Spelling suggestions: "subject:"dequence modelling"" "subject:"1sequence modelling""
1 |
Generating rhyming poetry using LSTM recurrent neural networksPeterson, Cole 30 April 2019 (has links)
Current approaches to generating rhyming English poetry with a neural network
involve constraining output to enforce the condition of rhyme. We investigate whether
this approach is necessary, or if recurrent neural networks can learn rhyme patterns
on their own. We compile a new dataset of amateur poetry which allows rhyme
to be learned without external constraints because of the dataset’s size and high
frequency of rhymes. We then evaluate models trained on the new dataset using a
novel framework that automatically measures the system’s knowledge of poetic form
and generalizability. We find that our trained model is able to generalize the pattern
of rhyme, generate rhymes unseen in the training data, and also that the learned word
embeddings for rhyming sets of words are linearly separable. Our model generates
a couplet which rhymes 68.15% of the time; this is the first time that a recurrent
neural network has been shown to generate rhyming poetry a high percentage of
the time. Additionally, we show that crowd-source workers can only distinguish
between our generated couplets and couplets from our dataset 63.3% of the time,
indicating that our model generates poetry with coherency, semantic meaning, and
fluency comparable to couplets written by humans. / Graduate
|
2 |
Transformer Offline Reinforcement Learning for Downlink Link AdaptationMo, Alexander January 2023 (has links)
Recent advancements in Transformers have unlocked a new relational analysis technique for Reinforcement Learning (RL). This thesis researches the models for DownLink Link Adaptation (DLLA). Radio resource management methods such as DLLA form a critical facet for radio-access networks, where intricate optimization problems are continuously resolved under strict latency constraints in the order of milliseconds. Although previous work has showcased improved downlink throughput in an online RL approach, time dependence of DLLA obstructs its wider adoption. Consequently, this thesis ventures into uncharted territory by extending the DLLA framework with sequence modelling to fit the Transformer architecture. The objective of this thesis is to assess the efficacy of an autoregressive sequence modelling based offline RL Transformer model for DLLA using a Decision Transformer. Experimentally, the thesis demonstrates that the attention mechanism models environment dynamics effectively. However, the Decision Transformer framework lacks in performance compared to the baseline, calling for a different Transformer model. / De senaste framstegen inom Transformers har möjliggjort ny teknik för Reinforcement Learning (RL). I denna uppsats undersöks modeller för länkanpassning, närmare bestämt DownLink Link Adaptation (DLLA). Metoder för hantering av radioresurser som DLLA utgör en kritisk aspekt för radioåtkomstnätverk, där invecklade optimeringsproblem löses kontinuerligt under strikta villkor kring latens och annat, i storleksordningen millisekunder. Även om tidigare arbeten har påvisat förbättrad länkgenomströmning med en online-RL-metod, så gäller att tidsberoenden i DLLA hindrar dess bredare användning. Följaktligen utökas här DLLA-ramverket med sekvensmodellering för att passa Transformer-arkitekturer. Syftet är att bedöma effekten av en autoregressiv sekvensmodelleringsbaserad offline-RL-modell för DLLA med en Transformer för beslutsstöd. Experimentellt visas att uppmärksamhetsmekanismen modellerar miljöns dynamik effektivt. Men ramverket saknar prestanda jämfört med tidigare forsknings- och utvecklingprojekt, vilket antyder att en annan Transformer-modell krävs.
|
3 |
Exploring Attention Based Model for Captioning ImagesXu, Kelvin 12 1900 (has links)
No description available.
|
4 |
Sequence to sequence learning and its speech applicationsZhang, Ying 04 1900 (has links)
No description available.
|
Page generated in 0.0961 seconds