• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • Tagged with
  • 4
  • 4
  • 4
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Immunity-based framework for heterogeneous mobile robotic systems

Raza, Ali, 1977- 21 February 2013 (has links)
Artificial immune systems (AIS), biologically inspired from natural immune functions, can be reactive as well as adaptive in handling generic and varying pathogens, respectively. Researchers have used the immunological metaphors to solve science and engineering problems where unknown/unexpected scenarios are plausible. AIS can be a suitable choice for various robotic applications requiring reactive and/or deliberative control. This research aims to translate modern trends in immunology, to develop an immunity-based framework, to control a team of heterogenous robots on varying levels of task allocation and mutual interactions. The presented framework is designed to work as a multi-agent system in which safe environment is treated reactively through innate immunity, whereas unsafe situations invoke adaptive part of immune system, simultaneously. Heterogeneity is defined in terms of different sensing and/or actuation capabilities as well as in terms of different behavior-sets robot(s) possess. Task allocation ranges from primitive to advanced behaviors. Mutual interactions, on the other hand, range from simpler one-to-one interaction to mutual coordination. In this context, a new immunity-based algorithm has been developed & tested, combining innate and adaptive immunities, to regulate cell populations and corresponding maturations, along with internal health indicators, in order to effectively arbitrate behaviors/robots in a heterogenous robotic system, in environments that are dynamic and unstructured. / text
2

Design Of A Mobile Robot To Move On Rough Terrain

Kirmizigul, Ugur 01 December 2005 (has links) (PDF)
In this thesis work, a mobile robot is designed to be used in search and rescue operations to help the human rescue workers. The difficult physical conditions in the ruins obstruct the movement. Therefore, it is aimed to design a search and rescue robot which can move easily on rough terrain and climb over the obstacles. The designed robot is made up of three modules. A connecting unit is designed that is situated between each module. This connecting unit which is composed of two universal and one revolute joint gives 5 DOF relative motions to the modules. On the other hand, the wheel&rsquo / s continuous contact with the ground is important while moving on rough terrain. In order to increase the adaptation of the robot to the rough terrain the rear axle is connected to the body with a revolute joint. Besides, skid steering system is used in the design of the robot to attain a compact and light solution which requires few parts. In the study, kinematic equations and dynamic equations of the robot are obtained to be used by the control program. The dynamic equations are obtained by using the Newton &ndash / Euler formulation. The forces, which are transmitted by the connecting unit to the modules, and the reaction forces formed between the wheels and the ground are derived by using these equations. &ldquo / Follow-the-Leader approach&rdquo / is used as a control strategy to make the modules move in formation and to reduce the tracking problem. In this approach, the first module is the leader and the second and third modules follow it. A Matlab program is written to control the robot by using the constructed mathematical model of the robot. The reaction forces between the wheels and the ground are calculated through using the Matlab program written. Moreover to make the simulations of the robot for some cases, a model is constructed in ADAMS program.
3

Motion Design and Control of a Snake Robot in Complex Environments Based on a Continuous Curve Model / 複雑環境におけるヘビ型ロボットの連続曲線モデルを用いた動作設計と制御

Takemori, Tatsuya 24 September 2021 (has links)
京都大学 / 新制・課程博士 / 博士(工学) / 甲第23505号 / 工博第4917号 / 新制||工||1768(附属図書館) / 京都大学大学院工学研究科機械理工学専攻 / (主査)教授 松野 文俊, 教授 泉田 啓, 教授 小森 雅晴 / 学位規則第4条第1項該当 / Doctor of Philosophy (Engineering) / Kyoto University / DGAM
4

A Whegs Robot Featuring a Passively Compliant, Actively Controlled Body Joint

Boxerbaum, Alexander Steele 17 May 2010 (has links)
No description available.

Page generated in 0.0795 seconds