• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 81
  • 12
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 127
  • 127
  • 127
  • 24
  • 22
  • 19
  • 15
  • 14
  • 13
  • 13
  • 12
  • 12
  • 11
  • 10
  • 10
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
121

High χ block copolymers for sub 20 nm pitch patterning: synthesis, solvent annealing, directed self assembly, and selective block removal

Jarnagin, Nathan D. 13 January 2014 (has links)
Block copolymer (BCP) thin film patterns, generated using directed self-assembly (DSA) of diblock copolymers, have shown excellent promise as templates for semiconductor device manufacturing since they have the potential to produce feature pitches and sizes well below 20 nm and 10 nm, respectively, using current 193 nm optical lithography. The goal of this work is to explore block copolymers with sufficient thermodynamics driving force (as described by the Flory Huggins interaction parameter, χ) for phase separation at these smallest lengths scales. Here, poly(styrene)-b-poly(hydroxystyrene) is investigated since the PHOST domain is known to form extensive hydrogen bond networks resulting in increased χ due to this strong enthalpic interaction. In this work, nitroxide mediated polymerization (NMP) techniques were utilized to produce PS-b-PHOST diblock copolymers with a range of molecular weights (5000-30000) with low PDI approaching 1.2. The phase separation of low molecular weight PS-b-PHOST on neutral underlayer substrates via solvent annealing provided thin film vertical lamellae with 13 nm pitch. These results illustrate the improved resolution of PS-b-PHOST compared with the current industry standard of PS-b-PMMA (with 20 nm pitch). The directed self assembly of lamellar PS-b-PHOST patterns with 18 nm pitch via graphoepitaxy is demonstrated. Also, a highly selective atomic layer deposition (ALD) and etch technique was investigated which provided selective block removal of (PS-b-PHOST) block copolymer patterns which initially exhibited no inherent etch contrast. In this process, the PS domain is removed leaving a high fidelity etch relief pattern of the original block copolymer template. Finally, an alternative system is presented, namely Poly(trimethylsilylstyrene)-block-poly(hydroxystyrene) (PTMSS-b-PHOST), which utilizes silicon containing functionality in one of the blocks, providing high etch contrast. PTMSS-b-PHOST patterns were also exposed to oxygen plasma allowing selective block removal of the PS domain without the need for additional ALD processing steps.
122

The assembly of molecular networks at surfaces : towards novel enantioselective heterogeneous catalysts

Jensen, Sean January 2010 (has links)
Understanding the supramolecular interactions governing the self-assembly of molecular building blocks upon surfaces is fundamental to the design of new devices such as sensors or catalysts. Successful heterogeneous enantioselective catalysts have relied upon the adsorption of ‘chiral modifiers’, usually chiral amino acids, onto reactive metal surfaces. One of the most researched examples is the hydrogenation of β-ketoesters using nickel-based catalysts. The stability of the chiral modifiers upon catalyst surfaces is a major obstacle to the industrial scale-up of this reaction. In this study, the replacement of conventional modifiers with porous, chiral and functionalised self-assembled networks is investigated. Perylene-3,4,9,10-tetracarboxylic diimide (PTCDI) and melamine (1,3,5-triazine,-2,4,6-triamine) have been shown to form hydrogen bonded networks on Ag-Si(111)√3x√3R30° in ultra-high vacuum (UHV) and Au(111) substrates in UHV and ambient conditions, these networks are capable of hosting guest molecules. These networks are investigated further in this study. In UHV, the behaviour of the components and network formation on Ni(111) is probed using scanning tunnelling microscopy (STM) and temperature-programmed desorption (TPD). The stability of the PTCDI-melamine network on Au(111) was analysed using TPD. Metal coordination interactions between each of the network components and nickel upon the Au(111) surface were examined by STM before testing the ability of the network to act as a template for metal growth. Finally, a number of polymerisation reactions are investigated with a view to replacing chiral modifiers with porous, chiral, functionalised covalent networks. Periodic covalent networks should possess the greater chemical and thermal stability required for more widespread use. In UHV and ambient conditions, STM is used to monitor the progress of surface-confined reactions on Au(111) and characterise the resultant covalent structures.
123

Colloidal gold nanorods, iridescent beetles and breath figure templated assembly of ordered array of pores in polymer films

Sharma, Vivek 05 November 2008 (has links)
Water drops that nucleate and grow over an evaporating polymer solution exposed to a current of moist air remain noncoalescent and self-assemble into close packed arrays. The hexagonally close packed, nearly monodisperse drops, eventually evaporate away, leaving a polymer film, with ordered array of pores. Meanwhile, typical breath figures or dew that form when moist air contacts cold surfaces involve coalescence-assisted growth of highly polydisperse, disordered array of water drops. This dissertation provides the first quantitative attempt aimed at the elucidation of the mechanism of the breath figure templated assembly of the ordered arrays of pores in polymer films. The creation and evolution of a population of close packed drops occur in response to the heat and mass fluxes involved in water droplet condensation and solvent evaporation. The dynamics of drop nucleation, growth, noncoalescence and self-assembly are modeled by accounting for various transport and thermodynamic processes. The theoretical results for the rate and extent of evaporative cooling and growth are compared with experiments. Further, the dissertation describes a rich array of experimental observations about water droplet growth, noncoalescence, assembly and drying that have not been reported in the published literature so far. The theoretical framework developed in this study allows one to rationalize and predict the structure and size of pores formed in different polymer-solvent systems under given air flow conditions. While the ordered arrays of water drops present an example of dynamics, growth and assembly of spherical particles, the study on colloidal gold nanorods focuses on the behavior of rodlike particles. A comprehensive set of theoretical arguments based on the shape dependent hydrodynamics of rods were developed and used for centrifugation-assisted separation of rodlike particles from nanospheres that are typical byproducts of seed mediated growth of nanorods. Since the efficiency of shape separation is assessed using UV-Vis-NIR spectroscopy and transmission electron microscopy (TEM), the present dissertation elucidates the shape dependent parameters that affect the optical response and phase behavior of colloidal gold nanorods. The drying of a drop of colloidal gold nanorods on glass slides creates coffee ring like deposits near the contact line, which is preceded by the formation of a liquid crystalline phase. The assemblies of rods on TEM grids are shown to be the result of equilibrium and non-equilibrium processes, and the ordered phases are compared with two dimensional liquid crystals. The methodology of pattern characterization developed in this dissertation is then used to analyze the structure of the exocuticle of iridescent beetle Chrysina gloriosa. The patterns were characterized using Voronoi analysis and the effect of curvature on the fractions on hexagonal order of tiles was determined. Further, these patterns were found to be analogous to the focal conic domains formed spontaneously on the free surface of a cholesteric liquid crystal. In summary, the dissertation provides the crucial understanding required for the widespread use of breath figure templated assembly as a method for manufacturing porous films, that requires only a drop of polymer solution (dilute) and a whiff of breath! Further, the dissertation establishes the physical basis and methodology for separating and characterizing colloidal gold nanorods. The dissertation also suggests the basis for the formation and structure of tiles that decorate the exoskeleton of an iridescent beetle Chrysina gloriosa.
124

Self-Assembled Coordination Cages for Catalysis and Proton Conduction

Samanta, Dipak January 2014 (has links) (PDF)
Biological systems construct varieties of self-assembled architectures with incredible elegance and precession utilizing proteins as subunits to accomplish widespread functions. Inspired by natural systems, construction of artificial model systems with such sophistication and delicacy has become an intriguing field of research over the last two decades using so-called self-assembly process. Judiciously selected complementary building units encoded with specific chemical and structural information can be self-assembled into pre-programmed abiological architectures in a manner similar to biological self-assembly. In this regard, kinetically labile metal-ligand coordination has become an efficient and powerful protocol for the construction of highly intricate structures with specific topology and functionality due to its simple design principle, high bond enthalpy, and predictable directionality. Two-component self-assembly is very widely used methodology and easy to monitor. Recently, multi-component self-assembly has come up as an alternative and effective pathway to achieve complex architectures connecting more than two components in a single step. However, formation of selective single product from multicomponents is entropically unfavorable. Only a very few 3D architectures have been known, that are obtained from a mixture of ditopic and tri- or tetratopic donors with metal acceptors with or without employing templates. Development of template-free multicomponent architectures is still in its infancy. Strong tendency of Pd(II)/Pt(II) to attain square-planar geometry around the metal center and kinetically labile nature of Pd(II)/Pd(II)-N(pyridine) bonds made them chemists’ favourite to engineer desired supramolecular coordination architectures with structural resemblance to Platonic or Archimedean solids by employing symmetrical pyridyl donors due to their predictable directionality. In case of poly-imidazole donors, free rotation of C-N bond connecting imidazole and phenyl ring allows various dispositions of the donating nitrogen with respect to the aromatic backbone, and therefore, the structural topology of the architectures, made of poly-imidazole ligands becomes much more interesting as compared to symmetrical Platonic or Archimedean solids. The physico-chemical properties of self-assembled coordination cages depend on the structures of the complexes. Presence of large internal cavity surrounded by aromatic core, provides an excellent environment for the encapsulation of varieties of guest molecule or as nano-reactors for different organic transformations. Structural investigation in terms of packing interactions, solvent molecules, intermolecular channels can sometimes determine the property of such self-assembled materials as well. Presence of acidic water as well as H-bonded 3D-networks of water molecules in molecular pockets make them potential material for proton conduction. In addition, metal-ligand coordination offers opportunity to introduce new functionality through pre-synthetic modification of the building constituents to influence the property of the supramolecular systems. Incorporation of unsaturated ethynyl functionality attached to the heavy transition metal is expected to exhibit efficient luminescence due to the facile metal to ligand charge transfer (MLCT). Hence, the final assemblies can be employed as chemosensors for electron-deficient nitroaromatics, which are the chemical signature of many of the commercially available explosives. The present investigation is focused on design and construction of discrete, nanoscopic coordination cages with unusual structural topology employing mainly imidazole-based donors with Pd(II)/Pt(II) acceptors and their applications in catalysis, chemosensing, and proton conduction. CHAPTER 1 of the thesis provides a general introduction to self-assembly focusing on the importance and advantages of metal-ligand directional bonding approach towards the construction of supramolecular architectures with various structural topologies. This chapter also includes a brief review on the applications of such coordination cages in various fields especially as ‘molecular flask’ for the observation of unique chemical phenomena and unusual reactions. Part A of CHAPTER 2 describes the synthesis of a new hollow Pd6 water soluble cage [{(tmen)Pd}6(timb)4](NO3)12 (1) via two-component self-assembly of a triimidazole donor and 90° Pd(II) acceptor [tmen = N,N,N’,N’-tetramethylethylenediamine, timb = 1,3,5-tris(1-imidazolyl)benzene]. The assembly was successfully crystallized with a hydrophilic dianionic benzoquinone derivative (formed in situ by the decomposition of DDQ) as [{(tmen)Pd}6(timb)4](NO3)10()2(H2O)18 (3), and a hydrophobic sterically demanding aromatic aldehyde as [{(tmen)Pd}6(timb)4](NO3)12{()4a}2(H2O)27 (5a) [where 2H2 = 2,3-dichloro-5,6-dihydroxycyclohexa-2,5diene-1,4-dione, 4a = 1-pyrenecarboxaldehyde,  = exohedral and  = endohedral] to confirm the hydrophobic nature of the cavity. Experiments were carried out to show that the hydrophobic confined nanospace of the cage (1) catalyses the Knoevenagel condensation of a series of different aromatic monoaldehydes with active methylene compounds in ‘green’ aqueous medium. The Knoevenagel condensation reaction is basically a dehydration reaction because water is a by-product. So the presence of water should, in principle, promote the backward reaction as per Le Chatelier’s principle. In general, these reactions with organic substrates are not performed in water. However, difficulty has been overcome using hydrophobic cavity of the cage. It has also been established that the cavity of the cage also enhances the rate of Diels-Alder reaction of 9-hydroxymethylanthracene with N-phenylmaleimide/N-cyclohexylmaleimide. Figure 1. Catalytic Knoevenagel condensation and Diels-Alder reaction using hydrophobic cavity of the cage (1) in aqueous medium. Part B of CHAPTER 2 reports unique three-component self-assembly incorporating both tri- and tetra-topic donors. Until now, a very few 3D-architectures have been known that are obtained from self-assembly of ditopic and tri- or tetratopic donors with metal acceptors. Scheme 1. Three-component self-assembly of a Pd7 cage (1) from cis-blocked Pd(II) 90° acceptor (M), tri-imidazole (timb) and tetra-imidazole (tim) donors. Self-assembled multicomponent discrete architecture composed of both tri- and tetra-topic donors is yet to be reported due to difficulty in prediction of the final structure from the mixture of ligands having multiple donor sites. The first example of self-sorted Pd7 molecular boat [{(tmen)Pd}7(timb)2(tim)2](NO3)14(H2O)20 (1) [tmen = N,N,N’,N’-tetramethylethylenediamine, timb = 1,3,5-tris(1-imidazolyl)-benzene, tim = 1,2,4,5-tetrakis(1-imidazolyl)benzene] was synthesized via three-component self-assembly of cis-(tmen)Pd(NO3)2, tetra- (tim) and tri-topic donors (timb) in a 7:2:2 ratio. The cavity of this cage was also utilized as a nanoreactor for catalytic Knoevenagel condensations of a series of aromatic aldehydes with 1,3-dimethylbarbituric acid (e) and Meldrum’s acid (f) in aqueous media. CHAPTER 3 presents the results of an investigation on how simple variation of length and coordination mode of linear donors can self-discriminate into markedly different complex architectures, from Pd8 molecular swing [{(tmen)Pd}8(tim)2(bpy)4](NO3)16 (1) or [{(tmen)Pd}8(tim)2(stt)5](NO3)6 (2) to Pd6 molecular boat [{(tmen)Pd}6(tim)2(bpe/dpe/pin/dpb)2](NO3)12, (3/4/5/6). Also by enhancing denticity [bidentate to tridentate (ptp)] as well as introducing asymmetry, they self-sort into Pd7 molecular tent [{(tmen)Pd}7(tim)2(ptp)2](NO3)14 (7) by employing it in a self-assembly of cis-(tmen)Pd(NO3)2 and tetraimidazole (tim) donor [where tmen = N,N,N’,N’-tetramethylethylenediamine, bpy = 4,4’-bipyridyl, stt = sodium terephthalate, bpe = trans-1,2-bis(4-pyridyl)ethylene, dpe = 1,2-di(pyridin-4-yl)ethane, pin = N-(pyridin-4-yl)isonicotinamide, dpb = 1,4-di(pyridin-4-yl)benzene, ptp = 6'-(pyridin-4-yl)-3,4':2',4''-terpyridine, and tim = 1,2,4,5-tetrakis(1- imidazolyl)benzene]. In these cases, control of the geometrical principles and stereo-electronic preferences of the building units allowed the formation of such intricate architectures. Some of these assemblies represent first examples of such types of structures, and their formation would not be anticipated by taking into account only the geometry of the donor and acceptor building units. In addition to their direct structural confirmation using single crystal X-ray diffraction analysis, propensity of the assemblies (1 and 3) to form inclusion complexes with large guest like C60 in solution was also demonstrated by fluorescence quenching experiment. The high KSV values for both the assemblies 1 (1.0 × 10-5 M-1) and 2 (1.6 × 10-6 M-1) with C60 indicated the propensity of these assemblies to form complexes with C60 in solution. Furthermore, inspection of crystal packing of other five complexes (2 and 4 - 7) revealed the presence of water molecules H-bonded with NO3– (O-H···O=N) and 3D H-bonded networks of water in the intermolecular pockets. Interestingly, the present complexes (2 and 4 - 7) show high conductivity across low-humidity range at ambient temperature and achieve a conductivity of ~10-3 Scm-1 at 75% relative humidity and 296 K. These supra-molecular architectures represent a new generation of discrete materials that display high proton conductivity under ambient conditions with activation energy comparable to that of Nafion. Scheme 2. Exclusive formation of Pd8 molecular swings (1 and 2), Pd6 molecular boats (3-6), and Pd7 molecular tent (7) via self-sorting. CHAPTER 4 presents self-selection by synergistic effect of morphological information and coordination ability of the ligands through specific coordination interactional algorithms within dynamic supramolecular systems involving a tetratopic Pd(II) acceptor and three different pyridine- and imidazole-based donors (La - Lc) [La = 1,3-bis((E)-2-(pyridin-3-yl)vinyl)benzene, Lb = 1,3-di(1H-imidazol-1-yl)benzene, and Lc = tris(4-(1H-imidazol-1-yl)phenyl)amine]. Three different cages, ‘paddle wheel’ cluster Pd2(La)4(NO3)4 (2a), molecular barrel Pd3(Lb)6(NO3)6 (2b) and molecular sphere Pd6(Lc)8(NO3)12 (2c) were first synthesized via two-component self-assembly of a tetratopic Pd(II) acceptor (1) and individual pyridine- and imidazole-based donors (La - Lc). When all the four components were allowed to interact in a complex reaction mixture, only one out of three cages was isolated. The inherent dynamic nature of the kinetically labile coordination bond allows constitutional adaptation through component exchange in the competition experiment involving multiple constituents to self-organize into specific combination and thereby, achieve the thermodynamically most stable assembly. The preferential binding affinity towards a particular partner was also established by transforming a non-preferred cage to a preferred cage by the interaction with the appropriate ligand and thus, this represents the first examples of two-step cage-to-cage transformation through constitutional evolution of Figure 2. Cage-to-cage transformation from non-preferred cage to preferred cage upon treatment with appropriate ligand; and Nyquist plots of the complexes (2b and 2c) under 98% RH condition and ambient temparature. dynamic systems induced by both coordination ability and geometry of the ligand. Moreover, computational study further supported the fact that coordination interaction of imidazole moiety to Pd(II) is enthalpically more preferred compared to pyridine which drives the selection process. In addition, analysis of crystal packing of both the complexes (2b and 2c) indicated the presence of strong H-bonds between NO3- and water molecules; as well as H-bonded 3D-networks of water. Interestingly, both the complexes exhibit promising proton conductivity (10-5 to ca. 10-3 S cm-1) at ambient temperature under relative humidity of ~98% with low activation energy. CHAPTER 5 covers design and synthesis of new organometallic building block 1,3,5-tris(4-trans-Pt(PEt3)2I(ethynyl)phenyl)benzene (1) incorporating Pt-ethynyl functionality and [2 + 3] self-assembly of its nitrate analogue 1,3,5-tris(4-trans-Pt(PEt3)2(ONO2)(ethynyl)phenyl)benzene (2) with “clip” type bidentate donors (L1 – L3) separately afforded three trigonal prismatic architectures (3a – 3c), respectively (Scheme 3), Scheme 3. Schematic presentation of three different donors (L1 – L3) and a new planar tritopic acceptor (2) and their [3 + 2] self-assembly into trigonal prismatic architectures (3a - 3c). [L1 = N1,N3-di(pyridin-3-yl)isophthalamide; L2 = 1,3-bis((E)-2-(pyridin-3-yl)vinyl)benzene; L3 = 1,3-bis(pyridin-3-ylethynyl)benzene]. All these prisms were characterized and their shapes/sizes are predicted through geometry optimization employing molecular mechanics universal force field (MMUFF) simulation. The extended -conjugation including the presence of Pt-ethynyl functionality make them electron rich as well as luminescent in nature. As expected, cages 3b and 3c exhibit fluorescent quenching in solution upon addition of picric acid [PA], which is a common constituent of many explosives. Interestingly, the non-responsive nature of fluorescent intensity towards other electron-deficient nitro-aromatic explosives (NAEs) makes them promising selective sensors for PA with a detection limit deep down to ppb. Complexes 3b – c represent the first examples of molecular metallocages as selective sensors for picric acid. Furthermore, solid-state quenching of fluorescent intensity of the thin film of 3b upon exposure to saturated vapor of picric acid draws special attention for infield application.
125

Self-assembly of monolayers of aromatic carboxylic acid molecules on silver and copper modified gold surfaces at the liquid-solid interface

Aitchison, Hannah January 2015 (has links)
Exploiting coordination bonding of aromatic carboxylic acids at metal surfaces, this thesis explores new directions in the design and application of self-assembled monolayers (SAMs). The SAMs are investigated using a multi-technique approach comprising of a complementary combination of scanning tunneling microscopy (STM), X-ray photoelectron spectroscopy (XPS) and near-edge X-ray absorption fine structure (NEXAFS) spectroscopy. In addition, the X-ray standing wave technique (XSW) was used to characterise the substrates. The process of layer formation and the final structures of the SAMs are found to be strikingly dependent on the combination of molecule and substrate, which is discussed in terms of the intermolecular and molecule-substrate interactions, bonding geometries and symmetry of the organic molecules. This is illustrated by the dramatic difference between molecular adsorption on Ag and Cu for molecules such as biphenyl-3,4',5-tricarboxylic acid and biphenyl-4-acetic acid. In the case of self-assembly on Cu, the molecule-substrate interactions play a decisive role in the resulting SAM structure, whereas on Ag, the intermolecular interactions dominate over the weaker molecule-substrate binding. This exploration of the balance of interactions that lead to the formation of these SAM structures lays the foundation for a systematic design of the structures and properties of aromatic carboxylic acid based monolayers. Finally, different applications and properties of some SAMs were investigated, namely coordination of a Pd(II) complex to a pyridine/pyrazole terminated molecule adsorbed on Ag. Evidence of coordination of Pd(II) to single molecules was provided by STM, XPS and NEXAFS spectroscopy. Additionally, controlled STM tip induced modification of local areas of a 1,3,5-tris(4-carboxyphenyl)benzene SAM on Ag was performed, opening an exciting prospect for nanoscale molecular manipulation.
126

Investigating the early events in proteasome assembly

Ramamurthy, Aishwarya January 2014 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Proteasome assembly is a rapid and highly sequential process that occurs through a series of intermediates. While the quest to understand the exact process of assembly is ongoing, there remains an incomplete understanding of what happens early on during the process, prior to the involvement of the β subunits. A significant feature of proteasome assembly is the property of proteasomal subunits to self-assemble. While archaeal α and β subunits from Thermoplasma acidophilum can assemble into entire 20S units in vitro, certain α subunits from divergent species have a property to self-assemble into single and double heptameric rings. In this study, we have shown that recombinant α subunits from Methanococcus maripaludis also have a tendency to self-assemble into higher order structures when expressed in E. coli. Using a novel cross-linking strategy, we were able to establish that these higher order structures were double α rings that are structurally similar to a half-proteasome (i.e. an α-β ring pair). Our experiments on M. maripaludis α subunits represent the first biochemical evidence for the orientation of rings in an α ring dimer. We also investigated self-assembly of α subunits in S. cerevisiae and attempted to characterize a highly stable and unique high molecular weight complex (HMWC) that is formed upon co-expression of α5, α6, α7 and α1 in E. coli. Using our cross-linking strategy, we were able to show that this complex is a double α ring in which, at the least, one α1 subunit is positioned across itself. We were also able to detect α1-α1 crosslinks in high molecular weight complexes that are formed when α7 and α1 are co-expressed, and when α6, α7 and α1 are co-expressed in E. coli. The fact that we able to observe α1-α1 crosslinks in higher order structures that form whenever α7 and α1 were present suggests that α1-α1 crosslinks might be able to serve as potential trackers to detect HMWCs in vivo. This would be an important step in determining if these HMWCs represent bona fide assembly intermediates, or dead-end complexes whose formation must be prevented in order to ensure efficient proteasome assembly.
127

LAYER BY LAYER NANOASSEMB​LY OF COPPER INDIUM GALLIUM SELENIUM (CIGS) NANOPARTIC​LES FOR SOLAR CELL APPLICATIO​N

Hemati, Azadeh 12 1900 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / In this research thesis, copper indium gallium selenium (CIGS) nanoparticles were synthesized from metal chlorides, functionalized to disperse in water, and further used in layer by layer (LbL) nanoassembly of CIGS films. CIGS nanoparticles were synthesized through the colloidal precipitation in an organic solvent. The peak and average sizes of the synthesized particles were measured to be 68 nm and 75 nm in chloroform, and 30 nm and 115 nm in water, respectively. Two methods were used to disperse the particle in water. In the first method the stabilizing agent oleylamine (OLA) was removed through multiple cleaning processes, and in the second method ligand exchange was performed with polystyrene sulfonate (PSS). Zeta potential of CIGS nanoparticles dispersed in water was measured to be +61 mV. The surface charge of the nanoparticles was reversed by raising the pH of the solution, which was measured to be −43.3 mV at 10.5 pH. In a separate process, the CIGS nanoparticles dispersed in water were coated with PSS. The resulting dispersion was observed to be stable and the surface charge was measured to be −56.9 mV. The LbL deposition process of CIGS nanoparticles was characterized by depositing thin films on quartz crystal microbalance (QCM). LbL depositions was conducted using (i) oppositely charged CIGS nanoparticles, (ii) positively charged CIGS nanoparticles and PSS, and (iii) PSS-coated CIGS (CIGS-PSS) and polyethyleneimine (PEI). The average thickness of each bi-layer of the above mentioned depositions were measured to be 2.2 nm, 1.37 nm, and 10.12 nm, respectively. The results from the QCM have been observed to be consistent with the film thickness results obtained from atomic force microscopy (AFM). Various immersion times versus thickness of the film were also studied. For electrical characterization, the CIGS films were deposited on indium tindioxide (ITO)-coated glass substrates. Current versus voltage (I/V) measurements were carried out for each of the films using the Keithley semiconductor characterization instruments and micromanipulator probing station. It was observed that the conductivity of the films was increased with the deposition of each additional layer. The I/V characteristics were also measured under the light illumination and after annealing to study the photovoltaic and annealing effects. It was observed that under light illumination, the resistivity of a 12-layer CIGS film decreased by 93% to 0.54 MΩ.m, and that of the same number of layers of PSS-coated CIGS and PEI film decreased by 60% to 0.97 MΩ.m under illumination. The resistivity of an 8-layer CIGS and PSS film decreased by 76.4% to 0.1 MΩ.m, and that of the same layers of PSS-coated CIGS and PEI decreased by 87% to 0.07 MΩ.m after annealing. The functionalized nanoparticles and the LbL CIGS films were implemented in the solar cell devices. Several configurations of CIGS films (p-type), and ZnO and CdS films (n-type) were considered. Poly(3,4-ethylenedioxythiophene) (PEDOT), molybdenum (Mo), and ITO were used as back contacts and ITO was used as front contact for all the devices. The devices were characterized the Keithley semiconductor characterization instruments and micromanipulator probing station. For a CIGS and n-ZnO films device with PEDOT as back contact and ITO as front contact, the current density at 0 V and under light illumination was measured to be 60 nA/cm2 and the power density was measured to be 0.018 nW/cm2. For a CIGS and CdS films device with ITO as both back and front contact, the current density at 0 V and under light illumination was measured to be 50 nA/cm2 and the power density was measured to be 0.01 nW/cm2. For a drop-casted CIGS and CdS films device with Mo as back contact and ITO as front contact, the current density of 50 nA/cm2 at 0 V and power density of 0.5 nW/cm2 under light illumination was measured. For the LbL CIGS and chemical bath deposited CdS films device with ITO as both back and front contact, the current density of 0.04 mA/cm2 at 0 V and power density of 1.6 μW/cm2 under light illumination was measured. Comparing to Device-III, an increase by 99% in the power density was observed by using the CIGS LbL film in the device structure. The novel aspects of this research include, (i) functionalization of the CIGS nanoparticles to disperse in water including coating with PSS, (ii) electrostatic LbL deposition of CIGS films using oppositely charged nanoparticles and polymers, and (iii) the utilization of the fabricated LbL CIGS films to develop solar cells. In addition, the n-type cadmium sulfide film (CdS) and zinc oxide (ZnO) buffer layer were also deposited through LbL process after the respective particles were functionalized with PSS coating in separate experiments.

Page generated in 0.0451 seconds