Spelling suggestions: "subject:"sentiment"" "subject:"centiment""
71 |
Linguistic Approach to Information Extraction and Sentiment Analysis on TwitterNepal, Srijan 11 October 2012 (has links)
No description available.
|
72 |
Approaches to Automatically Constructing Polarity Lexicons for Sentiment Analysis on Social NetworksKhuc, Vinh Ngoc 16 August 2012 (has links)
No description available.
|
73 |
Using sentiment analysis to craft a narrative of the COVID-19 pandemic from the perspective of social mediaRay, Taylor Breanna 06 August 2021 (has links)
Throughout the COVID-19 pandemic, people have turned to social media to share their experiences with the coronavirus and their feelings regarding subjects like social distancing, mask-wearing, COVID-19 vaccines, and other related topics. The publicly available nature of these social media posts provides researchers the chance to obtain a consensus on an array of issues, topics, people, and entities. For the COVID-19 pandemic, this is valuable information that can prepare communities and governing bodies for future epidemics or events of a similar magnitude. However, clearly defining such a consensus can be difficult, especially if researchers want to limit the amount of bias they introduce. The process of sentiment analysis helps to address this need by categorizing text sources into one of three distinct polarities. Namely, those polarities are often positive, neutral, and negative. While sentiment analysis can take form as a completely manual task, this becomes incredibly burdensome for projects that involve substantial amounts of data. This thesis attempts to overcome this challenge by programmatically classifying the sentiment of COVID-19 posts from 10 social media and web-based forums using a multinomial Naive Bayes classifier. The unique and contrasting qualities of the social networks being analyzed provide a robust take on the public's perception of the pandemic that has not yet been offered up to the present.
|
74 |
Predictive Modeling in Marketing Campaigns : Applying Machine Learning Techniques for Improved Campaign Evaluation / Prediktiv modellering i marknadsföringskampanjer : Tillämpning av maskininlärningstekniker för förbättrad kampanjutvärderingCarling, Albert January 2024 (has links)
By leveraging historical data together with machine learning algorithms, marketers can predict how new campaigns are likely to perform before launch. This approach can save time and resources and can help marketers optimize campaigns in current time through adjustments to increase return on investment (ROI) and reach the right target group. The objective of this thesis is to develop a predictive model through the application of feature selection techniques to assess the likability of a campaign. This study aims to identify the key features that significantly influence campaign likability and to quantify their impact. The task has been approached as a regression problem, with the objective of examine what predictors drives the liking of a campaign. The study implemented four methods for feature selection, recursive feature elimination with cross validation conjucted with random forest, lasso regression, ridge regression and decision trees. Further, to model, the following machine learning algorithms were employed: linear regression, ridge regression with cross validation, lasso regression with cross validation, elastic net with cross validation, kernel ridge regression and support vector regression. Based on the machine learning algorithm and the available data, the results indicate that the set of features generated by recursive feature elimination with cross validation combined with random forest was the most prominent and the algorithm support vector regression generated the best models. / Genom att använda historisk data tillsammans med maskininlärningsalgoritmer kan marknadsförare prediktera hur nya kampanjer sannolikt kommer att prestera innan de lanseras. Denna strategi kan spara tid och resurser och hjälpa marknadsförare att optimera kampanjer i realtid genom justeringar för att öka avkastningen på investeringen och nå rätt målgrupp. Målet med denna avhandling är att utveckla en prediktiv modell genom tillämpning av metodiker för variabelselektion för att bedöma sannolikheten för att en kampanj kommer att vara omtyckt. Denna studie syftar till att identifiera de nyckelvariabler som signifikant påverkar kampanjens popularitet och kvantifiera deras påverkan. Uppgiften behandlas som ett regressionsproblem för att identifiera vilka prediktorer som bidrar till ett positivt helhetsintryck av en kampanj. Studien implementerade fyra metoder för urval av variableselektion: rekursiv variabelselektion med korsvalidering kombinerad med random forest, lasso-regression, ridge-regression och beslutsträd. Dessutom användes följande maskininlärningsalgoritmer för modellering: linjär regression, ridge regression med korsvalidering, lasso regression med korsvalidering, elastiskt nät med korsvalidering, kernel ridge regression och stödvektorsregression. Baserat på maskininlärningsalgoritmerna och det tillgängliga datat indikerar resultaten att uppsättningen av funktioner genererad av rekursiv variabelselektion med korsvalidering kombinerad med random forest var mest framträdande och att algoritmen stödvektorregression genererade de bästa modellerna.
|
75 |
Death of the Dictionary? – The Rise of Zero-Shot Sentiment ClassificationBorst, Janos, Burghardt, Manuel, Klähn, Jannis 04 July 2024 (has links)
In our study, we conduct a comparative analysis between dictionary-based sentiment analysis and entailment zero-shot text classification for German sentiment analysis. We evaluate the performance of a selection of dictionaries on eleven data sets, including four domain-specific data sets with a focus on historic German language. Our results demonstrate that, in the majority of cases, zero-shot text classification outperforms general-purpose dictionary-based approaches but falls short of the performance achieved by specifically fine-tuned models. Notably, the zero-shot approach exhibits superior performance, particularly in historic German cases, surpassing both general-purpose dictionaries and even a broadly trained sentiment model. These findings indicate that zero-shot text classification holds significant promise as an alternative, reducing the necessity for domain-specific sentiment dictionaries and narrowing the availability gap of off-the-shelf methods for German sentiment analysis. Additionally, we thoroughly discuss the inherent trade-offs associated with the application of these approaches.
|
76 |
Sentiment Analysis & Time Series Analysis on Stock MarketSingh, Aniket Kumar 28 April 2023 (has links)
No description available.
|
77 |
Development of an online reputation monitor / Gerhardus Jacobus Christiaan VenterVenter, Gerhardus Jacobus Christiaan January 2015 (has links)
The opinion of customers about companies are very important as this can influence a company’s profit. Companies often get customer feedback via surveys or other official methods in order to improve their services. However, some customers feel threatened when their opinions are publicly asked and thus prefer to voice their opinion on the internet where they take comfort in anonymity. This form of customer feedback is difficult to monitor as the information can be found anywhere on the internet and new information is generated at an astonishing rate.
Currently there are companies such as Brandseye and Brand.Com that provide online reputation management services. These services have various shortcomings such as cost and is incapable of accessing historical data. Companies are also not allowed to purchase these software and can only use the software on a subscription basis.
The design proposed in this document will be able to scan any number of user defined websites and save all the information found on the websites in a series of index files, which can be queried for occurrences of user defined keywords at any time. Additionally, the software will also be able to scan Twitter and Facebook for any number of user defined keywords and save any occurrences of the keywords to a database. After scanning the internet, the results will be passed through a similarity filter, which will filter out insignificant results as well as any duplicates that might be present. Once passed through the filter the remaining results will be analysed by a sentiment analysis tool which will determine whether the sentence in which the keyword occurs is positive or negative. The analysed results will determine the overall reputation of the keyword that was used.
The proposed design has several advantages over current systems:
- By using the modular design several tasks can execute at the same time without influencingeach other. For example; information can be extracted from the internet while existing resultsare being analysed.
- By providing the keywords and websites that the system will use the user will have full controlover the online reputation management process.
- By saving all the information contained in a website the user will be able to take historicalinformation into account to determine how the keywords reputation changes over time. Savingthe information will also allow the user to search for any keyword without rescanning theinternet.
The proposed system was tested and successfully used to determine the online reputation of many user defined keywords. / MIng (Computer and Electronic Engineering), North-West University, Potchefstroom Campus, 2015
|
78 |
Development of an online reputation monitor / Gerhardus Jacobus Christiaan VenterVenter, Gerhardus Jacobus Christiaan January 2015 (has links)
The opinion of customers about companies are very important as this can influence a company’s profit. Companies often get customer feedback via surveys or other official methods in order to improve their services. However, some customers feel threatened when their opinions are publicly asked and thus prefer to voice their opinion on the internet where they take comfort in anonymity. This form of customer feedback is difficult to monitor as the information can be found anywhere on the internet and new information is generated at an astonishing rate.
Currently there are companies such as Brandseye and Brand.Com that provide online reputation management services. These services have various shortcomings such as cost and is incapable of accessing historical data. Companies are also not allowed to purchase these software and can only use the software on a subscription basis.
The design proposed in this document will be able to scan any number of user defined websites and save all the information found on the websites in a series of index files, which can be queried for occurrences of user defined keywords at any time. Additionally, the software will also be able to scan Twitter and Facebook for any number of user defined keywords and save any occurrences of the keywords to a database. After scanning the internet, the results will be passed through a similarity filter, which will filter out insignificant results as well as any duplicates that might be present. Once passed through the filter the remaining results will be analysed by a sentiment analysis tool which will determine whether the sentence in which the keyword occurs is positive or negative. The analysed results will determine the overall reputation of the keyword that was used.
The proposed design has several advantages over current systems:
- By using the modular design several tasks can execute at the same time without influencingeach other. For example; information can be extracted from the internet while existing resultsare being analysed.
- By providing the keywords and websites that the system will use the user will have full controlover the online reputation management process.
- By saving all the information contained in a website the user will be able to take historicalinformation into account to determine how the keywords reputation changes over time. Savingthe information will also allow the user to search for any keyword without rescanning theinternet.
The proposed system was tested and successfully used to determine the online reputation of many user defined keywords. / MIng (Computer and Electronic Engineering), North-West University, Potchefstroom Campus, 2015
|
79 |
L’Union européenne et ses territoires « euro-caribéens » : étude du sentiment d’appartenance et de l’identité des citoyens européens de la CaraïbeCharron, Yves January 2015 (has links)
Analyse du sentiment d’appartenance et de l’identité des citoyens des territoires non indépendants de la Caraïbe faisant partie de l’Union européenne. Vérification faite par l’étude des politiques publiques, de l’économie, du filet social, des reliquats de l’esclavage et de la culture dans chacun des territoires étudiés.
|
80 |
Τεχνικές για την εξαγωγή γνώσης από την πλατφόρμα του TwitterΔήμας, Αναστάσιος 12 October 2013 (has links)
Η χρήση του Twitter από ολοένα και περισσότερους ανθρώπους έχει ως
συνέπεια την παραγωγή μεγάλου όγκου «υποκειμενικών» δεδομένων. Η ανάγκη για
εξεύρεση τυχόν πολύτιμης κρυμμένης πληροφορίας σε αυτά τα δεδομένα, έδωσε
ώθηση στην ανάπτυξη ενός νέου πεδίου έρευνας, του Sentiment Analysis, που έχει
ως αντικείμενο τον εντοπισμό του συναισθήματος ενός χρήστη (ή μιας ομάδας
χρηστών) ως προς κάποιο θέμα. Οι παραδοσιακοί αλγόριθμοι και μέθοδοι
εντοπισμού συναισθήματος στηρίζονται στην λεκτική ανάλυση φράσεων ή
προτάσεων σε «επίσημα» κείμενα και καλούνται word based approaches. Ωστόσο,
το μικρό μέγεθος των κειμένων του Twitter, σε συνδυασμό με την χαλαρότητα της
χρησιμοποιούμενης γλώσσας (από πλευράς χρηστών), δεν επιτρέπει την
αποτελεσματική χρήση αυτών των τεχνικών. Για τον λόγο αυτό, προτιμάται η χρήση
τεχνικών που βασίζονται σε χαρακτήρες (αντί για λέξεις) και καλούνται character
based approaches.
Στόχος της διπλωματικής εργασίας είναι η εφαρμογή της character based
μεθόδου στην ανάλυση tweets πολιτικού περιεχομένου. Συγκεκριμένα,
χρησιμοποιήθηκαν δεδομένα από την πολιτική σκηνή των Η.Π.Α., με σκοπό να
εντοπιστεί η προτίμηση ενός χρήστη ως προς το Ρεπουμπλικανικό ή το Δημοκρατικό
κόμμα μέσω σχετικών tweets. Για την ανάλυση χρησιμοποιήθηκε επιβλεπόμενη
μάθηση με την βοήθεια του Naive Bayes ταξινομητή.
Αρχικά, συλλέχθηκε ένα σύνολο από 7904 tweets, προερχόμενα από τους
επίσημους λογαριασμούς Twitter 48 γερουσιαστών. Το σύνολο αυτό χωρίσθηκε σε
δυο επιμέρους σύνολα, το σύνολο εκπαίδευσης και το σύνολο ελέγχου, ελέγχοντας
για κάθε μια από τις δυο μεθόδους ανάλυσης (την word based και character based
μέθοδο) την ακρίβεια της ταξινόμησης. Από τα πειράματα πρόεκυψε πως η
character based μέθοδος ταξινομεί τα tweets με μεγαλύτερη ακρίβεια. Στην
συνέχεια συλλέξαμε δυο νέα σύνολα έλεγχου, ένα από τον επίσημο λογαριασμό
Twitter του Ρεπουμπλικανικού κόμματος και ένα από τον επίσημο λογαριασμό
Twitter του Δημοκρατικού κόμματος. Αυτή την φορά, ως σύνολο εκπαίδευσης
χρησιμοποιήθηκε ολόκληρο το αρχικό σύνολο από τα tweets των γερουσιαστών και
ελέγχθηκε η ακρίβεια ταξινόμησης για την character based μέθοδο στα δυο νέα
σύνολα ελέγχου. Αν και στην περίπτωση του Democratic Twitter account τα
αποτελέσματα μπορούν να χαρακτηριστούν ως «ικανοποιητικά», μιας και η
ακρίβεια της ταξινόμησης πλησίασε το 80%, για την περίπτωση του Republican
Twitter account κάτι τέτοιο δεν ισχύει. Για το λόγο αυτό, προχωρήσαμε σε μια πιο
διεξοδική μελέτη της δομής και του περιεχομένου αυτών tweets. Από την ανάλυση
προέκυψαν ορισμένα ενδιαφέροντα αποτελέσματα για την προέλευση των
χαμηλών ποσοστών στην ακρίβεια ταξινόμησης. Συγκεκριμένα, πρόεκυψε πως στην
πλειοψηφία των tweets που έγιναν από τους Ρεπουμπλικάνους γερουσιαστές, δεν
περιέχονταν κάποια προσωπική τους άποψη. Ήταν απλά μια αναφορά σε κάποιο
άρθρο ή video που είδαν στον διαδίκτυο. Άρα, η πλειοψηφία των tweets αυτών
περιέχουν «αντικειμενική» αντί για «υποκειμενική» πληροφορία. Συνεπώς, δεν
είναι δυνατόν να εξαχθούν τα χαρακτηριστικά εκείνα που θα βοηθήσουν στον
εντοπισμό της πολικότητας των χρηστών. / As more people enter the “social web”, social media platforms are becoming an increasingly valuable source of subjective information. The large volume of social media content available requires automatic techniques in order to process and extract any valuable information. This need recently gave rise to the field of Sentiment Analysis, also known as Opinion Mining. The goal of sentiment analysis is to identify the position of a user (or a group of users – a crowd), with respect to a particular issue or topic. Existing sentiment analysis systems aim at extracting patterns mainly from formal documents with respect to a particular language (most techniques concern English). They either search for discriminative series of words or use dictionaries that assess the meaning and sentiment of specific words and phrases. The limited size of Twitter posts in conjunction with the non-standard vocabulary and shortened words (used by its users) inserts a great deal of noise, making word based approaches ineffective. For all of the above reasons, a new approach was recommended in the literature. This new approach is not based on the study of words but rather on the study of consecutive character sequences (namely character-based approaches).
In this work, we demonstrate the superiority of the character based approach over the word based one in determining political sentiment. We argue that this approach can be used in order to efficiently determine the political preference (e.g. Republican or Democrat) of voters or to identify the importance that particular issues have on particular voters. This type of feedback can be useful in the organization of political campaigns or policies.
We created a corpus consisting of 7904 tweets, collected from the Twitter accounts of 48 U.S. senators. This corpus was then separated into two sets, the training set and the test set, in order to measure for each method (word and character based) the accuracy of the classification. From the experiments it was found that the character based method classified the tweets with greater accuracy. In the next test, we used two new test sets, one from the official Twitter account of the Republican Party and one from the official Twitter account of the Democratic Party. The main difference, with respect to the previous test, was the use of the total set of tweets collected from the senators’ Twitter accounts as a training set and the use of the tweets from the official Twitter accounts of each party as a test set. Even though from the official Democrat Twitter account, 80% of the tweets were correctly classified as Democrat, for the official Republican Twitter account this is not the case (56.7% accuracy).
This was found to be partly because the majority of the Republican account tweets were references to online articles or videos and not the personal opinions or views of the users. In other words, such tweets cannot be characterized as personal (subjective), in order to classify the respective user as leaning towards one party or the other, but rather should be considered as objective.
|
Page generated in 0.0656 seconds