Spelling suggestions: "subject:"semistructured data"" "subject:"emistructured data""
1 |
A formal framework for linguistic tree queryLai, Catherine Unknown Date (has links) (PDF)
The analysis of human communication, in all its forms, increasingly depends on large collections of texts and transcribed recordings. These collections, or corpora, are often richly annotated with structural information. These datasets are extremely large so manual analysis is only successful up to a point. As such, significant effort has recently been invested in automatic techniques for extracting and analyzing these massive data sets. However, further progress on analytical tools is confronted by three major challenges. First, we need the right data model. Second, we need to understand the theoretical foundations of query languages on that data model. Finally, we need to know the expressive requirements for general purpose query language with respect to linguistics. This thesis has addressed all three of these issues. / Specifically, this thesis studies formalisms used by linguists and database theorists to describe tree structured data. Specifically, Propositional dynamic logic and monadic second-order logic. These formalisms have been used to reason about a number of tree querying languages and their applicability to the linguistic tree query problem. We identify a comprehensive set of linguistic tree query requirements and the level of expressiveness needed to implement them. The main result of this study is that the required level of expressiveness of linguistic tree query is that of the first-order predicate calculus over trees. / This formal approach has resulted in a convergence between two seemingly disparate fields of study. Further work in the intersection of linguistics and database theory should also pave the way for theoretically well-founded future work in this area. This, in turn, will lead to better tools for linguistic analysis and data management, and more comprehensive theories of human language.
|
2 |
Probabilistic Databases and Their ApplicationsZhao, Wenzhong 01 January 2004 (has links)
Probabilistic reasoning in databases has been an active area of research during the last twodecades. However, the previously proposed database approaches, including the probabilistic relationalapproach and the probabilistic object approach, are not good fits for storing and managingdiverse probability distributions along with their auxiliary information.The work in this dissertation extends significantly the initial semistructured probabilistic databaseframework proposed by Dekhtyar, Goldsmith and Hawkes in [20]. We extend the formal SemistructuredProbabilistic Object (SPO) data model of [20]. Accordingly, we also extend the SemistructuredProbabilistic Algebra (SP-algebra), the query algebra proposed for the SPO model.Based on the extended framework, we have designed and implemented a Semistructured ProbabilisticDatabase Management System (SPDBMS) on top of a relational DBMS. The SPDBMS isflexible enough to meet the need of storing and manipulating diverse probability distributions alongwith their associated information. Its query language supports standard database queries as wellas queries specific to probabilities, such as conditionalization and marginalization. Currently theSPDBMS serves as a storage backbone for the project Decision Making and Planning under Uncertaintywith Constraints 1‡ , that involves managing large quantities of probabilistic information. Wealso report our experimental results evaluating the performance of the SPDBMS.We describe an extension of the SPO model for handling interval probability distributions. TheExtended Semistructured Probabilistic Object (ESPO) framework improves the flexibility of theoriginal semistructured data model in two important features: (i) support for interval probabilitiesand (ii) association of context and conditionals with individual random variables. An extended SPO1 This project is partially supported by the National Science Foundation under Grant No. ITR-0325063.(ESPO) data model has been developed, and an extended query algebra for ESPO has also beenintroduced to manipulate probability distributions for probability intervals.The Bayesian Network Development Suite (BaNDeS), a system which builds Bayesian networkswith full data management support of the SPDBMS, has been described. It allows expertswith particular expertise to work only on specific subsystems during the Bayesian network constructionprocess independently and asynchronously while updating the model in real-time.There are three major foci of our ongoing and future work: (1) implementation of a queryoptimizer and performance evaluation of query optimization, (2) extension of the SPDBMS to handleinterval probability distributions, and (3) incorporation of machine learning techniques into theBaNDeS.
|
3 |
Querying Large Collections of Semistructured DataKamali, Shahab 05 September 2013 (has links)
An increasing amount of data is published as semistructured documents formatted with presentational markup. Examples include data objects such as mathematical expressions encoded with MathML or web pages encoded with XHTML. Our intention is to improve the state of the art in retrieving, manipulating, or mining such data.
We focus first on mathematics retrieval, which is appealing in various domains, such as education, digital libraries, engineering, patent documents, and medical sciences. Capturing the similarity of mathematical expressions also greatly enhances document classification in such domains. Unlike text retrieval, where keywords carry enough semantics to distinguish text documents and rank them, math symbols do not contain much semantic information on their own. Unfortunately, considering the structure of mathematical expressions to calculate relevance scores of documents results in ranking algorithms that are computationally more expensive than the typical ranking algorithms employed for text documents. As a result, current math retrieval systems either limit themselves to exact matches, or they ignore the structure completely; they sacrifice either recall or precision for efficiency.
We propose instead an efficient end-to-end math retrieval system based on a structural similarity ranking algorithm. We describe novel optimization techniques to reduce the index size and the query processing time. Thus, with the proposed optimizations, mathematical contents can be fully exploited to rank documents in response to mathematical queries. We demonstrate the effectiveness and the efficiency of our solution experimentally, using a special-purpose testbed that we developed for evaluating math retrieval systems. We finally extend our retrieval system to accommodate rich queries that consist of combinations of math expressions and textual keywords.
As a second focal point, we address the problem of recognizing structural repetitions in typical web documents. Most web pages use presentational markup standards, in which the tags control the formatting of documents rather than semantically describing their contents. Hence, their structures typically contain more irregularities than descriptive (data-oriented) markup languages. Even though applications would greatly benefit from a grammar inference algorithm that captures structure to make it explicit, the existing algorithms for XML schema inference, which target data-oriented markup, are ineffective in inferring grammars for web documents with presentational markup.
There is currently no general-purpose grammar inference framework that can handle irregularities commonly found in web documents and that can operate with only a few examples. Although inferring grammars for individual web pages has been partially addressed by data extraction tools, the existing solutions rely on simplifying assumptions that limit their application. Hence, we describe a principled approach to the problem by defining a class of grammars that can be inferred from very small sample sets and can capture the structure of most web documents. The effectiveness of this approach, together with a comparison against various classes of grammars including DTDs and XSDs, is demonstrated through extensive experiments on web documents. We finally use the proposed grammar inference framework to extend our math retrieval system and to optimize it further.
|
4 |
Querying Large Collections of Semistructured DataKamali, Shahab 05 September 2013 (has links)
An increasing amount of data is published as semistructured documents formatted with presentational markup. Examples include data objects such as mathematical expressions encoded with MathML or web pages encoded with XHTML. Our intention is to improve the state of the art in retrieving, manipulating, or mining such data.
We focus first on mathematics retrieval, which is appealing in various domains, such as education, digital libraries, engineering, patent documents, and medical sciences. Capturing the similarity of mathematical expressions also greatly enhances document classification in such domains. Unlike text retrieval, where keywords carry enough semantics to distinguish text documents and rank them, math symbols do not contain much semantic information on their own. Unfortunately, considering the structure of mathematical expressions to calculate relevance scores of documents results in ranking algorithms that are computationally more expensive than the typical ranking algorithms employed for text documents. As a result, current math retrieval systems either limit themselves to exact matches, or they ignore the structure completely; they sacrifice either recall or precision for efficiency.
We propose instead an efficient end-to-end math retrieval system based on a structural similarity ranking algorithm. We describe novel optimization techniques to reduce the index size and the query processing time. Thus, with the proposed optimizations, mathematical contents can be fully exploited to rank documents in response to mathematical queries. We demonstrate the effectiveness and the efficiency of our solution experimentally, using a special-purpose testbed that we developed for evaluating math retrieval systems. We finally extend our retrieval system to accommodate rich queries that consist of combinations of math expressions and textual keywords.
As a second focal point, we address the problem of recognizing structural repetitions in typical web documents. Most web pages use presentational markup standards, in which the tags control the formatting of documents rather than semantically describing their contents. Hence, their structures typically contain more irregularities than descriptive (data-oriented) markup languages. Even though applications would greatly benefit from a grammar inference algorithm that captures structure to make it explicit, the existing algorithms for XML schema inference, which target data-oriented markup, are ineffective in inferring grammars for web documents with presentational markup.
There is currently no general-purpose grammar inference framework that can handle irregularities commonly found in web documents and that can operate with only a few examples. Although inferring grammars for individual web pages has been partially addressed by data extraction tools, the existing solutions rely on simplifying assumptions that limit their application. Hence, we describe a principled approach to the problem by defining a class of grammars that can be inferred from very small sample sets and can capture the structure of most web documents. The effectiveness of this approach, together with a comparison against various classes of grammars including DTDs and XSDs, is demonstrated through extensive experiments on web documents. We finally use the proposed grammar inference framework to extend our math retrieval system and to optimize it further.
|
5 |
Querying semistructured data based on schema matchingBergholz, André 24 January 2000 (has links)
Daten werden noch immer groesstenteils in Dateien und nicht in Datenbanken gespeichert. Dieser Trend wird durch den Internetboom der 90er Jahre nur noch verstaerkt. Daraus ist das Forschungsgebiet der semistrukturierten Daten entstanden. Semistrukturierte Daten sind Daten, die meist in Dokumenten gespeichert sind und eine implizite und irregulaere Struktur aufweisen. HTML- oder BibTeX-Dateien oder in ASCII-Dateien gespeicherte Genomdaten sind Beispiele. Traditionelles Datenbankmanagement erfordert Design und sichert Deklarativitaet zu. Dies ist im Umfeld der semistrukturierten Daten nicht gegeben, ein flexiblerer Ansatz wird gebraucht. In dieser Arbeit wird ein neuer Ansatz des Abfragens semistrukturierter Daten praesentiert. Wir schlagen vor, semistrukturierte Daten durch eine Menge von partiellen Schemata zu beschreiben, anstatt zu versuchen, ein globales Schema zu definieren. Letzteres ist zwar geeignet, einen effizienten Zugriff auf Daten zu ermoeglichen; ein globales Schema fuer semistrukturierte Daten leidet aber zwangslaeufig an der Irregularitaet der Struktur der Daten. Wegen der vielen Ausnahmen vom intendierten Schema wird ein globales Schema schnell sehr gross und wenig repraesentativ. Damit wird dem Nutzer ein verzerrtes Bild ueber die Daten gegeben. Hingegen koennen partielle Schemata eher ein repraesentatives Bild eines Teils der Daten darstellen. Mit Hilfe statistischer Methoden kann die Guete eines partiellen Schemas bewertet werden, ebenso koennen irrelevante Teile der Datenbank identifiziert werden. Ein Datenbanksystem, das auf partiellen Schemata basiert, ist flexibler und reflektiert den Grad der Strukturierung auf vielen Ebenen. Seine Benutzbarkeit und seine Performanz steigen mit einem hoeheren Grad an Struktur und mit seiner Nutzungsdauer. Partielle Schemata koennen auf zwei Arten gewonnen werden. Erstens koennen sie durch einen Datenbankdesigner bereitgestellt werden. Es ist so gut wie unmoeglich, eine semistrukturierte Datenbank komplett zu modellieren, das Modellieren gewisser Teile ist jedoch denkbar. Zweitens koennen partielle Schemata aus Benutzeranfragen gewonnen werden, wenn nur die Anfragesprache entsprechend entworfen und definiert wird. Wir schlagen vor, eine Anfrage in einen ``Was''- und einen ``Wie''-Teil aufzuspalten. Der ``Was''-Teil wird durch partielle Schemata repraesentiert. Partielle Schemata beinhalten reiche semantische Konzepte, wie Variablendefinitionen und Pfadbeschreibungen, die an Konzepte aus Anfragesprachen angelehnt sind. Mit Variablendefinitionen koennen verschiedene Teile der Datenbank miteinander verbunden werden. Pfadbeschreibungen helfen, durch das Zulassen einer gewissen Unschaerfe, die Irregularitaet der Struktur der Daten zu verdecken. Das Finden von Stellen der Datenbank, die zu einem partiellen Schema passen, bildet die Grundlage fuer alle Arten von Anfragen. Im ``Wie''-Teil der Anfrage werden die gefundenen Stellen der Datenbank fuer die Antwort modifiziert. Dabei koennen Teile der gefundenen Entsprechungen des partiellen Schemas ausgeblendet werden oder auch die Struktur der Antwort voellig veraendert werden. Wir untersuchen die Ausdrucksstaerke unserer Anfragesprache, in dem wir einerseits die Operatoren der relationalen Algebra abbilden und andererseits das Abfragen von XML-Dokumenten demonstrieren. Wir stellen fest, dass das Finden der Entsprechungen eines Schemas (wir nennen ein partielles Schema in der Arbeit nur Schema) den aufwendigsten Teil der Anfragebearbeitung ausmacht. Wir verwenden eine weitere Abstraktionsebene, die der Constraint Satisfaction Probleme, um die Entsprechungen eines Schemas in einer Datenbank zu finden. Constraint Satisfaction Probleme bilden eine allgemeine Klasse von Suchproblemen. Fuer sie existieren bereits zahlreiche Optimierungsalgorithmen und -heuristiken. Die Grundidee besteht darin, Variablen mit zugehoerigen Domaenen einzufuehren und dann die Werte, die verschiedene Variablen gleichzeitig annehmen koennen, ueber Nebenbedingungen zu steuern. In unserem Ansatz wird das Schema in Variablen ueberfuehrt, die Domaenen werden aus der Datenbank gebildet. Nebenbedingungen ergeben sich aus den im Schema vorhandenen Praedikaten, Variablendefinitionen und Pfadbeschreibungen sowie aus der Graphstruktur des Schemas. Es werden zahlreiche Optimierungstechniken fuer Constraint Satisfaction Probleme in der Arbeit vorgestellt. Wir beweisen, dass die Entsprechungen eines Schemas in einer Datenbank ohne Suche und in polynomialer Zeit gefunden werden koennen, wenn das Schema ein Baum ist, keine Variablendefinitionen enthaelt und von der Anforderung der Injektivitaet einer Einbettung abgesehen wird. Zur Optimierung wird das Enthaltensein von Schemata herangezogen. Das Enthaltensein von Schemata kann auf zwei Weisen, je nach Richtung der Enthaltenseinsbeziehung, genutzt werden: Entweder kann der Suchraum fuer ein neues Schema reduziert werden oder es koennen die ersten passenden Stellen zu einem neuen Schema sofort praesentiert werden. Der gesamte Anfrageansatz wurde prototypisch zunaechst in einem Public-Domain Prolog System, spaeter im Constraintsystem ECLiPSe implementiert und mit Anfragen an XML-Dokumente getestet. Dabei wurden die Auswirkungen verschiedener Optimierungen getestet. Ausserdem wird eine grafische Benutzerschnittstelle zur Verfuegung gestellt. / Most of today's data is still stored in files rather than in databases. This fact has become even more evident with the growth of the World Wide Web in the 1990s. Because of that observation, the research area of semistructured data has evolved. Semistructured data is typically stored in documents and has an irregular, partial, and implicit structure. The thesis presents a new framework for querying semistructured data. Traditional database management requires design and ensures declarativity. The possibilities to design are limited in the field of semistructured data, thus, a more flexible approach is needed. We argue that semistructured data should be represented by a set of partial schemata rather than by one complete schema. Because of irregularities of the data, a complete schema would be very large and not representative. Instead, partial schemata can serve as good representations of parts of the data. While finding a complete schema turns out to be difficult, a database designer may be able to provide partial schemata for the database. Also, partial schemata can be extracted from user queries if the query language is designed appropriately. We suggest to split the notion of query into a ``What''- and a ``How''-part. Partial schemata represent the ``What''-part. They cover semantically richer concepts than database schemata traditionally do. Among these concepts are predicates, variable definitions, and path descriptions. Schemata can be used for query optimization, but they also give users hints on the content of the database. Finding the occurrences (matches) of such a schema forms the most important part of query execution. All queries of our approach, such as the focus query or the transformation query, are based on this matching. Query execution can be optimized using knowledge about containment relationships between different schemata. Our approach and the optimization techniques are conceptually modeled and implemented as a prototype on the basis of Constraint Satisfaction Problems (CSPs). CSPs form a general class of search problems for which many techniques and heuristics exist. A CSP consists of variables that have a domain associated to them. Constraints restrict the values that variables can simultaneously take. We transform the problem of finding the matches of a schema in a database to a CSP. We prove that under certain conditions the matches of a schema can be found without any search and in polynomial time. For optimization purposes the containment relationship between schemata is explored. We formulate a sufficient condition for schema containment and test it again using CSP techniques. The containment relationship can be used in two ways depending on the direction of the containment: It is either possible to reduce the search space when looking for matches of a schema, or it is possible to present the first few matches immediately without any search. Our approach has been implemented into the constraint system ECLiPSe and tested using XML documents.
|
Page generated in 0.0624 seconds