• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 81
  • 12
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 127
  • 127
  • 127
  • 24
  • 22
  • 19
  • 15
  • 14
  • 13
  • 13
  • 12
  • 12
  • 11
  • 10
  • 10
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
111

Synthesis and Characterization of Regioregular, Amphiphilic Semifluoroalkyl-Substituted Polythiophenes and Cofacial Bis(oligothienyl)naphthalenes

Watt, Shannon L. 14 November 2007 (has links)
Conjugated polymers and oligomers have been widely studied based on their wide range of useful properties and applications. Given the importance of self-assembly and charge transfer in the development of conjugated materials for use in electronic applications, it is crucial to: (i) prepare functional materials by molecular design, (ii) evaluate the structure-property relationships of new materials, and (iii) develop fundamental understanding of electronic structure and charge transport behavior. The use of conjugated polymeric materials in electronic applications relies on control of the assembly and orientation of the polymer chains in the solid state. Conjugated polymers with liquid crystalline behavior could be used to implement an additional level of control over orientation and resultant properties. Substitution of the conjugated polythiophene backbone with semifluoroalkyl side chains (i.e., the diblock -(CH2)m(CF2)nF) has afforded materials with unusual properties. The mutual immiscibility of the aromatic backbone, the alkyl side-chain segments, and the fluoroalkyl side-chain termini provides control over supramolecular packing. A series of eight polymers has been synthesized, in which the lengths of the alkyl (m) and fluoroalkyl (n) segments are varied. One regiorandom analogue and two poly(3-alkylthiophene)s were also synthesized for comparative purposes. The structure, molecular weight, and regioregularity of the polymers were evaluated using a variety of techniques. The semifluoroalkyl-substituted polymers have been systematically studied to determine the effect of side chain length and m:n block ratios on their solution state, liquid crystalline, and solid state properties. The effect of side chains on conjugation was determined, where solubility allowed, by solution-state UV-visible and fluorescence spectroscopy. The thermal and liquid crystalline properties of the homopolymers were evaluated by DSC, variable-temperature X-ray diffraction, and polarized optical microscopy. Several semifluoroalkyl-substituted polythiophene homologues show liquid crystalline behavior. Molecular packing and charge transport are key factors governing the use of conjugated materials in electronic applications. A wide variety of oligomers have been studied as models for charge migration in conjugated polymers. One-dimensional models do not adequately represent two-dimensional charge transport; thus, a variety of two-dimensional, covalently-linked models have been developed. Previous work by our group, and others, led to the proposal of bis(oligothienyl) compounds as models to study the interaction of the ð-conjugated chains. Previous reports by other researchers described the synthesis and characterization of hydrogen-terminated analogues of 1,8-bis(oligothienyl)naphthalenes. However, these materials proved to be unsuitable for use as charge transport models, as they were subject to irreversible polymerization upon oxidation. Installation of methyl groups at the terminal a-positions of 1,8-bis(oligothienyl)naphthalenes allowed us to create a series of models in which conjugated chains are held in close proximity. This provides access to multiple redox states, and future systems based on these molecules may be used as models for charge transport or as functional materials for incorporation into devices.
112

Conversion of 3-D nanostructured biosilica templates into non-oxide replicas

Bao, Zhihao 08 January 2008 (has links)
Diatoms possess characteristics such as abundance, diversity, and high reproductivity, which make their nano-structured frustules (diatom frustules) attractive for a wide range of applications. To overcome the limitation of their silica based frustule composition, diatom frustules have been converted into a variety of materials including silicon, silicon carbide, silver, gold, palladium and carbon in the present study. The compositions and the extent of shape preservation of the replicas are examined and evaluated with different characterization methods such as X-ray diffraction, SEM, TEM and FTIR analyses. These replicas still retained the complex 3D structures and nano-scaled features of the starting diatom frustules. Some properties and possible applications of converted materials are explored and the kinetics and thermodynamics related to the successful replications (conversions) are also studied and discussed.
113

Shape preserving conversion reaction of siliceous structures using metal halides: properties, kinetics, and potential applications

Shian, Samuel 07 November 2008 (has links)
BaSIC, which stands for Bioclastic and Shape-preserving Inorganic Conversion, is shape-preserving chemical conversion process of biological (or man-made) silica structures for producing complex 3-D microscale structures. This dissertation reports the BaSIC reaction of halide gases (i.e., TiF4, ZrF4, and ZrCl4) with 3-D silica structures, (i.e., diatom frustules, silicified direct-write assembly scaffolds, and Stöber silica spheres) to produce titania and zirconia replicas of the original 3-D structures. The kinetics of reaction of silica with titanium tetrafluoride gas is analyzed by using a novel HTXRD reaction chamber, nitrogen adsorption, and transmission electron microscope (TEM). The crystal structure and the temperature-induced phase transformation (from the room temperature hexagonal R-3c structure to the higher temperature cubic Pm3m structure) of polycrystalline TiOF2 that was synthesized through metathetic reaction of silica with TiF4(g) is reported. Additionally, potential applications of the converted titania diatom frustules (i.e., as a fast micron-sized ethanol sensor, and as a pesticide hydrolyzing agent) are also demonstrated in this work.
114

Markov chains at the interface of combinatorics, computing, and statistical physics

Streib, Amanda Pascoe 22 March 2012 (has links)
The fields of statistical physics, discrete probability, combinatorics, and theoretical computer science have converged around efforts to understand random structures and algorithms. Recent activity in the interface of these fields has enabled tremendous breakthroughs in each domain and has supplied a new set of techniques for researchers approaching related problems. This thesis makes progress on several problems in this interface whose solutions all build on insights from multiple disciplinary perspectives. First, we consider a dynamic growth process arising in the context of DNA-based self-assembly. The assembly process can be modeled as a simple Markov chain. We prove that the chain is rapidly mixing for large enough bias in regions of Z^d. The proof uses a geometric distance function and a variant of path coupling in order to handle distances that can be exponentially large. We also provide the first results in the case of fluctuating bias, where the bias can vary depending on the location of the tile, which arises in the nanotechnology application. Moreover, we use intuition from statistical physics to construct a choice of the biases for which the Markov chain M_mon requires exponential time to converge. Second, we consider a related problem regarding the convergence rate of biased permutations that arises in the context of self-organizing lists. The Markov chain M_nn in this case is a nearest-neighbor chain that allows adjacent transpositions, and the rate of these exchanges is governed by various input parameters. It was conjectured that the chain is always rapidly mixing when the inversion probabilities are positively biased, i.e., we put nearest neighbor pair x<y in order with bias 1/2 <= p_{xy} <= 1 and out of order with bias 1-p_{xy}. The Markov chain M_mon was known to have connections to a simplified version of this biased card-shuffling. We provide new connections between M_nn and M_mon by using simple combinatorial bijections, and we prove that M_nn is always rapidly mixing for two general classes of positively biased {p_{xy}}. More significantly, we also prove that the general conjecture is false by exhibiting values for the p_{xy}, with 1/2 <= p_{xy} <= 1 for all x< y, but for which the transposition chain will require exponential time to converge. Finally, we consider a model of colloids, which are binary mixtures of molecules with one type of molecule suspended in another. It is believed that at low density typical configurations will be well-mixed throughout, while at high density they will separate into clusters. This clustering has proved elusive to verify, since all local sampling algorithms are known to be inefficient at high density, and in fact a new nonlocal algorithm was recently shown to require exponential time in some cases. We characterize the high and low density phases for a general family of discrete {it interfering binary mixtures} by showing that they exhibit a "clustering property' at high density and not at low density. The clustering property states that there will be a region that has very high area, very small perimeter, and high density of one type of molecule. Special cases of interfering binary mixtures include the Ising model at fixed magnetization and independent sets.
115

Self-assembled molecular rods and squares with chalcogenadiazole framework ligands

Hassan, Mohammad Rokib, University of Lethbridge. Faculty of Arts and Science January 2010 (has links)
During the attempts to carry out Suzuki coupling reactions, the σ-bonded Pd−Caryl benzochalcogenadiazolyl complexes trans-[ClPd(PPh3)2(C6H2BrN2E)] (E = S, Se) were isolated. The corresponding bromo derivatives were also synthesized on purpose to investigate their activity in Stille coupling reactions. A head-to-tail dimer trans- [{ClPd(PPh3)(μ-C6H2BrN2Se)}2] was synthesized from the thermolysis of trans- [ClPd(PPh3)2(C6H2BrN2Se)] in the presence of SeO2. The reduction potentials of the mononuclear and dinuclear complexes were measured by cyclic voltammetry (CV) and square wave voltammetry (SWV). 4,7-bis(2/4-pyridyl)benzochalcogenadiazole ligands were synthesized by Stille coupling reactions and the 1,5-bis(4-pyridyl)naphthalene ligand was prepared by a Suzuki coupling reaction. Reactions of the labile complex [BrRe(CO)4(NCMe)] with 4,7-bis(4- pyridyl)benzochalcogenadiazole ligands in a 2:1 ratio afforded self-assembled molecular rods [{ReBr(CO)4}2(μ-4,7-bis(4-pyridyl)benzochalcogenadiazoles)]. Palladium directed molecular squares [(enPd)(μ-4,7-bis(4-pyridyl)benzochalcogenadiazole)]4[PF6]8 were prepared by reactions of enPd(PF6)2 and 4,7-bis(4-pyridyl)benzochalco-genadiazoles in a 1:1 ratio. The optoelectronic properties of the ligands and the molecular rods were investigated by CV and SWV, and by luminescence spectroscopy. The optical properties of the square complexes were also studied by luminescence spectroscopy. / xvii, 152 leaves : ill. (some col.) ; 29 cm
116

Supramolecular block and random copolymers in multifunctional assemblies

Burd, Caroline Glenn 08 July 2008 (has links)
This thesis begins with a brief overview of supramolecular chemistry and selfassembly and simple examples derived from Nature that provide the motivation for the work presented here. The concept of a synthetic noncovalent toolbox is then introduced. The discussion then focuses more explicitly on side-chain and main-chain functionalized motifs and the methodologies employed in supramolecular polymer functionalization. The primary hypothesis of the thesis is that the combination of supramolecular strategies, ring-opening metathesis polymerization, and a well-understood toolbox of functionalities capable of noncovalent interactions, comprises a method for generating bioinspired materials. This hypothesis was tested by synthesizing unique functionalized supramolecular polymers that allowed for a detailed understanding of the orthogonality of noncovalent interactions and how such interactions can begin to mimic the complexity of functional biomaterials. The strategies and methods discussed in the synthesis of these bioinspired materials are divided into three chapters: (1) an exploration of the self-sorting phenomena between two non-complementary pairs of hydrogen bonds along polymer side-chains, (2) the extension of the self-sorting concept to include a metal coordination moiety, and (3) the side-chain functionalization strategies of chapters 2 and 3 in combination with the main-chain ROMP methodologies discussed in chapter 1 to form orthogonally self-assembled multifunctional block copolymers. The main results of this thesis include the results that multifunctional block copolymers can be fashioned via ROMP, functionalized in both the main- and side-chains, and self-assembled in an orthogonal fashion. In addition, these studies have found that self-sorting between pairs of non-complementary hydrogen bonding motifs can occur in supramolecular synthetic systems, that the interactions are extremely solvent dependent and that these interactions can result in unexpected phenomena. These results demonstrate the importance of a fully understood toolbox for the rapid development of supramolecular materials. The knowledge derived from this toolbox and presented in chapters 2, 3, and 4, allows for the careful selection of compounds for cleverly designed self-assembly materials inspired by Nature. Finally, conclusions are drawn to the success of the synthetic toolbox and the various strategies presented herein, and potential future directions are discussed.
117

Hydrothermal conversion of diatom frustules into barium titanate based replicas

Ernst, Eric Michael 10 July 2007 (has links)
Numerous organisms produce ornately detailed inorganic structures (often known as shells) with features on length scales from the nanoscale to the microscale. One organism, commonly referred to as a diatom, originates from algae and is found throughout the oceans on Earth. These diatoms possess skeletal structures, frustules, made from silicon dioxide. This chemical makeup limits the number of possible applications for which these structures can be used. Using a series of gas displacement reactions, these frustules can be converted to other useful materials, such as magnesium oxide and titanium dioxide, while maintaining the features of the frustule template. In the current research, silicon dioxide frustules were converted to titanium dioxide replicas using method previously devised by our group. The titanium dioxide replicas were subjected to a hydrothermal reaction by exposing the replicas to an aqueous basic solution containing barium hydroxide to form barium titanate and barium strontium titanate replicas. The effects of reaction temperature, time, and solution composition on extent of conversion were examined. The conventional method of converting titanium dioxide to barium titanate, using a convection heating oven, was compared with a microwave assisted heating method to study the advantages of using microwave heating over convection heating.
118

Nanostructures métalliques organisées par auto-assemblage de polymère pour la détection d’espèces chimiques / Organized metallic nanostructures via polymer self-assembly for enhanced chemical detection

Khanafer, Maher 19 February 2015 (has links)
Les avancées récentes de la nanofabrication ont permis de faire émerger un nouveau champ de recherche, celui des nanocapteurs. En particulier, le nanocapteur plasmonique dont le principe utilise l’effet SERS (Diffusion Raman Exaltée de Surface) commence à s’imposer. En effet, ce capteur permet d’amplifier la signature d’une molécule jusqu’à un facteur de 1012 et fournit une véritable empreinte digitale de chaque molécule. La sensibilité du capteur dépend des propriétés optiques des Nanoparticules Métalliques (NPMs) qui sont liées aux propriétés physiques et structurales de ces dernières. Ainsi, la maîtrise de la fabrication de NPMs est un réel défit pour des multiples applications nanotechnologiques. Dans ce contexte, nous avons développé une approche originale de fabrication de NPMs organisées par auto-assemblage de polymère. Il s’agit d’introduire de manière contrôlée des interactions physiques qui se manifestent lors de la fabrication par une nano-séparation de phase au sein du matériau. Ceci se traduit par un nanstructuration du polymère et une auto-organisation très spécifique du précurseur métallique qui se transforme spontanément en NPMs. Les investigations expérimentales en considérant les différents facteurs physico-chimiques impliqués, nous ont permis d’identifier les paramètres clés de cette structuration et de hiérarchiser leur influence sur les dimensions structurales et la réponse optique des NPMs. Finalement, la capacité du nanocapteur à détecter de faibles traces (<10-13 M) de polluants organiques a été démontrée / The recent advances in nanofabrication techniques have allowed for the emergence of novel sensing approaches. Amongst these various approaches, Surface Enhanced Raman Spectroscopy (SERS) via the use of plasmonic substrates has received wide-spread attention due to its many interesting proper-ties. In fact, plasmonic substrates enhance the Ra-man signal up to 12 orders of magnitude, paving the path for single molecule detection. Nevertheless, the sensitivity of this technique is strongly affected by the physical and structural properties of the metallic nanoparticles (MNPs). Thus, the mastering of the MNPs fabrication is a major challenge for various nanotechnological applications.In this context, we have developed a novel approach for the fabrication of organized NMPs through poly-mer self-assembly. The fabrication technique con-sists on controlling the physical interactions which occur during the fabrication through a nanophase separation in the polymer solution. This results in a nanostructuring of the polymer and a strong self-organization of the metallic precursor which is rapidly reduced into the MNPs. Experimental investigations of the different physical and chemical processes in play allow for a better understanding of the various keystone parameters of the nanostructuring as well as for determining their influences on the dimensions and optical response of MNPs. Finally, the fabricated plasmonic substrate demonstrated SERS limits of detection down to 10-13 M
119

Self-Assembly Of Discrete Molecular Architectures : Design, Synthesis And Characterization

Ghosh, Sushobhan 08 1900 (has links) (PDF)
Stepwise covalent synthesis of large molecules is often time consuming and laborious and thus generally ends in a low yield of the target product. It is also difficult to achieve a large desired product where the controlling force is a non-directional weak interaction. Instead, by utilizing stronger metal-ligand directional coordination bonding approach, one can easily prepare the desired large molecules using appropriate molecular units. Further attractive feature of this approach is the incorporation of functional groups into final structures to make the assemblies functional. It is found that symmetrical polypyridyl and rigid linkers have been used widely in the construction of finite supramolecules of Pd (II) and Pt(II). Flexible linkers are rarely used since they are less predictable in self-assembly and have a tendency to form undesired polymer. However, flexible linkers may generate pseudo rigid assemblies that can distort their shapes to obtain a more thermodynamically stable conformation for host-guest interactions. Similarly, use of non-symmetric or ambidentate linkers is not explored much. These linkers may generate a mixture of several linkage isomeric products and thus difficult to monitor the reaction. Moreover, isolation of these products in pure form is also a challenging task. On the other hand, recent research revealed that porous polyacetylene organic compounds are suitable sensors for the detection of electron deficient nitroaromatics, which are the chemical signatures of many commercial explosives. Possibility of discrete supramolecules as sensors for these explosives is very less studied. The main thrusts of the present investigation are to incorporate flexible and nonsymmetrical linkers in the construction of finite discrete assemblies of Pd/Pt; and to design appropriate π-electron rich supramolecules as sensors for the detection of electron deficient nitroaromatics. Chapter 1 of this thesis gives a brief introduction to the supramolecular chemistry. It also gives a brief introduction to the design principle of metal-ligand coordination driven selfassembly approach towards the generation of large architectures. Chapter 2 reports the synthesis of a series of two-dimensional supramolecular architectures via coordination driven self-assembly of Pt/Pd containing ditopic acceptors and non-symmetrical donor ligands. The use of non-symmetrical donor ligands in coordination driven self-assembly is a challenging task because they may generate a mixture of isomers due to different connectivity of the non-symmetric (ambidentate) linkers. But in all the cases exclusive formation of a single linkage isomer was established. Na-nicotinate was treated with [cis-(dppf)Pd(OTf)2] to yield [(dppf)3Pd3(L3)](CF3SO3)3(H2O)2(MeOH)7(Et2O) as the single linkage isomeric triangle. An analogous treatment using Na-isonicotinate instead of Na-nicotinate yielded a mixture of single isomeric square and triangle with the later one as the major product in solution. Further extension of this study using cis-(tmen)Pd(NO3)2 instead of [cis-(dppf)Pd(OTf)2] also showed the formation of a mixture of square and triangle [tmen = N,N,N’,N’- tetramethylethane-1,2-diamine]. Surprisingly, in both the cases square was the product which was crystallized exclusively in solid state though triangle was the major component in solution. The square-triangle equilibria in both the cases were studied by diffusion ordered NMR spectroscopy (DOSY) and variable temperature multinuclear NMR. Moreover, this chapter reports the incorporation of amide functionality into a Pt(II) nanoscopic molecular rectangle via self-assembly of an organometallic “clip” and a non-symmetric amide ligand. Chapter 3 presents synthesis of several metallamacrocycles via coordination driven selfassembly using Pd/Pt-P bonding interaction as driving force instead of much widely used Pd/Pt-N bonding interaction. It is also established that Pd/Pt-P bonding interaction is indeed better than the widely used Pd/Pt-N interaction. Several macrocycles were also synthesized by the combination of several Pd containing 90° angular subunits and a bisimidazole ditopic flexible donor. In this case also the bonding interaction between the imidazole and Pd(II) was found to be stronger than the interaction between pyridyl donor and Pd(II). Chapter 4 describes synthesis of several new Pt2 and Pt3 shape selective organometallic linkers incorporating ethynyl functionality. The Pt2 molecular clip was assembled with several linear dipyridyl linkers to prepare a series of molecular rectangles. In one case N, N’-bis(4-pyridylidene)ethylenediamine was used as donor to create a N4 pocket in the macrocycle. This rectangle was fluorescent in nature and showed efficient fluorescence quenching in solution upon binding of hard transition metal ions (Fe3+, Cu2+ and Ni2+) into the N4 pocket. The non-responsive nature of the fluorescence quenching upon addition of soft metal ions (Zn2+ and Cd2+) containing d10 configuration makes it an interesting example of sensor for transition metal ions. The Pt3 linkers were used in combination with organic clip-type linkers to prepare a series of molecular prisms by [2 + 3] self-assembly (Scheme 1). Incorporation of ethynyl functionality helped to make the resulting supramolecules π-electron rich and luminescent in nature. Possibility of these supramolecules as sensors for the detection of electron deficient nitroaromatics (TNT and picric acid), which are the chemical signatures of explosives has been explored. A complementary approach was also used to prepare trigonal prism using organic tritopic donor and the Pt2 molecular clip. Chapter 5 presents the design and self-assembly of two new flexible supramolecular nanoballs. These assemblies incorporate two flexible tritopic amide/ester based building blocks and were prepared in excellent yields (96-97%) via coordination driven selfassembly. The first one was resulted from the reaction of four equivalents of a new tritopic ester ligand N, N', N''-tris(4-pyridylmethyl) trimesic ester with three equivalents of C4 symmetric Pd(NO3)2. The second analogous structure was obtained by the selfassembly of the flexible N, N', N''-tris(3-pyridylmethyl)trimesic amide and Pd(NO3)2. The assemblies were characterized with multinuclear NMR spectroscopy, electrospray ionization mass spectroscopy, elemental analysis and TGA. The ester based ball showed the inclusion of NEt4 + in solution. This chapter also describes the exclusive formation of a Pt(II) trigonalbipyramidal (TBP) cage upon the treatment of a Pt(II) 90° acceptor with a new tripodal flexible ligand containing ester functionality. The formation of Pt(II) TBP cage in this case is due to the flexibility of the donor arms of the ligand due to the presence of flexible ester functional group. In continuation of this work, a rigid tripodal ligand 1,1,1-tris(4-pyridyl)COOR with an ester cap [where R = Ph-CH(C2H5)] was assembled with cis-(PEt3)2Pt(OTf)2 to yield a somewhat unusual double-square cage by [4 + 6] self-assembly.
120

Self-Selection Of Discrete Molecular Architectures In Coordination-Driven Self-Assembly

Bar, Arun Kumar 05 1900 (has links) (PDF)
Self–assembly has long been attracting chemists’ attention because it can yield fascinating supramolecular architectures in a single step. More precisely, metal–ligand coordination–driven self–assembly has stood out as an efficient methodology in this paradigm due to simple design principle and high predictability of the final molecular architectures. Moreover, one can envisage hierarchical nanoscopic molecular architectures with a vast range of size, shape and functionality via this methodology. Two–component self–assembly (involving one type of donor and one type of acceptor) is relatively easy to monitor and a widely used protocol. Whereas, multicomponent self–assembly (involving more than one types of donors/or acceptors) is too complex due to the possibility of formation of several products. The prime advantage of multicomponent self–assembly lies in one–pot construction of topologically complicated multifunctional architectures. Template– induced multicomponent self–assembly of discrete architectures is recently investigated to some extent. But, template–free multicomponent self–assembly of discrete architectures is rare in the literature. Physico–chemical property of a self–assembled product is coded in the functional groups present in its precursor building units. Functional supramolecular architectures have important applications in many potential fields such as chemosensing, drug delivery, supramolecular catalysis, etc. Porphyrin, pyrazole, imidazole, etc. functionalized organic molecules are hydrophilic as well as hydrophobic in nature. Introduction of such functionality in building units can lead to amphiphilic supramolecular complexes. Therefore, such complexes can be employed as hosts for versatile guests, or as molecular reactors for various chemical reactions. In general, counter ions block the cavity of ionic molecular architectures. Thus, when ionic molecular architectures are employed as hosts, they cannot fully provide their cavity towards guest molecules. In contrast, neutral molecular complexes are expected to be better hosts. It is well known that alkenyl/alkynyl heavy metal complexes exhibit efficient chemoluminescence due to facile metal to ligand charge transfer (MLCT). Hence, such complexes can be employed as efficient chemosensors towards the detection of electron deficient molecules such as nitroaromatics which are the chemical signatures of many powerful explosives. In these regards, a considerable effort is being paid recently to design and construct various functional supramolecular architectures. Symmetry and rigidity of building units increase predictability of the final product in self– assembly. In this regard, symmetric; rigid Pd(II)/Pt(II)–based acceptors and polypyridyl donors are explored extensively in metal–ligand coordination–driven self–assembly. In contrast to rigidity, flexibility endows building units to adopt thermodynamically most stable conformer/architecture. Hence, same set of building units can render different conformers/architectures in presence of different templates for the sake of suitable host–guest interactions. Contrary to high symmetry, asymmetry in building units leads to molecular architectures with polar environments. But, due to the possibility of formation of several isomeric products from the self–assembly involving such building units, it is difficult to monitor the reaction and purify the products. Hence, designing appropriate synthetic routes which can lead to formation of single isomeric products possessing flexible/asymmetric building units is a challenge to synthetic chemists. Investigations incorporated in the present thesis are focused to design and construct various 2D/3D discrete supramolecular architectures employing self–assembly of mainly Pd(II)/Pt(II) acceptors with N/O donors. Elemental analyses, IR/NMR/UV–Vis/fluorescence/mass spectroscopy and single crystal X–ray diffraction analysis are among prime techniques employed for characterization of the reported architectures. For a few cases, powder X–ray diffraction (PXRD) analysis and density functional theory (DFT) calculations are also carried out. CHAPTER 1 of the thesis provides a brief general introduction to self–assembly and supramolecular chemistry. It emphasizes on the metal–ligand coordination–driven self–assembly approach towards the construction of a library of 2D/3D supramolecular architectures. CHAPTER 2 describes formation of a series of template–induced and template–free discrete 3D Pd(II) molecular prisms via multicomponent self–assembly. Because of the possibility of formation of several products, multicomponent self–assembly is difficult to monitor. For example, several molecular architectures are expected from a three–component self–assembly involving a 90° acceptor [ca. cis–blocked Pd(II)], a 120° tritopic donor [ca. benzene–1,3,5– tricaboxylate (tma)] and a 180° donor [ca. 4,4'–bipyridine (4,4'–bpy) or pyrazine (pz)]. Interestingly, treatment of cis–(tmen)Pd(NO3)2 [tmen = N,N,N′,N′–tetramethylethylenediamine] with 4,4'–bpy and K3tma in 6 : 3 : 2 molar ratio at room temperature resulted in mainly a nanoscopic molecular trigonal prism [{(tmen)Pd}6(bpy)3(tma)2](NO3)6 (1) with three 4,4'–bpy pillars, two tma caps and six cis–(tmen)Pd connectors (Scheme 1). Scheme 1: Schematic representation of the formation of multicomponent self–assembled molecular trigonal prisms 1, 2 and 3. Surprisingly, the same reaction in presence of benzene–1,3,5–tricaboxylic acid (H3tma) as guest yielded exclusively the guest–encapsulated analogous molecular prism [{(tmen)Pd}6(bpy)3(tma)2(H3tma)2](NO3)6 (2; Scheme 1). It is also presented how variation of steric crowding at connectors (acceptors) influenced final outcomes. Self–assembly of cis– (en)Pd(NO3)2 [en = ethylenediamine] with 4,4'–bpy and K3tma in 6 : 3 : 2 molar ratio at room temperature resulted in a triply interlocked nanoscopic 3D coordination cage [{(en)Pd}6(bpy)3(tma)2]2(NO3)12 (3; Scheme 1). It is also shown that above trend is followed even upon changing the pillar length from 4,4'–bpy to pz. Aromatic –stacking interactions amog tma caps as well as among 4,4'–bpy pillars provided considerable stability to interlocked archirecture 3. Steric crowding due to the methyl groups in cis–(tmen)Pd connectors hindered intercalation and hence led to non–interlocked architecture 1. As expected, similar self–assembly using moderately crowded acceptor cis–(pn)Pd(NO3)2 [pn = 1,2–diaminopropane] with same donors 4,4'–bpy and K3tma resulted in a mixture of analogous triply interlocked and non– interlocked architectures in solution though it was found to be only triply interlocked architecture in solid state. Interestingly, irrespective of the steric crowding of the blocking amines, self– assembly in presence of H3tma as guest preferred exclusive formation of guest–encapsulated prisms of type 2 (Scheme 1). This is due to considerable stabilazation via aromatic –stacking interactions amog tma caps and H3tma guests. Formation of guest–free discrete molecular prisms (such as 1) and triply interlocked coordination cages (such as 3) were confirmed by spectroscopic and single crystal X–ray diffraction analyses. Whereas, formation of guest– encapsulated discrete molecular prisms (such as 2) was established by DOSY, ROESY 2D NMR spectroscpic study in conjunction with energy optimized geometry analysis. CHAPTER 3 reports design and syntheses of a series of porphyrin functionalized nanoscopic 3D molecular open prisms. Self–assembly of a C4 –symmetric tetratopic donor with a 90° ditopic acceptor can, in principle, lead to several architectures such as trigonal; tetragonal; pentagonal; hexagonal; etc. open prisms, closed cube or 1D oligomers. Both of 1,5,10,15–tetrakis(4– 12 pyridyl)porphyrin (L) and 1,5,10,15–tetrakis(3–pyridyl)porphyrin (L) possess pseudo C4 – 1 symmetry. Surprisingly, treatment of Lwith the 90° ditopic acceptor cis–(dppf)Pt(OTf)2 [dppf = diphenylphosphinoferrocene, OTf = trifluoromethanesulphonate] yielded exclusively an 1 unprecedented [6 + 12] self–assembled hexagonal open prism [(dppf)12Pt12L6](OTf)24 (4; Scheme 2). Scheme 2: Schematic representation of formation of [6 + 12] self–assembled molecular hexagonal open prism 4 and its Zn(II) embedded complex 4a. 2 In contrast, [3 + 6] self–assembled trigonal open prisms are adopted upon self–assembly of Lwith Pd(II)–based 90° ditopic acceptors. These complexes show facile incorporation of Zn(II) ions into porphyrin N4 –pockets. Moreover, they incorporate high microporosity in solid state and they are amphiphilic in nature due to porphyrin functionality. One of the trigonal open prisms revealed its considerably high adsorbate–adsorbent affinity towards non–polar gas such as N2 and protic solvent vapors such as water, methanol and ethanol. Formation of hexagonal and trigonal open prisms is fully authenticated by spectroscopic and single crystal X–ray diffraction analyses. CHAPTER 4 describes design and synthesis of a pyrazole functionalized flexible donor (L) and its self–assembly towards the construction of three nanoscopic 3D supramolecular discrete cages 5–7 (Scheme 3). Scheme 3: Schematic representation of formation of [4 + 6] self–assembled molecular double–square 5 and [2 + 3] self–assembled molecular trigonal bipyramids 6–7. 3 Due to flexibility, Lcan adopt different conformations and hence several isomeric architectures 3 are expected upon self–assembly. For example, self–assembly of Lwith a rigid ditopic 90° acceptor can lead to trigonal bipyramid (TBP), double–square, adamantanoid or truncated 3 tetrahedron. Treatment of Lwith cis–(tmen)Pd(NO3)2 yielded a [4 + 6] self–assembled double–3 square [(tmen)6Pd6L4](NO3)12 (5; Scheme 3). Much to our surprise, replacement of cis– (tmen)Pd(NO3)2 with CuCl2 or AgOTf yielded [2 + 3] self–assembled molecular TBP 33 [Cu3Cl6L2] (6) or [Ag3L2](OTf)3 (7), respectively (Scheme 3). CHAPTER 5 presents study of self–assembly involving flexible asymmetric donors and rigid 4 symmetric 90° acceptors. Three ambidentate donors 5–pyrimidinecarboxylate (L), nicotinate–56 N–oxide (L) and isonicotinate–N–oxide (L) were employed in self–assembly with symmetric rigid 90° acceptors cis–(dppf)M(OTf)2 [M = Pd(II)/Pt(II)]. Due to flexibility and different 464 connectivity of these donors L–L, several linkage isomers are expected. Treatment of Lwith cis–(dppf)M(OTf)2 in 1 : 1 molar ratio resulted in exclusive formation of single linkage isomeric 4 [3 + 3] self–assembled symmetric molecular triangles [(dppf)3M3L3](OTf)3 (8: M = Pd and 9: M = Pt), where the donors connected to metal centers in head–to–tailfashion (Scheme 4). Similar 56 reactions of Land Lwith cis–(dppf)M(OTf)2 resulted in self–sorting of [2 + 2] self–assembled molecular rhomboids 10–13 (Scheme 4). Exclusive self–selection of single linkage isomeric architectures 8, 9, 10 and 12 was fully established by spectroscopic as well as single crystal X– ray diffraction analyses. Though we could not obtain suitable X–ray diffraction quality single crystals of 11 and 13, exclusive formation of single isomeric [2 + 2] self–assembled rhomboids 131 was established by multinuclear NMR (H and P) in conjunction with ESI–MS spectroscopic studies. Scheme 4: Schematic representation of formation of complexes 8–13. Part A of the CHAPTER 6 describes how two neutral organometallic mononuclear chelates are formed upon treatment of disodium fumarate (,–unsaturated dicarboxylate) with cis– (dppf)Pd/Pt(OTf)2 at ambient conditions. Reaction of 90acceptors cis–(dppf)Pd/Pt(OTf)2 with fumarate is expected to result in [4 + 4] self–sorted molecular squares/or [2 + 2] self–sorted molecular rhomboids (Scheme 5). To our surprise, the above reactions led to an unusual reduction of C–C double bond followed by concomitant formation of mononuclear chelates [M(dppf)(C4H4O4)] (M = Pd for 14 and Pt for 15) via coordination with one of the carboxylate oxygen atoms and –carbon to metal centers (Scheme 5). Scheme 5: Schematic representation of formation of the complexes 14–15. Part B of the CHAPTER 6 describes design and synthesis of a novel shape selective “clip” 1 shaped bimetallic Pd(II) acceptor Mand its self–assembly with disodium fumarate to construct a neutral tetrametallic Pd(II) supramolecular rectangle 16 (Scheme 6, left). Similarly, a shape selective 180° bimetallic Pd(II) acceptor was also synthesized and employed in self–assembly with several “clip” shaped organic donors to achieve several cationic tetrametallic Pd(II) supramolecular rectangles. Scheme 6: Schematic representation of the formation of neutral Pd4 (left) and Pd2 (right) molecular rectangles. Moreover, synthesis of a neutral bimetallic Pd(II) molecular rectangle 17 via one–pot reaction of trans–(PEt3)2PdCl2 with 1,8–diethynylanthracene (Scheme 6, right) is also presented herein. These –electron rich rectangles exhibit prominent chemoluminescence. Chemosensitivity of these complexes towards the detection of electron deficient nitroaromatics via fluorescence study is also discussed in details in this section. (Pl refer the abstract file for figures).

Page generated in 0.1153 seconds