Bar, Wald e Hawking no que se trata especificamente de relatividade geral, e de Penrose e Rindler no que se trata da estrutura espinorial. A construção da matriz S se dá no capítulo 2, tendo como guia o trabalho de Wald. O capítulo 3 apresenta exemplos que permitem a contextualização da criação de partículas em casos específicos de espaços-tempos em expansão. Este estudo nos permite verificar que as condições que precisam ser satisfeitas em um espaço-tempo globalmente hiperbólico e assintoticamente estacionário para que a formulação da matriz S possa ser feita são que as teorias no passado e futuro distantes devem ser unitariamente equivalentes, que a relação entre as regiões se dá através de transformações de Bogolyubov dadas por operadores limitados definidos em toda a parte e que tais operadores satisfaçam a condição de Hilbert-Schmidt. Nestes casos obtemos uma expressão para a matriz $S$ que descreve a criação de partículas pela curvatura do espaço-tempo para o campo de Klein-Gordon e de Dirac, além de outras relações úteis, como número médio de partículas criadas e probabilidade de se encontrar partículas em determinado modo, o que permite uma analogia com a radiação de corpo negro, passo fundamental para se entender fenômenos de grande interesse na física, como a radiação de Hawking e a criação de partículas no período inflacionário. / This master\'s thesis deals with the effect of particle creation by the curvature of space-time according to the point of view of scattering theory, discussing when such interpretation is possible by means of an S-matrix and obtaining its expression in those cases. The first chapter treats, superficially, some concepts of general relativity and quantum field theory in plane and curved space-times that are imperative to understand the construction of the S-matrix. The subject of this chapter is covered in the work of Wald, Parker, and Birrell, and follows closely the work of Bar, Wald and Hawking, when treats concepts specifically from general relativity, and from Penrose and Rindler, when talking about the spinor structure of space-time. The construction of the S-matrix is made in the second chapter, along the lines of the work of Wald. The third chapter presents some examples that bring some light on the creation of particles in specific cases of expanding space-times. This study let us verify that an S-matrix formulation is tenable, on globally hyperbolic asymptotic stationary curved space-times, if both quantum theories in the distant past and distant future are unitary equivalent, the relation of both regions is made by Bogolyubov transformations by means of everywhere defined bounded operators and that those operators satisfy the Hilbert-Schmidt condition. In those cases we derive the expression of the S-matrix for the Klein-Gordon and Dirac fields. Also we obtain the number of particles created and the probability of find particles in a particular mode, with let one make an analogy with the black body radiation, which is a fundamental step in the direction of understanding interesting phenomena in quantum field theory in curved space-times, like the Hawking radiation and particle creation in the early universe.

Page generated in 0.0689 seconds